LECTURE b5:

OBJECTIVE FUNCTIONS & OPTIMIZATION

Sam Roweis

October 12, 2004

MAXiMUM LIKELIHOOD

e Maximum likelihood asks the question: for which setting of the
parameters is the data we saw most likely?

e To answer this, it assumes that the training data are iid, computes
the log likelihood and forms a function ¢(w) which depends on the
fixed training set we saw and on the argument w:

E(W) = logp(ylv Xl’ y27 X27 e 7yTL» XTL’W)
=log [ [ p(yn, xn|w) since iid
b

= Z log p(Yn, Xpn|W) since log H = Z log

n

e.g. Maximizing likelihood is equivalent to minimizing sum squared
error, if the noise model is Gaussian and the datapoints are iid:

ﬁ(w) = _# Zn(yn - f(Xn; W))2 + const

REGRESSION / CLASSIFICATION & PROBABILITIES

e We assume our data are iid from an unknown joint distribution
p(y, x|w) or an unknown conditional p(y|x, w).

e We see some examples (y1,%1)(y2,X2) ... (yn,Xn) and we want to
infer something about the parameters (weights) of our model.

® The most basic thing to do is to optimize the parameters using
maximum likelihood or maximum conditional likelihood.

e A better thing to do is maximum penalized (conditional) likelihood,
which includes regularization effects like factorization
(independence assumptions), shrinkage, input selection, or
smoothing (parameter priors).

BAYESIAN PROGRAMME

e Ideally, we would be Bayesian, introduce a prior p(w), and use
Bayes rule to compute p(W|y1, X1, Y2, X9, . . ., Yn, Xn).
e This is the posterior distribution of the parameters given the data.
A true Bayesian would integrate over it to make future predictions:
p(ynewyxneW’ }/’ X) _ fp(yHEVV’l.He\N7 W)p(W’K X)dw
but often analytically intractable and computationally very difficult

e We can settle for maximizing and using the argmax w* to make
future predictions: this is called maximum a-posteriori, or MAP.

e Many of the penalized maximum likelihood techniques we used for
regularization are equivalent to MAP with certain parameter priors:
— quadratic weight decay (shrinkage) < Gaussian prior (var=1/2A)
— absolute weight decay (lasso) < Laplace prior (decay = 1/A)
—smoothing on multinomial parameters < Dirichlet prior
—smoothing on covariance matrices < Wishart prior




MAXIMUM A POSTERIORI

o MAP asks the question: which setting of the weights is most likely
to be drawn from the prior p(w) and then to generate the data
from the conditional p(X,Y|w) ?

e To answer this, it assumes that the training data are iid, computes
the log posterior and forms a function /(w) which depends on the
fixed training set we saw and on the argument w:

U(w) = log p(y1,X1,Y2, X2, - - ., Yn, Xn|W) + log p(w)

= log Hp(yn, Xp|W) + log p(w) since iid
b

= "10g p(yn. Xn|W) + log p(w)
n

(e.g. MAP is equivalent to ridge regression, if the noise model is Gaus-
sian, the weight prior is Gaussian, and the datapoints are iid:
E(W) = _Ti? Zn(yn - WTXn)Q + A ZZ wg + const

QUADRATIC ERROR SURFACES AND IID DATA

since logH = Zlog

e A very common cost function is the quadratic:
E(w)=w'Aw +2w'b +c
e This comes up as the log probability when using Gaussians, since if

the noise model is Gaussian, each of the E,, is an upside-down
parabola (called a “quadratic bowl” in higher dimensions).

e Fact: sum of parabolas (quadratics) is another parabola (quadratic)
e So the overall error surface is just a quadratic bowl.

e Fact: it is easy to find the minimum of a quadratic bowl:

E(w) = a + bw + cw?’ = w'=-b/2
1
Ew)=a+b'w+w' Cw = w'= —§C_1b

e Convince yourself that for linear regression with Gaussian noise:
C=XX" and b=-2Xy'

ERROR SURFACES AND WEIGHT SPACE

e Make a new “error function” E(w) which we want to minimize.
e FJ(w) can be the negative of the log likelihood or log posterior.

e Consider a fixed training set; think in weight (not input) space.
At each setting of the weights there is some error (given the fixed
training set): this defines an error surface in weight space.

e Learning == descending the error surface.

e Notice: If the data are IID, the error function E is a sum of error
functions E),, one per data point.

E wj

E(w)

E(w)

PARTIAL DERIVATIVES OF ERROR

e Question: if we wiggle wy. and keep everything else the same, does
the error get better or worse?

oFE

6wk'

e Plan: use a differentiable cost function £ and compute partial

derivatives of each parameter with respect to this error: g—ﬁ

o Luckily, calculus has an answer to exactly this question:

e Use the chain rule to compute the derivatives.

e The vector of partial derivatives is called the gradient of the error.
It points in the direction of steepest error descent in weight space.

e Three crucial questions:

—How do we compute the gradient V E efficiently?
— Once we have the gradient, how do we minimize the error?
— Where will we end up in weight space?




“BoLD DRIVER” GRADIENT DESCENT

e Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

e Algorithm Gradient Descent
w < GradientDescent (w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;
while(step>0)
w = w0 - stepxgrad;
(err,grad) « errorGradient(w,x-train,y-train)
if (err>=errold)
step=step/2; grad=gradold;
else
step=step*1.01; errold=err; wO=w; gradold=grad;
end
end

e This algorithm only finds a local minimum of the cost.

e This is batch grad. descent, but mini-batch or online may be better.

MOMENTUM

o If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

e We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

t t—1 f
Awl = fAw™ + (1 - f) ¢ OF /ow;(w')
e Usually, G is quite high, about 0.95.
e When we have to retract a step, we set Aw) to zero.

e Physically, this is like giving momentum to our weights.

CURVED ERROR SURFACES

e Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point

o The local geometry of curvature is measured by the Hessian matrix
of second derivatives: H;; = 52E/5wiw7-.

e Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

e Maximum sensible stepsize is

)\’HZCLI

Anin
Rate of convergence depends on (1 — 2%)

MINI-BATCH AND ONLINE OPTIMIZATION

e When our data is big, computing the exact gradient is expensive.

e This seems wasteful, since the only thing we are going to use the
gradient for is to make a small change to the weights and then
throw it away and measure it again at the new weights.

e An approximate gradient is just as useful as long as it is somewhat
in line with the true gradient.

e One very easy way to do this is to use only a small batch of
examples (not the whole data set), compute the gradient and make
an update, then move to the next batch of examples. This is
mini-batch optimization.

e In the limit, we can use only one example per batch, this is called
online gradient descent, or stochastic gradient descent.

e These methods are often much faster than exact gradient descent,
and are very effective when combined with momentum.




LINE SEARCH

e Rather than take a fixed step in the direction of the gradient or the
momentum-smoothed gradient, it is possible to

do a search along that direction to find the minimum of the function.
E(w)

wil)
w2

w3
search direction

o Usually the search is a bisection, which bounds the nearest local
minimum along the line between any two points w; and Wy such
that there is a third point w3 with F(ws3) < E(wq) and
E(Wg) < E(WQ)

SECOND ORDER METHODS

e Newton's method is an example of a second order optimization
method because it makes use of the curvature or Hessian matrix.

e Second order methods often converge much more quickly, but it
can be very expensive to calculate and store the Hessian matrix.

o In general, most people prefer clever first order methods which need
only the value of the error function and its gradient with respect to
the parameters. Often the sequence of gradients (first order
derivatives) can be used to approximate the second order curvature.
(This may even be better than the true Hessian, because we can
constrain our approximation to be always positive definite.)

e Point of Possible Confusion: Newton's method is often described as
a method of multidimensional root finding, which is a much harder
problem: x; 1 = xy — f(ay)/f (x¢). In that case, it is trying to set
the gradient vector f(z) = VE(z) to be the zero vector.

LocAL QUADRATIC APPROXIMATION

e By taking a Taylor series of the error function around any point in
weight space, we can make a local quadratic approximation based
on the value, slope and curvature:

TH(wo)

2

H is the Hessian matrix of second derivatives: H,;; = (92E/(9w,-wj

Bi(w —wo) % Bwo) + (w w5 () T

error

parameter space

o Newton's method: jump to the minimum of this quadratic, repeat.

w'=w— Hl(w)g—vEV

NEWTON AND QUASI-NEWTON METHODS

e Broyden-Fletcher-Goldfarb-Shanno (BFGS); Conjugate-Gradients
(CG); Davidon-Fletcher-Powell (DVP); Levenberg-Marquardt (LM)

o All approximate the Hessian using recent function and gradient
evaluations (e.g by averaging outer products of gradient vectors,
but tracking the “twist” in the gradient; by projecting out previous
gradient directions...).

e Then they use this approximate gradient to come up with a new
search direction in which they do a combination of fixed-step,
analytic-step and line-search minimizations.

e Very complex area (see reading) but we will go through in deatail
only the CG method, although my current favourite optimizer is the
limited-memory BFGS, which is like a multidimensional version of
secant (actually false-position) optimization.




CONJUGATE GRADIENTS CoONVEXITY, LocAL OPTIMA

o Observation: at the end of a line searchy the new gradient Is L] Unfortunately, many error functions while differentiable are not
(almost) orthogonal to the direction we just searched in. unimodal. When USing gradient descent we can get stuck in local

e So if we choose the next search direction to be the new gradient, minima. Where we end up depends on where we start.

we will always be searching successively orthogonal directions and
things will be very slow. \

e |nstead, select a new direction so that, to first order, as we move in
the new direction the gradient parallel to the old direction stays
zero. This involves blending the current gradient with the previous
search direction: d(t + 1) = —g(t + 1) + S(¢t)d(?).

error

parameter space

e Some very nice error functions (e.g. linear least squares, logistic

der) 400 a() regression, lasso) are convex, and thus have a unique (global)
E J . minimum. Convexity means that the second derivative is always
g ' w(t+1) positive. No linear combination of weights can have greater error
dit+D) than the linear combination of the original errors.
— ' Wi e But most settings do not lead to convex optimization problems.
CONJUGATE GRADIENTS CONSTRAINED OPTIMIZATION
e To first order, all three expressions below satisfy our constraint that e Sometimes we want to optimize with some constraints on the
along the new search direction g'd(t) = 0: parameters.
dit+1) = —g(t+ 1) + B()d(t) e.g. variances are always positive

e.g. priors are non-negative and sum to unity (live on the simplex)

gT(t +1)(glt+1)—glt) e There are two ways to get around this.

Bie) = dT(t)(g(t+1) —gl(t) Hestenes-Stiefel First, we can reparametrize so that the new parameters are
gl (t+1)(glt+1)—gt) . unconstrained.
B(t) = g7 (t)g(t) Polak-Ribiere e.g. use log(variances) or use softmax inputs for priors.
g'(t+1)g(t+1) e The other way is to explicitly incorporate the constraints into our
B(t) = T )2l Fletcher-Reeves cost function.




LAGRANGE MULTIPLIERS

e Imagine that our parameters have to live inside the constraint
surface ¢(w) = 0.

e To optimize our function E(w), we want to look at the component
of the gradient that lies within the surface, i.e. with zero dot
product to the normal of the constraint. At the constrained
optimum, this gradient component is zero, in other words the
gradient of the function is parallel to the gradient of the constraint
surface.

x2
c(x)=0

grad(E)
grad(E)|

x1

QUADRATIC COST WITH LINEAR CONSTRAINTS

e Example: find the maximum over x of the quadratic form:

E(x)=b'x — %XTA_IX

subject to the K conditions ¢ (x) = 0.
e Answer: use Lagrange multipliers:

L(x,\) = E(x) + A e(x)
Now set 0L/0x = 0 and OL/OX = 0. Result:

x* = Ab+ ACA

A= —4(CTAC)C"Ab

where the kth column of C is Jci.(x)/0x

LAGRANGE MULTIPLIERS

e At the constrained optimum, the gradient of the function is parallel
to the gradient of the constraint surface:

OFE /0w = \Oc/Ow
the constant of proportionality is called the Lagrange multiplier.
Its value can be found by forcing ¢(w) = 0.
e In general, the Lagrangian function

L(w,\) = E(w) + X c(w)

OL/ow = OE /0w + X\ 0c/Oow

OL/OX = c(w)
has the property that when its gradient is zero, the constraints are
satisfied and there is no gradient within the constraint surface.

LINEAR & QUADRATIC PROGRAMMING

e LP optimizes a linear cost function subject to linear constraints:
E(w)=w'b+by
Gw<g
Cw=c

e Can always be transformed to standard form using slack variables:

E(w)=w'b
w >0
Cw=c

o QP optimizes a quadratic cost function subject to linear constraints:
E(w)=w'Aw +2w b + by
Gw<g
Cw=c




BOUND OPTIMIZATION

e A completely different way to do optimization is to come up with
consecutive upper (lower) bounds on your objective function and
optimize those bounds.

e Assume we can find functions QQ(w, z) and z(w) such that:

Q(w,z(w)) = E(w) < Q(w,z") for any w and any z* # z(w)
arg H\l}"l/n Q(w,z(w")) can be found easily for any w*

t+1

o Now iterate: w!! = arg miny Q(w, z(w'))

e Guarantee:
E(Wt+1) _




