
Lecture 7:

Clustering and Tree Models

Sam Roweis

October 21, 2003

Unsupervised Learning

• So far we have only discussed supervised learning in which there are
both inputs and desired outputs.
For regression, the output(s) were continuous values.
For classification, the output was a discrete (categorical) label.

• Another very important problem in machine learning is
unsupervised learning, in which there are no outputs, only inputs.

•What should we do here?

Three Unsupervised Models

• The three canonical problems in unsupervised learning are
clustering, dimensionality reduction, and density modeling:

– Clustering: grouping similar training cases together and
identifying a “prototype” example to represent each group.

– Dimensionality reduction: learning to represent each training case
using a small number of continuous variables from which the
original data can be almost exactly reconstructed.

– Density modeling: learning a density function from a few
samples. This is like quantitative novelty detection: we want to
produce a large signal when data similar to training data appears
and a small signal when different data appears.

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

Missing Outputs

• You can think of unsupervised learning as supervised learning in
which all the outputs are missing:

– Clustering == classification with missing labels.

– Dimensionality reduction == regression with missing targets.

• Density estimation is actually very general and encompasses the
two problems above and a whole lot more.

• Let’s start off by talking about clustering

Clustering

• Clustering: grouping similar training cases together and identifying
a “prototype” example to represent each group.

• Several approaches: agglomerative, divisive, fixed number of
clusters, hierarchical, ...

• All require a way to measure distance between two data points, e.g.
Euclidean distance ‖x− y‖2,
Mahanalobis distance (x− y)>Σ−1(x− y),
...

Algorithm: K-means

• Select a number of clusters K and covariance Σ.
Start with initial cluster centres µ0

1, µ
0
2, . . . , µ

0
K .

• Alternate between two steps.
Assign each datapoint to the cluster whose centre is closest:

ct+1
n = argmink(xn − µt

k)>Σ−1(xn − µt
k)

Update cluster centres to the mean of all points assigned to them:

µt+1
k =

∑

n[ct+1
k = n]xn

∑

n[ct+1
k = n]

•When clusters become empty, use a heuristic to reposition their
means. Break ties in distance using cluster of smallest size.

(a) (b) (c) (d) (e) (f)

Cost Function for K-Means

•Q: What cost function is K-means minimizing?
A: Average squared distance from each datapoint to the nearest
cluster centre:

E({µk}) =
1

N

∑

n

min
k

[

(xn − µk)>Σ−1(xn − µk)
]

• The K-means algorithm does coordinate descent in a function
F ({µk}, {cn}) which is an upper bound on this error:

F ({µk}, {cn}) =
1

N

∑

n

[

(xn − µcn)>Σ−1(xn − µcn)
]

This upper bound is valid for any setting of the cn.
After the assignment step for cn, F (µ, c) = E(µ).
The assignment step lowers this bound as much as possible.

Vector Quantization

• K-means clustering is also called vector quantization in the
engineering and signal processing literature.
The problem is like quantization but for multivariate objects.
The cluster centres are called codebook vectors.

•More correctly, K-means (or VQ) is an optimization problem, and
the algorithm above, which is a potential solution to it is called the
Lloyd-Max algorithm.

• But everybody just calls the algorithm K-means.

More General Distance Functions

• For strange distance functions, the assignment step is still easy, but
updating the cluster centres might be hard.

• In the general K-mediods problem, we update the new cluster
centres to be one of the points assigned to that cluster, but we
have to try every possible point. Expensive!

• Some common distances, their names, and their cost functions:
K-means (average squared distance)
K-medians (average distance):

E({µk}) = 1
N

∑

n mink

[

√

(xn − µk)>Σ−1(xn − µk)
]

K-corners (average abs. error):
E({µk}) = 1

N

∑

n mink

[
∑

i |x
n
i − µki|

]

K-centres (biggest cluster radius):
E({µk}) = maxn mink

[

(xn − µk)>Σ−1(xn − µk)
]

• Special cases solved, e.g. K-corners: µt
ki = medianctn=k[xn

i]

Tricks

• K-means (and other clustering methods) require tricks to work well.

• Initialization: set µ0
k to be K randomly chosen points, or else to

the first K points from furthest-first (see later).

• Picking number of clusters: use cross validation on the error
function evaluated on a validation set.

• Unused clusters: set to points with biggest errors.

• Ties in distance: add points to smaller clusters first.

• Robust errors: use squared error up to some maximum error then
constant error beyond that. (Affects both steps.)

• Local minima: use random restarts, split and merge clusters.

Hierarchical Clustering

• Hierarchical clustering algorithms break the dataset into a series of
nested clusters, starting with a single cluster at the top containing
all the data and ending with N clusters at the bottom, one for each
point. The results can be displayed as a dendrogram:

�
�

� �
�

�
�

�

�
�

� �
�

��
�

�
	

�
�

� �
�

��
�

��
�

�

�
��

��
��

�
�

�

�
�

�
	�

�
�

��
�

�
�

�
��

�
�

��
�

�
�

�

�
�

	
�

�
� �

��
�

�

�

	�
�

�

��
�

!
�

"
�

�
�

�
��

�"
�

!
�

#
��

�
$�

�
�

�
�

�
�

�
�

�
�

!
�

%

�
&

&
&

'
(

��
�

��
�

�
&

�

&
#

��
�

��
	

)
�

!
%

)
#

��
��

� �
��

&
�

#
��

��
�

�
�

*
��

�
�

	
�

�

+
�

�
�

�
��

'
�

�
�

&

"
�

, �
�

��
�

�
�

�
!

� �
-

��
�

�

.
/

�
�

/
�

�
�

��
�

0
1

	
�

�

"
�"

2
�

�
-

��
�

�
!

"
�"

,�
�

�
3�

�
�

�

"
�"

#
�

�
�

�
/

-
�

�

,�
�

/
�

�
�

�
#

*
�

�
�

��
�

/
�

��
�

!
!

4
�

	
5

�
�

�
�

�

!
�

�
/

�
�

�	
�

�
6

#
�

+
)

��
	�

�7
1�

&
�

8
�

�
�

�
�

$
�

	
�

�
�

!
%

%
�

�
1

3
2

	
�

!

'
��

�
��

*
�

8
�

�
/

)
�

3
�

9
�

�
�

&

"

�
#

��
5

��
�

%

�
/

�
�

��
�

�
��

!
&

�
�

	
�

�
�

8
�

�
�

�
&

�
/

�
�

�
#

�
0

#
�

!

&
�

&
�

�
$

�
�

�
�

�
%

�
/

�
�

�
8�

��
�

!
�

�
/

�
�

�
8�

��
!

!
�

�
/

�
�

�
#

�
0

#
�

!
�

�
�

	�
�

�
-�

�
�

&
�

�
�

	�
�

�
-�

�
�

&
�

�
�

	�
�

�
-�

�
�

�
%

�
�

	�
�

�
-�

�
!

�

�
�

	�
�

�
-�

�
�

�
�

�
�

	�
�

�
-�

�
&

&
!

�
�

	�
�

�
-�

�
�

&
�

Agglomerative Clustering

• Agglomerative algorithms for hierarchical clustering start with each
datapoint in its own cluster and then successively merge similar
clusters until a single cluster remains.

• Several methods for merging. Most based on computing cluster
distances dcc′ from pairwise distances dnn′ between all pairs of
points and then merging the two clusters with smallest dcc′:
Single linkage: dcc′ = minn∈c,n′∈c′ dnn′

Complete linkage: dcc′ = maxn∈c,n′∈c′ dnn′

Average linkage: dcc′ = meann∈c,n′∈c′dnn′

Divisive Clustering

• Divisive algorithms for hierarchical clustering start with all the data
in a single cluster and successively split clusters.

• Here’s my favourite one: furthest-first traversal.

Pick any point, mark it, and set mu(1) equal to it.

for i=2:N

find the unmarked point furthest from {mu(1)...mu(i-1)}

[using dist(point,{set})=min(p’ in {set}) dist(point,p’)]

mark this point and set mu(i) equal to it

end

• For a twist, run K-means until convergence afterward.

Tree Models

• A tree model is a unsupervised learning model in which each
variable xi has exactly one other variable as its “parent” xπi,
except the “root” xroot which has no parents.

• The probability of a variable taking on a certain value depends only
on the value of its parent:

p(x) = p(xroot)
∏

i6=root

p(xi|xπi)

• Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

•WARNING: do not confuse these trees (probability model is a tree)
with decision trees (algorithm proceeds in a tree structured fashion).
e.g. Naive Bayes classifier assumed independence of features given
the class. Tree model classifiers assume a tree model of features
given the class, but are not the same as classification/decision trees!

Tree Models as Graphs

• If we identify each variable with a node in a graph, we can describe
this model by drawing a directed arrow from each node to its
children. NB: each node (except root) has exactly one parent but
may have more than one child.

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

• This is a special case of a general way of describing statistical
functions using probabilistic graphical models.

Likelihood function

• Likelihood is a sum of parent-conditional terms. Notation:
yi ≡ a node xi and its single parent xπi

Vi ≡ set of joint configurations of xi and its parent xπi

yroot ≡ xroot and Vroot ≡ vroot

`(θ;D) =
∑

n

log p(xn) =
∑

n



log pr(x
n
r) +

∑

i6=r

log p(xi
n|xπi

n)





=
∑

n

∑

i

∑

y∈Vi

[yn
i = y] log pi(y)

=
∑

i

∑

y∈Vi

Ni(y) log pi(y)

where Ni(y) =
∑

n[yn
i = y] and pi(yi) = p(xi|xπi).

• Trees are in the exponential family with yi as sufficient statistics.

Maximum Likelihood Parameters

• Trees are just a special case of fully observed density models.

• For discrete data xi with values vi, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

p∗(xi = vi|xπi = vj) =
N (xi = vi, xπi = vj)

∑

vi
N (xi = vi, xπi = vj)

=
Ni(yi)

Nπi(vj)

except for the root which uses marginal counts Nr(vr)/N .

• For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of pi(yi) to be the sample mean of [xi; xπi] and the
covariance matrix to the sample covariance.

Structure Learning

•What about the tree structure (links)?
How do we know which nodes to make parents of which?

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

• Bold idea: can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

• But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

Optimal Structure

• Let us rewrite the likelihood function:

`(θ;D) =
∑

x∈Vall

N(x) log p(x)

=
∑

x

N(x)



log p(xr) +
∑

i6=r

log p(xi|xπi
)





•ML parameters, are equal to the observed frequency counts q(·):

`∗

M
=

∑

x∈Vall

q(x)



log q(xr) +
∑

i6=r

log q(xi|xπi
)





=
∑

x

q(x)



log q(xr) +
∑

i6=r

log
q(xi, xπi

)

q(xπi
)





=
∑

x

q(x)
∑

i6=r

log
q(xi, xπi

)

q(xi)q(xπi
)

+
∑

x

q(x)
∑

i

log q(xi)

• NB: second term does not depend on structure.

Edge Weights

• Each term in sum i 6= r corresponds to an edge from i to its parent.
`∗

M
=

∑

x

q(x)
∑

i6=r

log
q(xi, xπi

)

q(xi)q(xπi
)

+ C

=
∑

i6=r

∑

xi,xπi

q(xi, xπi
) log

q(xi, xπi
)

q(xi)q(xπi
)

+ C

=
∑

i6=r

∑

yi

q(yi) log
q(yi)

q(xi)q(xπi
)

+ C

=
∑

i6=r

W (i; πi) + C

where the edge weights W are defined by mutual information:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

• So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

Kruskal’s algorithm (Greedy Search)

• To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:

1. A← empty

2. Sort edges E by nonincreasing weight: e1, e2, . . . , eK .

3. for k = 1 to K {A +=ek unless doing so creates a cycle}

a

b d

e

fgh

i

8 7

10
67

8

14

c

a

b d

e

fgh

i

4

8 7

9

102

67

18

14

c

42
11

11

Maximum Likelihood Trees

We can now completely solve the tree learning problem:

1. Compute the marginal counts q(xi) for each node
and pairwise counts q(xi, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

3. Find the maximum weight spanning tree A=MWST(W).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

p(xi|xπi) =
q(xi, xπi)

∑

xi
q(xi, xπi)

=
q(xi, xπi)

q(xπi)

Undirected vs. Directed Trees

• Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

• Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

• For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

•Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

aids

health

baseball

hit

players

bible

god

bmw

car

cancer

patients

dealer

drive

engine

honda

card

graphics
video

windows

case
fact

childrengovernment

christian

computer

science

course

data

system

disease

disk

files

memory

display image

server

doctor

dos

scsi

driver

earth

orbit

email ftpphone

oil

evidence

human

question

fans

team

format

food

msg

water

games

jesus

religion

jewspower
president

rights

state

war

gun

law

insurance

medicine

help

problem hockey

nhl

israel

launchspace

league

lunar

moon

mac

mars

nasa

studies

mission

shuttle

number

satellite
solar

vitamin

pc

software

program

puck

research

university

season

technology

win

version

world

won

