
Lecture 8:

Unsupervised Learning & EM Algorithm

Sam Roweis

October 28, 2003

Missing Outputs

• You can think of unsupervised learning as supervised learning in
which all the outputs are missing:

– Clustering == classification with missing labels.

– Dimensionality reduction == regression with missing targets.

• Density estimation is actually very general and encompasses the
two problems above and a whole lot more.

• Let’s focus on the idea of unobserved variables...

Partially Unobserved Variables

• Certain variables q in our models may be unobserved,
either at training time or at test time or both.

• If the are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

• In this case, we define a new cost function in which we integrate

out the missing values at training or test time:

`(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log p(xm|θ)

=
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

p(xm,y|θ)

• Variables which are always unobserved are called latent variables.

Latent Variables

•What to do when a variable z is always unobserved?
Depends on where it appears in our model. If we never condition on
it when computing the probability of the variables we do observe,
then we can just forget about it and integrate it out.
e.g. given y,x fit the model p(z,y|x) = p(z|y)p(y|x,w)p(w).

• But if z is conditioned on, we need to model it:
e.g. given y,x fit the model p(y|x) =

∑

z p(y|x, z)p(z)

• Latent variables may appear naturally, from the structure of the
problem. But also, we may want to intentionally introduce latent
variables to model complex dependencies between variables without
looking at the dependencies between them directly.
This can actually simplify the model (e.g. mixtures).

Why is Learning Harder?

• In fully observed settings, the probability model is a product thus
the log likelihood is a sum where terms decouple.

`(θ;D) =
∑

n

log p(yn,xn|θ)

=
∑

n

log p(xn|θx) +
∑

n

log p(yn|xn, θy)

•With latent variables, the probability already contains a sum, so the
log likelihood has all parameters coupled together:

`(θ;D) =
∑

n

log
∑

z

p(xn, z|θ)

=
∑

n

log
∑

z

p(z|θz)p(xn|z, θx)

Learning with Latent Variables

• Likelihood `(θ) = log
∑

z p(z|θz)p(x|z, θx) couples parameters:

•We can treat this as a black box probability function and just try to
optimize the likelihood as a function of θ.
We did this many times before by taking gradients.

• However, sometimes taking advantage of the latent variable
structure can make parameter estimation easier.

• Good news: today we will see the EM algorithm which allows us to
treat learning with latent variables using fully observed tools.

• Basic trick: guess the values you don’t know.
Basic math: use convexity to lower bound the likelihood.

Mixture Models

•Most basic latent variable model with a single discrete node z.

• Allows different submodels (experts) to contribute to the
(conditional) density model in different parts of the space.

• Divide and conquer idea: use simple parts to build complex models.
(e.g. multimodal densities, or piecewise-linear regressions).

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

Mixture Densities

• Exactly like a classification model but the class is unobserved and
so we sum it out. What we get is a perfectly valid density:

p(x|θ) =

K
∑

k=1

p(z = k|θz)p(x|z = k, θk)

=
∑

k

αkpk(x|θk)

where the “mixing proportions” add to one:
∑

k αk = 1.

•We can use Bayes’ rule to compute the posterior probability of the
mixture component given some data:

rk(x) = p(z = k|x, θ) =
αkpk(x|θk)

∑

j αjpj(x|θj)

these quantities are called responsibilities.
You’ve seen them many times before; now you know their names!

Learning with Mixtures

•We can learn mixture densities using gradient descent on the
likelihood as usual. The gradients are quite interesting:

`(θ) = log p(x|θ) = log
∑

k

αkpk(x|θk)

∂`

∂θ
=

1

p(x|θ)

∑

k

αk
∂pk(x|θk)

∂θ

=
∑

k

αk
1

p(x|θ)
pk(x|θk)

∂ log pk(x|θk)

∂θ

=
∑

k

αk
pk(x|θk)

p(x|θ)

∂`k
∂θk

=
∑

k

αkrk
∂`k
∂θk

• In other words, the gradient is the responsibility weighted sum of
the individual log likelihood gradients.

Conditional Mixtures: MOEs Revisited

•Mixtures of Experts are also called conditional mixtures.
Exactly like a class-conditional classification model, except the class
is unobserved and so we sum it out:

p(y|x, θ) =

K
∑

k=1

p(z = k|x, θz)p(y|z = k,x, θk)

=
∑

k

αk(x|θz)pk(y|x, θk)

where
∑

k αk(x) = 1 ∀x.

• Harder: must learn αk(x) (unless chose z independent of x).
The αk(x) are exactly what we called the gating function.

•We can still use Bayes’ rule to compute the posterior probability of
the mixture component given some data:

p(z = k|x,y, θ) =
αk(x)pk(y|x, θk)

∑

j αj(x)pj(y|x, θj)

Mixture of Linear Regression Experts

• Each expert generates data according to a linear function of the
input plus additive Gaussian noise:

p(y|x, θ) =
∑

k

αk(x)N (y|β>k x, σ2
k)

• The “gate” function can be a softmax classification machine:

αk(x) = p(z = k|x) =
eη>k x

∑

j e
η>j x

• Remember: we are not modeling the density of the inputs x.

• Learning? Gradient descent is one option.
You have seen the gradients for this example before.

• In a minute you will see another one...

Clustering Example: Gaussian Mixture Models

• Consider a mixture of K Gaussian components:

p(x|θ) =
∑

k

αkN (x|µk, Σk)

p(z = k|x, θ) =
αkN (x|µk, Σk)

∑

j αjN (x|µk, Σk)

`(θ;D) =
∑

n

log
∑

k

αkN (xn|µk, Σk)

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

• Density model: p(x|θ) is a familiarity signal.
Clustering: p(z|x, θ) is the assignment rule, −`(θ) is the cost.

Mixure of Gaussians Learning

•We can learn mixtures of Gaussians using gradient descent. For
example, the gradients of the means:

`(θ) = log p(x|θ) = log
∑

k

αkpk(x|θk)

∂`

∂θ
=

∑

k

αkrk
∂`k
∂θk

=
∑

k

αkrk
∂ log pk(x|θk)

∂θ

∂`

∂µk
= −

∑

k

αkrkΣ−1
k (x− µk)

• Gradients of covariance matrices are harder: require derivatives of
log determinants and quadratic forms.

•Must ensure that mixing proportions αk are positive and sum to
unity and that covariance matrices are positive definite.

Parameter Constraints

• If we want to use general optimizations (e.g. conjugate gradient) to
learn latent variable models, we often have to make sure parameters
respect certain constraints. (e.g.

∑

k αk = 1, Σk pos.definite).

• A good trick is to reparameterize these quantities in terms of
unconstrained values. For mixing proportions, use the softmax:

αk =
exp(qk)

∑

j exp(qj)

• For covariance matrices, use the Cholesky decomposition:

Σ−1 = A>A

|Σ|−1/2 =
∏

i

Aii

where A is upper diagonal with positive diagonal:

Aii = exp(ri) > 0 Aij = aij (j > i) Aij = 0 (j < i)

Be careful: logsum

•Often you can easily compute bk = log p(x|z = k, θk),
but it will be very negative, say -106 or smaller.

• Now, to compute ` = log p(x|θ) you need to compute log
∑

k ebk.

• Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

• Instead do this:

– Add a constant exponent B to all the values bk such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-log(K)-max(b).

– Compute log(sum(exp(b+B)))-B.

• Example: if log p(x|z = 1) = −420 and log p(x|z = 2) = −420,
what is log p(x) = log [p(x|z = 1) + p(x|z = 2)]?
Answer: log[2e−420] = −420 + log 2.

Recap: Learning with Latent Variables

•With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

`(θ;D) = log
∑

z

p(x, z|θ) = log
∑

z

p(z|θz)p(x|z, θx)

(we can also consider continuous z and replace
∑

with
∫

)

• If the latent variables were observed, parameters would decouple
again and learning would be easy:

`(θ;D) = log p(x, z|θ) = log p(z|θz) + log p(x|z, θx)

•One idea: ignore this fact, compute ∂`/∂θ, and do learning with a
smart optimizer like conjugate gradient.

• Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

Expectation-Maximization (EM) Algorithm

• Iterative algorithm with two linked steps:
E-step: fill in values of ẑt using p(z|x, θt).
M-step: update parameters using θt+1 ← argmax `(θ;x, ẑt).

• E-step involves inference, which we need to do at runtime anyway.
M-step is no harder than in fully observed case.

•We will prove that this procedure monotonically improves `
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

• Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

• EM is not a cost function such as “maximum-likelihood”.
EM is not a model such as “mixture-of-Gaussians”.

Complete & Incomplete Log Likelihoods

•Observed variables x, latent variables z, parameters θ:

`c(θ;x, z) = log p(x, z|θ)

is the complete log likelihood.

• Usually optimizing `c(θ) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

•With z unobserved, we need the log of a marginal probability:

`(θ;x) = log p(x|θ) = log
∑

z

p(x, z|θ)

which is the incomplete log likelihood.

Expected Complete Log Likelihood

• For any distribution q(z) define expected complete log likelihood:

`q(θ;x) = 〈`c(θ;x, z)〉q ≡
∑

z

q(z|x) log p(x, z|θ)

• Amazing fact: `(θ) ≥ `q(θ) +H(q) because of concavity of log:

`(θ;x) = log p(x|θ)

= log
∑

z

p(x, z|θ)

= log
∑

z

q(z|x)
p(x, z|θ)

q(z|x)

≥
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

•Where the inequality is called Jensen’s inequality.
(It is only true for distributions:

∑

q(z) = 1; q(z) > 0.)

Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy:

F (q, θ) ≡
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)
≤ `(θ)

• The EM algorithm is coordinate-ascent on F :
E-step: qt+1 = argmaxq F (q, θt)

M-step: θt+1 = argmaxθ F (qt+1, θt)

M-step: maximization of expected `c

• Note that the free energy breaks into two terms:

F (q, θ) =
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

=
∑

z

q(z|x) log p(x, z|θ)−
∑

z

q(z|x) log q(z|x)

= `q(θ;x) +H(q)

(this is where its name comes from)

• The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on θ, is the entropy.

• Thus, in the M-step, maximizing with respect to θ for fixed q we
only need to consider the first term:

θt+1 = argmaxθ `q(θ;x) = argmaxθ

∑

z

q(z|x) log p(x, z|θ)

E-step: inferring latent posterior

• Claim: the optimim setting of q in the E-step is:

qt+1 = p(z|x, θt)

• This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

• Proof (easy): this setting saturates the bound `(θ;x) ≥ F (q, θ)

F (p(z|x, θt), θt) =
∑

z

p(z|x, θt) log
p(x, z|θt)

p(z|x, θt)

=
∑

z

p(z|x, θt) log p(x|θt)

= log p(x|θt)
∑

z p(z|x, θt)

= `(θ;x) · 1

• Can also show this result using variational calculus or the fact that
`(θ)− F (q, θ) = KL[q||p(z|x, θ)]

EM Constructs Sequential Convex Lower Bounds

• Consider the likelihood function and the function F (qt+1, ·).

θ

likelihood

θt

F(,q)θ t+1

Partially Hidden Data

•Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

• In this case the cost function was:

`(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

log p(xm,y|θ)

• Now you can think of this in a new way: in the E-step we estimate
the hidden variables on the incomplete cases only.

• The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

Recap: EM Algorithm

• A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

• Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: qt+1 = p(z|x, θt)
M-step: θt+1 = argmaxθ

∑

z q(z|x) log p(x, z|θ)

• In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.

Example: Mixtures of Gaussians

• Recall: a mixture of K Gaussians:
p(x|θ) =

∑

k αkN (x|µk, Σk)
`(θ;D) =

∑

n log
∑

k αkN (xn|µk, Σk)

• Learning with EM algorithm:

E− step : pt
kn = N (xn|µt

k, Σ
t
k)

qt+1
kn = p(z=k|xn, θt) =

αt
kp

t
kn

∑

j αt
jp

t
kn

M− step : µt+1
k =

∑

n qt+1
kn xn

∑

n qt+1
kn

Σt+1
k =

∑

n qt+1
kn (xn − µt+1

k)(xn − µt+1
k)>

∑

n qt+1
kn

αt+1
k =

1

M

∑

n

qt+1
kn

EM for MOG

(a) (c) (d)

L = 1

(e)

L = 4

(f)

L = 6

(g)

L = 8

(h)

L = 10

(i)

L = 12

Derivation of M-step

• Expected complete log likelihood `q(θ;D):

∑

n

∑

k

qkn

[

log αk −
1

2
(xn − µt+1

k)>Σ−1
k (xn − µt+1

k)−
1

2
log |2πΣk|

]

• For fixed q we can optimize the parameters:

∂`q
∂µk

= Σ−1
k

∑

n

qkn(xn − µk)

∂`q

∂Σ−1
k

=
1

2

∑

n

qkn

[

Σ>k − (xn − µt+1
k)(xn − µt+1

k)>
]

∂`q
∂αk

=
1

αk

∑

n

qkn − λ (λ = M)

• Fact:
∂ log |A−1|

∂A−1 = A> and ∂x>Ax
∂A = xx>

Compare: K-Means

• The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm with fixed priors and covariance.

• Instead of “hard assignment” in the E-step, we do “soft
assignment” based on the softmax of the squared distance from
each point to each cluster.

• Each centre is then moved to the weighted mean of the data, with
weights given by soft assignments. In K-means, the weights are 0 or
1.

E− step : dt
kn =

1

2
(xn − µt

k)>Σ−1(xn − µt
k)

qt+1
kn =

exp(−dt
kn)

∑

j exp(−dt
jn)

= p(ctn=k|xn, µt)

M− step : µt+1
k =

∑

n qt+1
kn xn

∑

n qt+1
kn

A Report Card for EM

• Some good things about EM:

– no learning rate parameter

– very fast for low dimensions

– each iteration guaranteed to improve likelihood

– adapts unused units rapidly

• Some bad things about EM:

– can get stuck in local minima

– both steps require considering all explanations of the data which
is an exponential amount of work in the dimension of θ

• EM is typically used with mixture models, for example mixtures of
Gaussians or mixtures of experts. The “missing” data are the labels
showing which sub-model generated each datapoint.
Very common: also used to train HMMs, Boltzmann machines, ...

Variants

• Sparse EM:
Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a
while.

• Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood
a bit (e.g. gradient step).

