
CSC2515 – Assignment #2

Due: Nov.8, 2005, 2pm at the START of class
Worth: 18%

Late assignments not accepted.

1 Polynomial Regression (3%)

One of the most basic generalized linear models is the Kth-order polynomial regression model:

ŷ(x) =
∑
j

wjhj(x)

hj(x) = xa1
1 xa2

2 . . . xaDD

where j indexes over vectors a1, a2, . . . , aD such that 0 ≤
∑D
i=1 ai ≤ K, xi is the value of the ith dimension

(component) of the input vector x, and ŷ(x) is the predicted output given data case x. For example, when D = 2
and K = 0 the model is constant: h0 = x0

1x
0
2 = 1 and ŷ(x) = w0h0. When D = 2 and K = 1 the model is linear

regression: h0 = x0
1x

0
2 = 1, h1 = x1

1x
0
2, h2 = x0

1x
1
2 and ŷ(x) = w0h0 + w1h1 + w2h2. The higher model orders K, and

other data dimensions D are similarly defined.

Assuming that our objective is to minimize squared prediction error (corresponding to a belief that there is Gaussian
noise on our output), polynomial ridge regression on a finite dataset {x1, y1, . . . ,xN , yN} optimizes this function:

φP =
∑
n

(ŷ(xn)− yn)2 + λ
∑
j

w2
j 〈hj(x)2〉 (1)

〈hj(x)2〉 =
1
N

N∑
n=1

hj(xn)2 (2)

Theory Questions:

1. Derive the gradient of φP with respect to w, ie the partial derivative of φP with respect to wj for all j.
Show a few lines of work.

2. By setting the gradient above to zero, solve for the weights which minimize the (regularized) objective function.
Show a few lines of work. This is nothing more than a trivial re-derivation of the linear-least squares formula.
This emphasizes that polynomial regression is just linear regression in the extended input vector h(x) =
[h0(x), h1(x), . . .].

3. The 〈hj(x)2〉 term in the weight decay helps to calibrate the weights when some basis elements are much
larger/smaller than others. To get an idea of why this is needed, assume all the components xi of each data
vector n were drawn IID from a single uniform distribution p(·) with range [0, 2µ] and mean µ. Given a1, ..., aD,
find the expected value under p(·) of (

∏D
i=1 x

ai
i )2, ie: EP ((

∏D
i=1 x

ai
i )2|a1, ..., aD). What does this tell you about

how hj(x)2 scales as a function of
∑D
i=1 ai, and the mean µ of p(·)?
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2 Radial Basis Network Regression (2%)

Recall that a radial basis network is a generalized linear model of the form

ŷ(x) =
K∑
j=1

wjhj(x)

hj(x) = exp [−α(x− zj)>(x− zj)]

Assuming again that we are trying to minimize squared error (maximize likelihood under a Gaussian noise model),
our objective is:

φR =
N∑
n=1

(ŷ(xn)− yn)2 + λ
K∑
j=1

w2
j

As you know, for fixed α > 0 and fixed zj , the optimal weights can be found in closed form (using linear least
squares). But if zj and α are unknown, they cannot be solved for in closed form. We would like to adapt them by
doing numerical optimization.

Theory Questions:

1. Derive the gradient of φR with respect to each centre zj (ie compute the partial derivatives ∂φR/∂zji) given a
finite training set {xn, yn} and the current values of zj , α for all j.

2. Derive the gradient ∂φR/∂ logα with respect to logα, given the training set and the current values of zj , α.

3 Locally Weighted Regression (1%)

A very useful and common special case of the above model is where we centre a basis function on every training
input, and set the weights so that they interpolate the training outputs:

ŷ(x) =
N∑
n=1

ynhn(x)

hn(x) =
exp [−α(x− xn)>(x− xn)]∑N

m=1 exp [−α(x− xm)>(x− xm)]

This model is almost the ultimate “non-parametric” model; it has only a single parameter α > 0 sometimes called
the “bandwidth”.

We’d like to set the bandwidth by optimizing an objective function numerically. We can’t use just simple training
error, since this would drive α to infinity. Instead, let’s minimize the leave-one-out estimate of squared error:

φL =
N∑
n=1

(ỹ(xn)− yn)2

where ỹ(xn) is computed by leaving out the point xn when making predictions, ie

ỹ(xn) =
∑
k 6=n

ykh̃k(xn)

h̃k(xn) =
exp

[
−α(xn − xk)>(xn − xk)

]∑
m6=n exp [−α(xn − xm)>(xn − xm)]

Theory Questions:

1. Find the derivative dφL/d logα with respect to logα, given the training set and the current value of α.
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4 Experiments

The experimental part of this assignment is set up so that you can obtain a good grade by completing all of the
basic experiments for 8%, and one of the two advanced experiments for an additional 2%. To receive full marks you
must complete both of the advanced experiments. You may also attempt any of the bonus experiments for additional
marks.

4.1 Datasets

On the course website you will find two datasets, a2motorcycle and a2weather, which are regression problems
having a single scalar output. The motorcycle data set has data dimension 1, 103 training points, and 30 test points.
The motorcycle data represents the acceleration force (in g’s) on a motorcycle helmet as a function of time (in ms)
during a collision. The weather data set has data dimension 2, 188 training points, and 50 test points. The weather
data represents the annual precipitation (in mm) in the state of Washington, USA, as a function of grid location on
a map.

4.2 Basic Experiments [8%]

Program learning procedures for each of the three regression models. For the polynomial model use either numerical
minimization of φP , or solve for the optimal weights analytically. For the radial basis network use gradient mini-
mization on the objective function φR. For locally weighted regression use gradient minimization on φL. You should
restart your optimization on φR several times from different starting conditions. If you use numerical minimization
on φP you should also use random restarts. For each of the two datasets:

1. Set λ = 0 and fit polynomial regression with K = 1, 2, 3.

2. Based on the ŷ(xn) and wj values found in part 1, set λ = .01 ∗
[∑

n (ŷ(xn)− yn)2
]
/
[∑

j w
2
j 〈hj(x)2〉

]
and

refit the polynomial regression with K = 1, 2, 3 and this new λ.

3. Set λ = 0 and fit a radial basis network using K = 10 for motorcycle and K = 18 for weather. Try several
random initializations for the parameters and select the one with the best objective (=training error, since
λ = 0.).

4. Based on the ŷ(xn) and wj values found in part 3, set λ = .01 ∗
[∑

n (ŷ(xn)− yn)2
]
/
[∑

j w
2
j

]
and refit the

radial basis network using the new λ and K = 10 for motorcycle and K = 18 for weather. Try several random
initializations for the parameters and select the one with the best objective ( 6=training error, since λ 6= 0).

5. Fit locally weighted regression. Set α by optimizing the leave-one-out error. If you carefully follow the gradient
of leave-one-out error with respect to α (or logα) you should not need to do any random restarts. If you have
some spare cycles on your hands you can check that your search is working by exhaustively evaluating α on a
fine grid.

What to hand in:

1. Error Values: Report the average training error (for polynomial 1,2,3 and RBF only), the leave-one-out error
(for locally weighted regression only) and the average test error for all methods. Make sure you do not include
the weight decay term when computing average test/train errors. If you use random restarts for any of the
methods, report results for the parameters that achieve the lowest value of the corresponding objective function.

2. Motorcycle Data Plots: For each regression model produce a plot showing the the training points as squares,
the test points as circles and the interpolants ŷ(x) as a curve. In a fourth figure, plot the training and testing
data, and then plot each of the basis functions hj(x) of the radial basis network as a curve. Indicate on the
plot the value of α that was learned by the radial basis network. Also indicate the value of α learned by locally
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weighted regression. We will be providing some helper functions for plotting in Matlab and there will also be
some help on this in the tutorial.

3. Weather Data Plots: Plot the training points in the input plane using squares and the test points using circles.
For each regression model display the interpolant using contour lines overlaid on the data. In a fourth figure
plot the training and test data. Show the centres and bandwidth α learned for your radial basis network,
and also report the bandwidth learned for your locally weighted regression. We will be providing some helper
functions for plotting in Matlab and there will also be some help on this in the tutorial.

4.3 Advanced Experiments [4%]

1. Try polynomial regression with K between 0 and 10. For each order k, compute the average leave-one-out
error. Also compute the average training and testing errors when you train on the entire training set. Use the
same value of λ you used in question 4.2.2. Hand in a plot of each error measure as a function of polynomial
order k for both datasets. What order gives the best test error? What order would you have picked if you were
using leave-one-out cross validation as a guide?

2. In the radial basis network, try all numbers of basis units in the set k = [1, 2, 4, 8, 16, 32, ..., N ] (where N is
the number of training samples). For each number of units k, compute the average leave-one-out error. (Each
time you leave out a point, try several random initializations and chose the one which leads to the smallest
training error.) Also compute the average training and testing errors when you train on the entire training set
(again, do several random initializations and chose the one with the lowest training error). Use the same value
of λ you used in question 4.2.4. Hand in a plot of each error measure as a function of the number of units k.
Do this for both datasets. What k gives the best test error? What number would you have picked if you were
using leave-one-out cross validation as a guide?

4.4 Bonus Experiments [up to 6%]

1. Set both the polynomial order k and the value of the smoothing parameter λ simultaneously by cross-validation.
Chose a sensible range for λ to search over, and display your results graphically, as well as reporting the best
pair of (k,λ) for test and validation.

2. Set both the number of radial basis units k and the value of the smoothing parameter λ simultaneously by
cross-validation. Chose a sensible range for λ to search over, and display your results graphically, as well as
reporting the best pair of (k,λ) for test and validation.

3. Generalize the locally weighted regression model so that each basis function hn has its own bandwidth αn.
Derive the gradient of the cross-validation error for this new model and re-fit it to the data, reporting your
new results. Display the resulting bandwidths and the training data together.

IMPORTANT: please do your computing on CDF or your own machine and not on CSLAB machines
since they have limited software licenses and other resources.
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