LECTURE 4:

REGRESSION I

Sam Roweis

September 30, 2003

CONSTANT MODEL

e Constant model says y = «a, independent of x.
(What were the constant models in classification?)

e Q: What should we use for a?
The mean? The median? The mode (for quantized data)?

e A: Depends on your error function (noise model).

o For squared error, the mean is best:

N
e= (yn—a)

n=1

de

= _9 —

da ;(yn CL)
1

at = N Yn

REMINDER: REGRESSION

ABSOLUTE ERROR

e Multiple inputs x, mixed cts. and discrete.

e Continuous output(s) y. (Consider each separately.)

o Goal: predict output on future unseen inputs.

o Still conditional density estimation: p(y|x) (c.f. classification)

e For now, consider continuous inputs and a single output...

e For abs error, we get the median:

N

% = zn: sign[a — yp)

= (#ypsmaller than a) — (#y,bigger than a)
a® = median[y; ... yy]
e What if there are an even number of datapoints?

Or exact duplicates?
Then any value between the middle two gives the same error.

e Even for constant model life is not so simple...

LINEAR MODEL y

PROBABILISTIC MODELS

.;,.’./o
e Linear model: of eee
T Tﬁoff R X
y:Zwixﬁ-wo:W X+wy=w & §°
e
e Geometry: a line or hyperplane. y=AX

The bias term wy offsets the line
(hyperplane) from the origin.
Think of vertical springs
connecting v, to line w'x.
Goal: minimze energy.

e Usually augment x with constant and absorb bias into w.
e Q: What's the best w?

e A: Now you know, it depends on your error function!

e What probabilistic model corresponds to squared error? Gaussian:

1 _LQ/—WT)'2
plylx, w) = e 207
vV %7702
logp(y|x7 W) = ——(y - WTX)2 + const

2
logp(y| X, w) = Zlogp(yn|xn,w) for iid data
n

e So minimzing squared error = maximum Gaussian noise likelihood

e What probabilistic model corresponds to absolute error?
Laplacian:

—a|y—wa\

plylx, w) = ae
log p(y|x,w) = —aly — w ' x| + const

LINEAR REGRESSION

e For squared error, the problem is linear regression, or ordinary least
squares, and we can get a direct solution:
y=w'x
T 2
€= Z(yn — W Xp)
n
W* — (XxT)flxyT

e X is matrix of inputs (one per column); y is output row vector.

e This is one of the most famous equations in all of linear algebra:
the discrete Weiner filter.

e |t says: take the correlation between inputs and outputs, but don't
be fooled by large input-input correlations.

e Constant model corresponds to wy = a, w; = 0.
e Predicted values are g, = yXT(XXT)_lxn.

ORDINARY LEAST SQUARES

e Can we estimate the noise level? Yes. An unbiased estimate is:

1
2 T2
N —————— 5 - W X
7 N—d—ln(%)
e What about the variance of parameters?

Yes, also:

varjw] = (XX)" 1o?

e This allows us to put some crude error bars on our predictions:
p(y|x) is Gaussian with
mean=w ' x
variance= w ' (XX)" lw + ¢2

ABSOLUTE ERROR

o What if we use absolute error with the linear model?
What's the equivalent of the median estimator?

min Z yn — W x|
w

n

o We need to solve a linear programming problem:
min Z tn
n

subject to —tn <yp— w'x, <ty

REGULARIZATION

e What? You thought the linear model was simple enough that we
don’t need to regularlize it? Everything needs regularization!

e Example: you have fewer training cases than input dimensions.
Now XX will not be invertible.

e Example: certain input dimensions are useless (on average) at
predicting the output. But because of noise or small samples, you
can always reduce the training error a tiny bit by putting huge
weights on these dimensions. At test time you get killed.

e Two common solutions:

—input subset selection
— parameter shrinkage

MuLTtIPLE OUTPUTS

e With multiple outputs, we can just treat each one separately.
e Amazingly, this is true even if the output noise is correlated.

o However, if the output noises are correlated and the noise changes
from case to case, then the solutions are coupled.

SUBSET SELECTION

e Use only a few x; as inputs, discard the rest.
Advantages: introduces inductive bias, produces small models.
Disadvantage: high variability because of binary choices.

o Forward stepwise selection: start with constant and iteratively add
the single x; which most decreases error.

e Backward stepwise selection: start with constant and iteratively add
the single x; which most decreases error.

e Leaps-and-Bounds: Furnival and Wilson (74) came up with a very
clever branch-and-bound trick for efficiently trying all possible
subsets. Works for up to = 40 variables.

e Choose subset size with cross validation or F-statistic tests.

LASsO

SHRINKAGE

e Idea: pull (“shrink™) estimated parameters towards some fixed

values that do not depend on the data. (Whoa....)

e Usually we shrink towards zero.

e Thus: penalize coefficients based on their size.
e For a penalty which is the sum of the squares of the weights, this is

known as “weight decay” or “ridge regression”
y=w'x

e= Z(yn —w'x)?+ A Z w?
n i
wh = (XX +)Xy "

where [is the identity matrix.

e Shrinkage has less variance but doesn't give small models.
Can we get the best of both worlds?
e Lasso: squared error with absolute weight penalty.

€= Z(yn - WTX)Q + A Z |wil
n)

e Requires quadratic programming to solve, but still unique optimum.

e Cool thing happens: may coefficients go exactly to zero.

ErRROR FuNCTION GEOMETRY

wj

RIDGE REGRESSION

e Same trick as when we were training Gaussian classifiers.

e Set \ with cross-validation.
e There is a trick which lets you compute the leave-one-out error very

efficiently without refitting IV times.
e Warning: ridge regression is not invariant to input rescaling.

Often we want to “whiten/sphere” inputs first (i.e. rescale them so
their sample covariance is a multiple of the identity matrix).

BEYOND LINEAR REGRESSION

e We can augment the inputs, not just with a constant to get a bias
term, but with lots of other things.

o If we decide beforehand on how to augment the input, this is still
linear regression:
y=> wjhj(x)
J

e For linear regression, just use hy = 1,h; = z;.

e Optimal weights are still easy to find:
e=> (yn — w'h(x))’
n
w* = (HHT)leyT

where h(x) is a vector of basis function outputs and H is a matrix
with columns h(x,,).

SPLINES

e You can construct a special basis set that gives piecewise constant
functions between pre-specified split points (“knots”) a;:

hy = (z—a1)+ hy=(z—ag)s...hy=(v—ap)y hpp1=z ho=1
where (z — a;)+ is the positive part of (z — a;).
e To enforce continuity up to the (r — 1)*! derivative, use
hi=@—a),...hp=@—ap)y hp=2". hpp1=1
e Most common: cubic splines, corresponding to r = 3.

e Can also enforce linearity beyond edges: natural cubic spline.

GENERALIZED LINEAR MODELS

e Any fixed, generalized basis set that depends on the inputs can be
used to make a generalized linear model.

o Elements of basis are called dictionary functions.
e Examples include splines, radial basis functions, wavelets, etc.

e Common things to add: quadratic or other polynomial terms,
sinusoidal terms, exponentials, square roots, logarithms, etc.
e Terms can depend on more than one input e.g.
hj(x) = :Ug:r;gzg
hj(x) = [
hi(x) =la <z <blle <xj < d
e These models can also be use for classification:
as inputs to logistic/softmax regression, as a space for Fisher
disciminants/Gaussians class-conditionals, KNN, etc.

e This is the “kernel” idea, which | hope to get to later!

RADIAL BASIS FUNCTIONS

e One way to generate a nice automatic basis is to place a dictionary
element on each input datapoint, whose value depends on the
distance of the input from the point it is on top of:

NEURAL NETWORKS

e Another generalized linear model, this time with the basis set:

hj =g sz‘jl’i
1
with g() a “squashing” function with limited outputs, e.g.

1
90 = Tre=

e The outputs h; are known as the “hidden layer”.

g(z) = tanh(z)

OOO0OO0O00O0OO *

MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

e Piecewise constant 1D splines with knots at each data point value
in each dimension. Also the “reflected pairs”.

hni(X) = (T; — Tpi)+ honi(X) = (Tpi — 75)+

o Now use forward stepwise regression, chosing from these basic
elements and any product between them and an existing dictionary
element.

e Then do backwards deletion.

e Another Stanford masterpiece. (What's in the water in Palo Alto?)

REGULARIZATION: LEARNING THE BASIS

e In all the examples above, the basis functions were fixed.

o |deally, we'd like to adjust the basis set also.
E.g. where are the knots for splines, the centres for RBF's, what
are the input-to-hidden weights for neural networks?

o Three strategies: shrinkage, subset, adaptive.

e Shrinkage: of course, we can also do ridge regression on these
generalized basis sets, by penalizing the coefficients.
For splines, this technique gives smoothing splines.

e We can also start with a huge dictionary and try to pick a few
elements. This is subset selection from a broader choice set.

e Lastly, we can have a fixed number of adaptive elements. Next
lecture we can see how to do this, for certain error functions, using
gradient descent. But the solutions are no longer optimal.

THINGS I WON’T COVER

e Regression trees (very similar to MARS but worse).
e Partial Least Squares

e Empirical Bayes (ML-II)
Automatic Relevance Determination (ARD)

e Canonical Correlation Analysis

More reading: Hastie et al. Ch4,5,9.4

