
Lecture 6:

Regression II:

Adaptive Basis Networks & Supervised Mixtures

Sam Roweis

October 19, 2004

Adaptive Basis Regression

• Previously we considered the generalized linear model

y =
∑

j

wjhj(x)

•Originally, the hj(·) were fixed and we were finding wj.
Now we want to learn both the basis functions hj and weights wj.

• Today we consider a fixed number of adaptive basis functions.
(Another way to learn is to select from a large set of candidates hj.)

•Of course, for a single output we could just absorb wj into hj but
for multiple outputs this is not possible.

σ

x

y

h j

?

wj

ijb

Artificial Neural Networks

•We saw neural nets for classification. Same idea for regression.
ANNs are just adaptive basis regression machines of the form:

yk =
∑

j

wkjσ(b>j x) = wkh

where hj = σ(b>j x) are known as the hidden unit activations;
yk are the output units and xi are the input units.

• The nonlinear scalar function σ is called an activation function.
We usually use invertible and differentiable activation functions.

• Neural network models with these activations are often called
multi-layer perceptrons (MLPs), in analogy with the classic
perceptron that used a hard-threshold activation.

• In general we want a saturating activation function.

• Sometimes we put an activation on the outputs also: yk = σ(wkh).

Common Activation Functions

• If the activation function is linear, the whole network reduces∗ to a
linear network: equivalent to linear regression.
[Only if there are at least as many hiddens as inputs and outputs.]

• Two nonlinear activation functions: sigmoid and hyperbolic tangent

sigmoid(z) =
1

1 + exp(−z)
tanh(z) =

exp(z)− exp(−z)

exp(z) + exp(−z)

z

sigmoid(z)

1/2

0

+1 +1tanh(z)

−1

0 z

• For small weights, these functions operate near zero and behave
almost linearly so the whole network is essentially linear.

• It is often a good idea to add “skip weights” directly connecting
inputs to outputs to take care of this linear component directly.

Credit Assignment Problem

• Assume the basis functions are of the form hj(x) = σ(b>j x).

• If we knew the desired values h∗j of hj(x) we could find bj by

doing linear regression from x to σ−1(h∗j).

• Problem: these values are unknown (“hidden”). Must find them.

σ

x

y

h j

?

wj

ijb

• Basic idea: try changing the basis functions’ values and see how the
final output y (and thus the error) is affected.

• If we change several basis functions and the output gets better,
which one was responsible? This is the credit assignment problem.

• Solution: only change one at a time!

Partial Derivatives and Weight Space Again

•Question: if we wiggle hj(x) and keep everything else the same,
does the error get better or worse?

• Luckily, calculus has an answer to exactly this question: ∂E
∂hj

.

• Plan: use a differentiable cost function E on the outputs and inside
the basis functions hj(x). Now compute the partial derivative of

each parameter with respect to the error: ∂E
∂hj

.

• Use the chain rule to compute gradient components ∂E
∂bij

= ∂E
∂hj

∂hj
∂bij

dwb
dE

bij

wi

E(w,b)
Adaptive basis regularization is all about
descending the error surface in (w,b)
weight space by following the gradient.

• The trick becomes computing these derivatives efficiently.

Backpropagation: error gradient in ANNs

• In layered networks (even with more than two layers), there is an
elegant, efficient recursive algorithm for computing the gradients of
any differentiable error function with respect to each of the weights
using message passing up and down the network.

• The calculations depend on which error function is used at output
(e.g. squared error or classification loss) and on which nonlinear
activation function is used at the hidden units (e.g. tanh/sigmoid).

•Once we have the gradient, we can update the weights using

1. Batch training: sum gradients over all data cases (examples) in
the training set, then update weights, then repeat.

2. Mini-batch: sum gradients over next nbatch cases, update.

3. Online training: update based on gradient for one case at a time.

Backpropagation: some notation

• aji → ith input to unit j.

wji → weight associated with ith input to j.
qj =

∑

i wjiaji → net input to unit j.
oj → output of unit j.

• For hidden units j, oj = σ(qj).

• For input units i, oi = xi
(and qi, ai·, wi· are undefined).

• For output units k, ok = σ(qk) or ok = qk.

wji

jia

oj

qj

i

j

Derivative of Output Error

• Assuming the error is additive across examples:

E =
∑

n

En

∂En

∂wji
=

∂En

∂qj

∂qj

∂wji

=
∂En

∂qj
aji

• So the real question is how to efficiently compute the derivative of

the output error with respect to the net input of each unit:
∂En

∂qj
.

• To do this we need to compute the derivative of a unit’s output
with respect to its net input, i.e. the derivative of the activation
function.

Derivative of Activation Function

• For a sigmoid activation, oj = σ(qj) = 1
1+exp(−qj)

and

∂oj

∂qj
= oj(1− oj)

• For a tanh activation, oj = σ(qj) =
exp(qj)−exp(−qj)

exp(qj)+exp(−qj)
and

∂oj

∂qj
= (1− o2

j)

z

sigmoid(z)

1/2

0

+1 +1tanh(z)

−1

0 z

Output Units

• For output unit(s) ok,
∂En

∂qk
=

∂En

∂ok
.

• Let’s assume squared error and sigmoid activations:

En =
∑

k

(ynk − onk)2

∂En

∂ok
= −2(yk − ok)

∂ok

∂qk
= −2(yk − ok)ok(1− ok)

• Putting it all together, the final derivative is:

∂En

∂wkj
= −2(yk − ok)ok(1− ok)akj

(This assumed activations on outputs.)
(We dropped the n from yk and ok for ease.)

Hidden Units

• Let δj = ∂En
∂qj

for all units.

• Fj are the units which j feeds into (undefined if j is an output).

δj =
∂En

∂qj
=

∑

i∈Fj

∂En

∂qi

∂qi

∂qj
=

∑

i∈Fj

δi
∂qi

∂qj

=
∑

i∈Fj

δi
∂qi

∂oj

∂oj

∂qj

=
∂oj

∂qj

∑

i∈Fj

δiwij (assume sigmoid activation)

= oj(1− oj)
∑

i∈Fj

δiwij

Recursion for Hidden Units

• The previous equations lead to a recursion for computing δs:

δj = oj(1− oj)
∑

i∈Fj

δiwij

• This recursive runs downwards, from the top of the network back
towards the inputs. We initialize it at the output units k using:

δk =
∂En

∂qk
=

∂En

∂ok
= −2(yk − ok)ok(1− ok)

• Given the δs we can compute the final gradients:

∂En

∂wji
= δjaji

Backprop Algoritm

• The final backprop procedure does this for each training case:

1. Propagate the inputs forward through the network:
inputs: oi← xi
hiddens & outputs: oj ← σ(

∑

i wjixj)

2. Compute the output error En =
∑

k(yk − ok)2 for this case.

3. Propagate the deltas backwards through the network:
outputs: δk ← −2(yk − ok)ok(1− ok)
hiddens: δj ← oj(1− oj)

∑

i∈Fj
δiwij

4. Compute the gradients: ∂En
∂wji

= δjaji

• Batch: sum errors and gradients over all training cases.
Mini-batch: sum errors and gradients over next nbatch cases.
Online: return gradient and error for this one case.

Radial Basis Networks

• Instead of sigmoidal hidden units, we can use Gaussian shaped
“bumps” as our basis functions:

hj(x) = exp

[

−
1

2σ2
‖x− zj‖

2
]

• The goal now is to learn the bump centres zj.

(Of course, we also have to set σ2 somehow.)

• How? You got it! Take the derivative using backprop.

• Now, the activation function derivatives will be different, but the
basic algorithm is exactly the same.

x x x x x1 2 3 4 5

h h h h h1 2 3 4 5

Backprop is efficient

•What’s so deep about the backprop algorithm?
Isn’t is just the chain rule applied to the ANN model? Yes, but...

• It does all gradient computations in O(|W |) rather than O(|W |2).
[If you just write down the derivatives, each one contains some
forward activation terms. It takes O(|W |) to compute these terms,
and there are |W | weights so the naive procedure is O(|W |2).]

• Backprop uses messages and caching to share forward and backward
calculations across the network and so is roughly O(3|W |).
This is the same time complexity as to make a single forward pass!

• The original backprop paper is:
Learning representation by backpropagating errors,
Rumelhart, Hinton and Williams; (Nature, 1986)

Network Regularlization

•We have to regularize ANNs and RBFs just like all other models.

• Shrinkage is the standard approach: here it is called weight decay:
Add a term λ

∑

ij w2
ij to the cost function.

• This adds −2λwij to the gradient of each weight.
Makes large weights get smaller (hence the name).

• Set λ by (cross-)validation.

• Can also start with small weights (and thus a linear network) and
stop training when the (cross-)validation error starts to increase.
This is called early stopping, and effectively keeps weights small.

er
ro

r

validation set

training set

training iterations

small weights
almost linear network

large weights
nonlinear network

stop here

Multi-layer nets and representational capacity

•We have considered only one hidden layer but we can have more.

• However, there is a deep result, (Kolmogorov’s theorem) which tells
us that any real valued function of K real inputs can be created by
composing addition and single input functions.
[This answered Hilbert’s 13th problem in the affirmative, which
asked if specific 3-variable functions could be written as
compositions of continuous functions of two or less variables.]

• In other words, there are no true functions of two variables.
e.g. xy = exp(log x + log y) log xy = log x + log y . . .

• This tells us that a one-hidden layer net will always do the job, in
theory. But it may take a lot of hidden units.

•Want to know more?

F. Girosi and T. Poggio. Kolmogorov’s theorem is irrelevant. Neural Computation, 1(4):465–469, 1989.

V. Kurkova, “Kolmogorov’s Theorem Is Relevant”, Neural Computation, 1991, Vol. 3, pp. 617–622.

Divide and Conquer

•One important idea in regression, similar to that in decision trees
for classification, is to divide the problem into many regions so that
within each region a simple model (e.g. linear) will suffice.

• If we divide into fixed regions, we have a general basis model (e.g.
splines, CART). But what if we want to adjust the boundaries also?

• Problem: since the cost function is piecewise constant with respect
to these boundaries, taking derivatives will not work.

• Solution: use “soft” splits of the data space, rather than hard splits.
Radial Basis Networks (RBFs) are a simple example of this.

Mixtures of Experts

• Basic idea: there are a collection of “experts”, each of which can
produce sensible outputs y for a small region of the input space x.

• There is also a “manager” or “gate”which decides which expert
should be called upon for a particular set of inputs.

•We must train both the gate and the experts.

Expert j

x x

input x

x x

gate

output y

How the Experts and Gate Interact

• The gate must look at the input and the proposed outputs of each
expert to come up with an overall output.
(Remember that the true output is unknown at test time!)

• The gate gives each expert a score, representing how well it thinks
the expert can predict the output on this input vector.

• How should the gate be used to combine the experts?

– Select the best expert (max score) and report its output?

– Linearly combine the expert outputs based on the expert scores?

– Stochastically select an expert based on the scores?

Hard Selection

• Let the score assigned by the gate to expert j be ηj(x).
Let the output of each expert be yj.
Assume there is Gaussian noise with covar Σ on the outputs.

• If the gate selects the best expert, it is just doing a hard
partitioning of the input space:

p(y|x) = N (y;yk, Σ) iff gk = max {gj}

• As we have seen, this makes the cost function piecewise constant
with respect to gate parameters, so training the gate using
gradients becomes very difficult.

Linear Combination

• Let the score assigned by the gate to expert j be ηj(x).
Let the associated probabilities be gj = exp ηj/

∑

k exp ηk.
Let the output of each expert be yj.

• Linear combination of the experts’ outputs:

p(y|x) = N (y;
∑

j gjyj, Σ)

• Seems like an obvious solution, but it actually encourages
co-operation instead of specialization.

• This can lead to crazy gradients.

p <.5BAp >.5 yA yBy*

dyA Bdy

yAB

Stochastic Selection

• Gate picks a single expert, with probabilities dictated by scores:

p(y|x) =
∑

j

gjN (y;yj, Σ)

• The output distribution is no longer unimodal!
It is a mixture of Gaussians distribution.

• Now, there is no co-operation. Each expert tries to get the answer
right on their own, but the size of their learning signal depends on
how likely the gate is to select them.

• Your first exposure to a very important idea: the difference between
linearly combining means and linearly combining distributions.

MOE Components

•We typically use a linear logistic regression model for the gate:

p(j|x) = gj =
exp(ηj)

∑

k exp(ηk)
=

exp(v>j x)
∑

k exp(v>kx)

•We can use a linear model for each expert, or a linear model with a
nonlinearity, or a neural network or anything else:

p(y|x, j) = N (y;Ujx, Σ) or

p(y|x, j) = N (y; f (Ujx), Σ) or . . .

• In fact, radial basis networks and multilayer perceptrons/neural
networks can be thought of as very simple mixtures of experts which
use linear combination to fuse the experts and have a gate which is
a constant function (represented by the last layer of weights).

Objective Function for MOEs

• Consider the log likelihood function for the linear MOE architecture:

`(v,U) =
∑

n

log p(yn|xn)

=
∑

n

log
∑

j

exp(v>j xn)
∑

k exp(v>kxn)
N (yn;Ujxn, Σ)

• For maximum likelihood learning, we want to take derivatives of
this objective function with respect to the parameters.

• This looks hard! The objective function is a log of a sum.

• Actually the gradients come out quite nicely:

∂`/∂Uj =
∑

n

p(j|xn,yn)
(

yn −Ujxn
)

x>n

∂`/∂vj =
∑

n

(p(j|xn,yn)− p(j|xn)) xn

Gradients for a Mixture of Experts

• The gradients include the posterior probability of each expert:

p(j|xn,yn) =
p(j|xn)p(yn|j,xn)

∑

k p(k|xn)p(yn|k,xn)

• Think of a latent or hidden unobserved random variable associated
with each data case indicating which expert was responsible for
generating its output given the input.

• There is a fundamental idea here: sum over all possible ways in

which the model could have produced the data.

• The gradient for each expert is like that of a normal regression
problem but with the data weighted by the expert posterior.

• The gradient of the gate parameters depends on the difference
between the prior probability of an expert (as predicted by the gate)
and the posterior (as predicted by how well they predict the true
output). This is like logistic regression with soft targets.

MOE at Test Time

• Assume we have trained a MOE. How do we use it at test time?

• The correct thing to do is to get the test inputs xtest,
probabilistically select an expert using the gate, report that expert’s
output, and repeat the process many times.

• This gives you a whole distribution p(y|xtest) over outputs given
the single test input.

• However, we might want to summarize this distribution.

•We can choose the mode of this distribution, corresponding to the
output of the most likely expert.

•Or we can choose the mean of this distribution, corresponding to
the weighted sum of the expert outputs.

• Notice: even though we might use these tricks to summarize the
outputs, the underlying model is still one of stochastic selection,
and so our training will not be messed up.

Hierarchical Mixtures of Experts

• The simple MOE idea can be extended to a hierarchical
architecture in which each expert is itself a MOE, until the last
layer in which the experts actually make output predictions.

Gating
Network

Expert
Network

Expert
Network

µ1211µ 21µ 22µ

Expert
Network

Expert
Network

Gating
Network

µ

Gating
Network

µ1 µ2

xx

x

x x

x

x

g1

g 12|

1 1|g

1| 2g

2 2|g

2g

• Very similar to a decision tree for regression but trained using
maximum likelihood rather than greedy minimization of impurity.

An Idea...

•What if instead of using the gradient to adjust MOE parameters,
we just used the posterior weightings and solved a weighted
least-squares problem for each expert and a soft-target
logistic-regression problem for the gate.

• Both of these problems are convex, so we can solve them exactly
without needing to do any gradient descent.

• Then we could alternate: find the “optimum” parameters given the
current posterior weightings and then recalculate the weights given
the new parameters, and repeat.

•We will explore this idea more soon. It is called Expectation

Maximization or EM, and is a form of bound optimization as
opposed to gradient methods.

