
CSC2515 – Assignment #1

Due: Oct19 2004, 2pm at the START of class
Worth: 18%

Late assignments not accepted.

1 Training/Testing Error Curves (1.5%)

This question asks you to show your general understanding of underfitting and overfitting as they relate to model
complexity and training set size. Consider a continuous domain and a smooth joint distribution over inputs and
outputs, so that no test or training case is ever duplicated exactly. Indicate on your vertical axes where zero error is
and draw your graphs with increasing error upwards and increasing complexity/training set size rightwards.

• For a fixed training set size, sketch a graph of the typical behaviour of training error rate versus model com-
plexity in a learning system. Add to this graph a curve showing the typical behaviour of test error rate (for
an infinite test set drawn independently from the same input distribution as the training set) versus model
complexity, on the same axes. Mark a vertical line showing where you think the most complex model your
data supports is; chose your horizontal range so that this line is neither on the extreme left nor on the extreme
right. Mark a horizontal line showing the Bayes error, which one of the lines should cross.

• For a fixed model complexity, sketch a graph of the typical behaviour of training error rate versus training set
size in a learning system. Add to this graph a curve showing the typical behaviour of test error rate (again on
an iid infinite test set) versus training set size, on the same axes. Mark a horizontal line showing the Bayes
error.
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2 Learning Random Boolean Functions (2.5%)

Consider learning random boolean functions under the following setup.

• Target functions with k binary inputs and 1 binary output are generated by randomly assigning outputs
(independently with probability one half) to each possible combination of inputs.

• Noiseless training data is generated by randomly selecting a setting of the inputs (uniformly), reporting its
output, and repeating this process N times independently.

• Test data inputs are generated by randomly selecting a setting of the inputs (uniformly) and repeating this
process M times independently.

Answer the following questions about this setup:

• Let a be the expected number of distinct training cases in a training set [Obviously 1 ≤ a ≤ min(N, 2k).]
Derive an expression for a in terms of k and N .

• What is the expected number b of cases in the test set which also appeared in the training set?
(In terms of a, k,M .)

• What is the lowest possible expected test set error rate we can hope to achieve? (In terms of b,M .)
Give an example of an algorithm which achieves this error rate and an argument (in <25 words) of why no
algorithm can do better.

• Does the expected test set error in the above setup measure generalization? Why or why not?
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3 Class-Conditional Gaussians (3%)

In this question, you’ll derive for yourself the maximum likelihood estimates for class-conditional Gaussians with
independent features (diagonal covariance matrices). Start with the following generative model for a discrete class
label y ∈ (1, 2, . . . ,K) and a real valued vector of D features x = (x1, x2, . . . , xD):

p(y = k) = αk

p(x|y = k) =

(
D∏
i=1

2πσ2
i

)−1/2

exp

{
−

D∑
i=1

1
2σ2

i

(xi − µki)2

}

where αk is the prior on class k, σ2
i are the shared variances for each feature (in all classes), and µki is the mean of

the feature i conditioned on class k.

• Use Bayes’ rule p(a|b) = p(b|a)p(a)/p(b) to invert the model above and write the expression for p(y = k|x).
[Hint: remember that p(x) =

∑K
k=1 p(x|y = k)αk.]

• Write down the expression for the likelihood function `(θ;D) = log p(y1, x1, y2, x2, . . . , yM , xM |θ) of a particular
dataset D = {y1, x1, y2, x2, . . . , yM , xM} with parameters θ = {α, µ, σ2}. (Assume the data are iid.)

• Take partial derivatives of the likelihood with respect to each of the parameters µki, with respect to the shared
variances σ2

i , and with respect to the class priors αk. Since the variances must be positive you might want to
take the derivative with respect to their logarithms.

• Set these partial derivatives to zero and solve for the maximum likelihood parameter values µki, σ2
i and αk.

When solving for the class priors, remember that αk, must be between 0 and 1 and sum to unity (across k), so
you need to use Lagrange multipliers to enforce this constraint.
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4 Handwritten Digit Classification (11%)

For this question you will build three classifiers to label images of handwritten digits collected by the United States
Post Office. The images are 8 by 8 in size, which we will represent as a vector x of dimension 64 by listing all the
pixel values in raster scan order. The labels y are 1, 2, . . . , 9, 10 corresponding to which character was written in the
image. Label 10 is used for the digit “0”. There are 700 training cases and 400 test cases for each digit; they can be
found in the file a1digits.mat or a1digits.zip. DO NOT HAND IN ANY CODE.

• As a warm up question, load the data and plot a few examples. Decide if the pixels were scanned out in
row-major or column-major order, and write that somewhere on your answer to this question.

4.1 K-NN Classifier

• Build a simple K nearest neighbour classifier using dumb Euclidean distance on the raw pixel data.

• Set K to the value which gives the best performance on the training data. Report this value of K.
Don’t cheat and look at the test data to set K; that isn’t fair and will give you a different value of K.

• Clearly state your policy for breaking ties.

4.2 Conditional Gaussian Classifier Training

• Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a separate, full covariance matrix
for each class. In particular, fit the model below to maximize the average of log p(x, y) on the training set
(where D is the dimension of x (64 in our case) and |M | is the determinant of the matrix M).

p(y = k) = αk

p(x|y = k) = (2π)−D/2|Σk|−1/2 exp
{
−1

2
(x− µk)>Σ−1

k (x− µk)
}

• You should get parameters µkn and Σk for k ∈ (0 . . . 9), n ∈ (1 . . . 64).
(The ML estimates for αk=1/10 since all classes have the same number of observations in this training set.)

• After fitting the Gaussians, regularize each class’ covariance matrix by adding a small amount of the identity
matrix. (For this assignment, add 0.01I to the sample covariance matrix.)

• Hand in plot showing an 8 by 8 image of each mean µk, and below the mean another image showing the log
of the diagonal elements of the covariance matrix Σk. Plot all ten classes side by side, and the same grayscale
for all 10 means. Use another grayscale for the log variances, again keeping it the same for all 10. Indicate in
some way the grayscales you used, and indicate what white and black mean.

4.3 Naive Bayes Classifier Training

• Convert the real-valued features x into binary features b by thresholding: bn=1 if xn > 0.5 otherwise bn = 0.

• For smoothing (regularization) purposes, add two training cases to each class, one which has every pixel off
and one which has every pixel on.

• Using these new binary features b and the class labels, train a Naive Bayes classifier. In particular, fit the model
below to maximize the average of log p(b, y) on the training set (including the extra smoothing examples).

p(y = k) = αk

p(bn = 1|y = k) = ηkn

p(b|y = k, η) =
∏
n

(ηnk)bn(1− ηnk)(1−bn)

• You should get parameters ηkn ≡ p(bn = 1|y = k) for k ∈ (0 . . . 9), n ∈ (1 . . . 64).
(Again, all class priors αk are equal since all classes have the same number of observations.)

• Hand in plot showing an 8 by 8 image of each vector log ηk, all ten side by side sharing a single grayscale.
Indicate in some way the grayscale you used, and indicate what white and black mean.
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4.4 Performance Evaluation

• Using the K you found, for each training and each test case, run the K-NN classifier and (using your rules for
tie breaking if necessary) label each case according the the majority class of its K neighbours. If this matches
the true label, the classifier is correct. If not, the classifier has made an error.

• Using the parameters you fit on the training set compute log p(y|x) for each of the training and test cases under
both the Gaussian-conditional and Naive Bayes models.

• What is the average conditional log likelihood achieved by each of these two classifiers on the training set? On
the test set? Average both over data cases and digit classes.

• Select the most likely posterior class for each training and test case under each of these two classifiers. If this
matches the label, the classifier is correct. If not, the classifier has made an error.

• Hand in a 3 column by 11 row table showing how many errors (out of 400) each classifier makes on each of the
10 test sets and what the overall training and testing error rate (in %) is.

• Hand in an identical table showing the performance on the training set.

4.5 Tips

If you are using Matlab , here are some tips:

• The imagesc function can be used to display vectors as images. In particular, try the line:
imagesc(reshape(xx,8,8)’); axis equal; axis off; colormap gray;
to display the vector xx.

• The subplot command is useful for displaying many small images beside each other. The caxis and colorbar
commands can set the grayscale and display it as a shaded bar.

• The repmat command in conjunction with sum and the operators .* and ./ are helpful in renormalizing arrays
so that the rows or columns sum to one.

• The expression (M > a) for a matrix M and a scalar a performs the comparison at every element and evaluates
to a binary matrix the same size as M.
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