LECTURE 7:

CLUSTERING AND TREE MODELS

Sam Roweis

October 21, 2003

THREE UNSUPERVISED MODELS

e The three canonical problems in unsupervised learning are
clustering, dimensionality reduction, and density modeling:

— Clustering: grouping similar training cases together and
identifying a “prototype” example to represent each group.

— Dimensionality reduction: learning to represent each training case
using a small number of continuous variables from which the
original data can be almost exactly reconstructed.

— Density modeling: learning a density function from a few
samples. This is like quantitative novelty detection: we want to
produce a large signal when data similar to training data appears
and a small signal when different data appears.

UNSUPERVISED LEARNING

e So far we have only discussed supervised learning in which there are
both inputs and desired outputs.
For regression, the output(s) were continuous values.
For classification, the output was a discrete (categorical) label.

e Another very important problem in machine learning is
unsupervised learning, in which there are no outputs, only inputs.

e What should we do here?

MissING OUTPUTS

e You can think of unsupervised learning as supervised learning in
which all the outputs are missing:

— Clustering == classification with missing labels.
— Dimensionality reduction == regression with missing targets.

e Density estimation is actually very general and encompasses the
two problems above and a whole lot more.

o Let's start off by talking about clustering

CLUSTERING

e Clustering: grouping similar training cases together and identifying
a “prototype” example to represent each group.

e Several approaches: agglomerative, divisive, fixed number of
clusters, hierarchical,

o All require a way to measure distance between two data points, e.g.

Euclidean distance ||x — y/||%,
Mahanalobis distance (x —y) 27 (x — y),

CosT FuNncTION FOR K-MEANS

e Q: What cost function is K-means minimizing?
A: Average squared distance from each datapoint to the nearest
cluster centre:

E({u)) = me[") TS)]

e The K-means algorithm does coordinate descent in a function
F({u.}, {cn}) which is an upper bound on this error:

1 _
Fllmh Aent) = 5 2 [0 = pe,) =716 = e,)
n
This upper bound is valid for any setting of the ¢;,.
After the assignment step for ¢y, F'(u,c) = E(p).
The assignment step lowers this bound as much as possible.

ALGORITHM: K-MEANS

e Select a number of clusters K and covariance ..
Start with initial cluster centres ,u(l), ,ug, o ,,u(}(.

e Alternate between two steps.
Assign each datapoint to the cluster whose centre is closest:

i = argming (x™ — pb) TR TH" — b))
Update cluster centres to the mean of all points assigned to them:
t+1 _
t+1 _ Zn[]X

S S

e When clusters become empty, use a heuristic to reposition their
means. Break ties in distance using cluster of smallest size.

n

VECTOR QUANTIZATION

e K-means clustering is also called vector quantization in the
engineering and signal processing literature.
The problem is like quantization but for multivariate objects.
The cluster centres are called codebook vectors.

e More correctly, K-means (or VQ) is an optimization problem, and
the algorithm above, which is a potential solution to it is called the
Lloyd-Max algorithm.

e But everybody just calls the algorithm K-means.

MORE GENERAL DISTANCE FUNCTIONS

o For strange distance functions, the assignment step is still easy, but
updating the cluster centres might be hard.

e In the general K-mediods problem, we update the new cluster
centres to be one of the points assigned to that cluster, but we
have to try every possible point. Expensive!

e Some common distances, their names, and their cost functions:
K-means (average squared distance)

K-medians (average distance):
B(lui) = ¢ X ming [v/ 6 =) 75T =)|
K-corners (average abs. error):
E({p}) = 3 2o, ming 3o [— i)
K-centres (biggest cluster radius):
E({}) = macy ming (67 —) T2 —)]
e Special cases solved, e.g. K-corners: /ﬂ;ﬂ. = medianczzk[x?]

HIERARCHICAL CLUSTERING

e Hierarchical clustering algorithms break the dataset into a series of
nested clusters, starting with a single cluster at the top containing
all the data and ending with N clusters at the bottom, one for each
point. The results can be displayed as a dendrogram:

[

TRICKS

e K-means (and other clustering methods) require tricks to work well.

e Initialization: set ug to be K randomly chosen points, or else to
the first K points from furthest-first (see later).

o Picking number of clusters: use cross validation on the error
function evaluated on a validation set.

e Unused clusters: set to points with biggest errors.
e Ties in distance: add points to smaller clusters first.

e Robust errors: use squared error up to some maximum error then
constant error beyond that. (Affects both steps.)

e Local minima: use random restarts, split and merge clusters.

AGGLOMERATIVE CLUSTERING

e Agglomerative algorithms for hierarchical clustering start with each
datapoint in its own cluster and then successively merge similar
clusters until a single cluster remains.

e Several methods for merging. Most based on computing cluster
distances d,.. from pairwise distances d,,,,, between all pairs of
points and then merging the two clusters with smallest d_..:
Single linkage: d. = min, . /¢
Complete linkage: d,.» = max
Average linkage: d_.. = mean

/ dnn/

nec,n’ed dnn’

nEc,n’Ec’dnn’

DivisivE CLUSTERING

e Divisive algorithms for hierarchical clustering start with all the data
in a single cluster and successively split clusters.

e Here's my favourite one: furthest-first traversal.

Pick any point, mark it, and set mu(l) equal to it.

for i=2:N
find the unmarked point furthest from {mu(1)...mu(i-1)}
[using dist(point,{set})=min(p’ in {set}) dist(point,p’)]
mark this point and set mu(i) equal to it

end

e For a twist, run K-means until convergence afterward.

TREE MODELS AS GRAPHS

e If we identify each variable with a node in a graph, we can describe
this model by drawing a directed arrow from each node to its
children. NB: each node (except root) has exactly one parent but
may have more than one child.

X

2n
O
X 5n

o This is a special case of a general way of describing statistical
functions using probabilistic graphical models.

TREE MODELS

e A tree model is a unsupervised learning model in which each
variable z; has exactly one other variable as its “parent” g,
except the “root” a0t which has no parents.

e The probability of a variable taking on a certain value depends only
on the value of its parent:

p(X) :p(xroot) H p(“’?‘xﬂz)
1#r00t
e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

e WARNING: do not confuse these trees (probability model is a tree)
with decision trees (algorithm proceeds in a tree structured fashion).
e.g. Naive Bayes classifier assumed independence of features given
the class. Tree model classifiers assume a tree model of features
given the class, but are not the same as classification/decision trees!

LIKELIHOOD FUNCTION

e Likelihood is a sum of parent-conditional terms. Notation:
yi = a node x; and its single parent xr,
V; = set of joint configurations of z; and its parent x,
Yroot = Troot and Vigot = Vioot

(6;D) = logp(x") =Y |logpr(x}) + > log p(a"|zr,")
n i#r

=3 D Iyf = yllogpily)

n i yev;

=) > Ni(y)logpily)

1 yeV;
where Ni(y) = >_,[yi" = y] and p;(yi) = p(zilzs,).
e Trees are in the exponential family with y; as sufficient statistics.

MAXIMUM LIKELIHOOD PARAMETERS

e Trees are just a special case of fully observed density models.

o For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node's values given its parent:

P (i = vilag, = vj) = N(zi = vi,or; = v)) _ Niyi)
Zvi N(z; = vj, o, = vj) Nwi(vj)

except for the root which uses marginal counts Ny (v,)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of [z;; x,] and the
covariance matrix to the sample covariance.

OPTIMAL STRUCTURE

e Let us rewrite the likelihood function:

£0;D) = Z N(x)log p(x)

xEVy)

=Y Nx) | logp(a) + Y logplailar)

i#r
e ML parameters, are equal to the observed frequency counts ¢(-):

g*
Mo Z q(x) | logq(w,) ZIqu x| 2x,)

xeV, i#r
=Y q(x) [logglz,) + Y log T; T)
b'q i#r i
_ (TMT’I'L]
B NER A o

e NB: second term does not depend on structure.

STRUCTURE LEARNING

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

X

e
Q\/@mi@xm

e Bold idea: can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

EDpGE WEIGHTS

e Each term in sum i Z+r corresponds to an edge from i to its parent.

Ti, =L7'r,
3= D alx Zlo) +C

X

—Z Z T, Tr,) log <(D x,,l)) +C

i#r T T’)q(T
(1)
= i) 1 +C
;Z 18 atan)
:ZW i;m)+C
i#r

where the edge weights 1 are defined by mutual information:

x;, %) 1o)
Zq ai)log ot »

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

KRUSKAL'S ALGORITHM (GREEDY SEARCH)

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:

1. A «— empty
2. Sort edges E by nonincreasing weight: ey, e9,...,€ex.
3.for k=1to K {A +=e}. unless doing so creates a cycle}

UNDIRECTED VS. DIRECTED TREES

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

MAXiMUM LIKELIHOOD TREES

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(z;) for each node
and pairwise counts g(x;, ;) for all pairs of nodes.

2. Set the weights to the mutual informations:

i) = o) lo Q(IZ>IJ)
Wiid) = %ﬂ)] ® 4w ale))

3. Find the maximum weight spanning tree A=MWST (/).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

q(xivxﬂ,;) Q(xhxm')

i) =5) = don)

o3 T
SO
o = S o)
DD CED G
= & 15
E-@-OEET o
&
eETS
G > s
)
S
LT P
EeR @ @@@\
S T o @ &
e ®
= @9@
@R T
eod o=
& Lo

