
CSC2515 – Assignment #3

Due: Nov.30, 2004 at 2pm, the START of class
Worth: 18%

Late assignments not accepted.

1 Mixture of Base Rates (7%)

In this question you will derive the EM algorithm for a very simple model called “mixture of base rates”, which is
the unsupervised equivalent of Naive Bayes classification. We model a discrete data vector x by assuming that there
is an unobserved cluster variable c and that given the value of this cluster variable, all the components xi of x are
conditionally independent. The equations are:

p(xin = j|cn = k) = aijk,
∑
j

aijk = 1 ∀i, k

p(cn = k) = αk
∑
k

αk = 1

p(xn) =
∑
k

p(cn = k)p(xn|cn = k) =
∑
k

p(cn = k)
∏
i

p(xin|cn = k) =
∑
k

αk
∏
i

∏
j∈Vi

a
[xin=j]
ijk

where αk is the prior probability of cluster k, aijk are the model parameters, Vi is the set of possible values for the
discrete variable xi (e.g. if xi is binary then Vi = {0, 1}), and the indicator [xin = j] is 1 if xi takes on value j in the
nth case and 0 otherwise.

• Write down the complete (joint) log likelihood p(x, k).

• Derive the E-step of the EM algorithm by writing down the expression for the posterior probability p(k|xn) of
cluster k given a particular datapoint xn. Hint: use Bayes’ rule.

• Write down the expected complete log likelihood using the posterior probability you just derived:
∑
n

∑
k p(k|xn) log p(xn, k)

• Derive the M-step of the EM algorithm by taking the derivative of this expected complete log likelihood with
respect to the parameters aijk. Don’t forget to enforce the normalization constraint that

∑
j aijk = 1 ∀i, k.

(Ben will say more about this in tutorial if you need some help.)

• Also find the updates for the priors αk. Again, don’t forget the normalization constraint.

• Assuming you have computed qk = logαk +
∑
i

∑
j∈Vi [xi = j] log aijk, how would you compute p(k|x) in a

numerically stable way using logsum?

• Fill in the ??:
For continuous vector valued data x, the analog of this model is a “?? of ?? with diagonal ??”.
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2 EM Algorithm for Factor Analysis

In this assignment, you will implement the EM algorithm for training a factor analysis model on images of faces.
You will train the factor analysis model below using maximum likelihood as a cost function and the EM algorithm
as an optimizer. The faces are 28x20 pixel grayscale images, represented as 560-dimensional vectors.

• As a reminder, the factor analysis model is an unsupervised learning model for d-dimensional data x which
uses k continuous latent variables z:

p(zn) = N(0, I)
p(xn|zn) = N(µ+ Λzn,Ψ)

p(xn) =
∫
p(xn|zn)p(zn)dzn = N(µ,ΛΛ> + Ψ)

where Λ is a d× k factor loading matrix, Ψ is a d× d diagonal matrix of sensor noise variances, µ is the data
offset and I is the identity matrix.

• The maximum likelihood estimate of the offset µ is the sample mean of the data:

µ =
1
N

[∑
n

xn
]

• The E-step equations for this model are given by:

p(zn|xn) = N(β(xn − µ), I − βΛ)

β = Λ>(ΛΛ> + Ψ)−1

• While the M-step updates are:

Λnew = Sβ>(I − βΛ + βSβ>)−1

Ψnew = diag[S − ΛβS]

where S is the sample covariance of the data [
∑
n(xn − µ)(xn − µ)>] /N .

(The diag[] operator sets the off-diagonal elements of a matrix to zero.)

• The average log likelihood ` = [
∑
n log p(xn|Λ,Ψ, µ)]/N is given by:

` = −Trace[(ΛΛ> + Ψ)−1S] + log det[(ΛΛ> + Ψ)−1] + constant

3 What to do

Using the equations above, the class notes, and the technical report by Zoubin Ghahramani, write code to implement
the EM algorithm for maximum likelihood learning of a factor analysis model. In particular:

• Once, at the beginning of the code, compute the sample mean µ and sample covariance S of the data. (Hint:
S should be a matrix of size d by d, in this case 560 by 560.)

• At each iteration compute the matrix (ΛΛ> + Ψ)−1 and from that, the matrix β. (Hint: β is a matrix of size
k by d, in this case 2 by 560.)

• Use β, along with the sample covariance S, to update the factor loading matrix Λ and the diagonal matrix Ψ
of sensor noise variances at each iteration.

• Use (ΛΛ> + Ψ)−1, along with the sample covariance S to compute the average log likelihood ` of the data at
each iteration.
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• Continue iterating until convergence. You can assess convergence of EM by monitoring the log likelihood and
stopping when the fractional change (newlik-oldlik)/abs(newlik) is very small (say less than one part in
fifty or a hundred thousand.) Remember, your log likelihood should never decrease!

Train your model on the training data, and infer the mean of the hidden factors for each training case:

• Using the training data provided in a3faces.mat, train a factor analysis model with 2 latent variables (k=2).
Restart the training at several random initializations of the parameters, and run EM to convergence each time.
Keep the parameter set which gave the best average training likelihood.

• Using the parameters you learned above, for each training data point xn, compute the mean βxn of the posterior
distribution p(zn|xn,Λ,Ψ, µ).

Use your trained model to build a simple face identification system, and test it on the previously unseen test data:

• Using the test data in a3testfaces.mat, evaluate the log likelihood of each test case under the model you
trained. This requires some work, since the formulas above only compute the average log likelihood.

• Set a threshold on test log likelihood equal to the minimum of the training log likelihoods, and use this to
classify the test data into two classes.

• Compare your results with the given class labels, and evaluate your test error rate.

• Try to determine, informally, what each of the two factors have learned. To do this, you might want to sort
the training data according to the values taken by the posterior mean along the first factor z1. Use a loop to
visualize each training case as an image, in this sorted order. (If you are using MATLAB, you may find the
drawnow command helpful inside the loop.) Sort again, but this time according to the values of the posterior
mean along the second factor z2. You might also ’‘explore” the factors by running a loop that adds a small
multiple α of one factor (column of Λ) to the mean vector and displays the resulting vector as an image. Try
running α from about -3 to +3 in steps of 0.1. Try this with each factor separately. Each picture you see is a
completely new image synthesized by your model. What do you think the factors learned?

4 What to hand in

• A picture of the offset vector µ, the initial values of each column of Λ, the final values of each column of Λ and
final values of the diagonal elements of Ψ.
Each picture should represent the vector as a 20x28 image, laid out in the same way that the original data was.
Clearly label each image and indicate the grayscale axis being used in each one. (6 images total).

• A plot of the trajectory of the average training log likelihood for the run that resulted in the best parameters.
Show iterations of EM horizontally and average log likelihood vertically.
Clearly indicate the stopping criteria used to assess convergence of EM

• A histogram of the log likelihoods on the training cases.
A histogram of the log likelihoods on the test cases.
(Don’t use too few bins in the histograms.)

• A 2D scatter plot having z1 on one axis, z2 on another axis, and with one point for each posterior mean p(zn|xn)
after convergence.

• A picture of the data cases which have the smallest, median and largest posterior values on both z1 and z2. (In
other words, the images corresponding to the points furthest left, right, up, down and in the middle horizontally
and vertically on the 2D scatter plot.) (6 plots total, clearly labeled.)

• The test error rate you achieved on the face identification problem.

• A less than 25 word answer to the question “Informally, what did each factor learn to model?”. This isn’t very
precise, but you should still be able to say something sensible.
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5 Some hints

• The functions reshape and imagesc in Matlab are useful for making pictures of vectors. In particular, try this
line to display a vector xx:
imagesc(reshape(xx,20,28)’); colormap gray(256); axis equal; axis off;
Making the window very small on the screen will reduce the aliasing effects, but of course when you print out
the picture it will look very pixelated. The colormap gray forces Matlab to make the pictures in grayscale.
The function caxis will tell you the grayscale axis chosen by imagesc.

• Try to get the EM algorithm working without the Ψ updates at first (ie just update Λ).
Then when that is working, and your likelihood is always going up, try adding in the updates for Ψ.

• Initialize the model parameters by setting Λ to small random values and setting the diagonal elements of Ψ in
some sensible range, for example the diagonal of the sample covariance S of the entire training set.

• Cache the intermediate quantities (ΛΛ> + Ψ)−1 and βS so you don’t have to recompute them each time the
appear in the update or likelihood formulas.

• You might be able to speed up your code even more using the following formula, derived from the matrix
inversion lemma:

(ΛΛ> + Ψ)−1 = Ψ−1(Ix − Λ(Iz + Λ>Ψ−1Λ)−1Λ>Ψ−1)
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