
Lecture 2:

Classification I

Sam Roweis

September 16, 2003

Reminder: Classification

•Multiple inputs x, mixed cts. and discrete.

• Single discrete output y.

• Goal: predict output on future unseen inputs.

• From a probabilistic point of view, we are using Bayes rule:

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)
∑

y′ p(x|y′)p(y′)

x

p(x|A) p(x|B)
p(A|x)

Voronoi Tessellation, Decision Surfaces

• For continuous inputs, we can view the problem as one of
segmenting the input space into regions which belong to a single
class, i.e. constant output.

• Such a segmentation is the “Voronoi tessellation” for our classifier.

• The boundaries between regions are the “decision surfaces”.

• Training a classifier == defining decision surfaces.

x1

x2

C
A

B

Probabilistic Model, Bayes Error Rate

•Model original data as coming from joint pdf p(x, y).
Classification == trying to learn conditional density p(y|x).

• Even if we get the perfect model, our error rate may not be zero.
Why? Classes may overlap.

• The best we could ever do if our cost function is number of errors
is to guess y∗ = argmaxy p(y|x).
(The error rate of this procedure is known as the “Bayes error”.)

x
bayes error region

bayes error region

K-Nearest-Neighbour

• Finally: a real algorithm!

• To classify a test point, chose the most common class amongst its
K nearest neighbours in the training set.

•Algorithm K-NN
c-test ← KNN(K,x-train,c-train,x-test) {
d(m,n) = distance between x-train(m) and x-test(n)

n(n,l) = index of l-th smallest entry of d(:,n) [*]

c(n,l) = c-train(n(n,l))

c-test(n) = most common value in c(n,1:K) [**] }

• If ties at *, increase K for that n only.

• If ties at **, decrease K for that n only.

• confidence = (#votes for class) / K

More on K-NN

• Typical distance = squared Euclidean d(m,n) =
∑

d(x
m
d − xn

d)2

• Remember the Kth smallest distance so far, and stop the
summation above when you exceed it.

• In high-d, save time by computing the distance of each training
point from the min corner and using the “annulus bound”.

• In low-d with lots of training points you can build “KD trees”,
“ball trees” or other data structures to speed up the query time.

• If Euclidean distance is used, decision surfaces are piecewise linear.

+

+

−

−

−

+

−
−

+

xq

Error Bounds for NN

• Amazing fact: asymptotically, err(1-NN) < 2 err(Bayes):

eB ≤ e1NN
≤ 2eB −

M

M − 1
e2
B

this is a tight upper bound, achieved in the “zero-information” case
when the classes have identical densities.

• For K-NN there are also bounds. e.g. for two classes and odd K:

eB ≤ eKNN
≤

(K−1)/2
∑

i=0

(
k

i

)[

ei+1
B (1− eB)k−i + ek−i

B (1− eB)i+1
]

Example: USPS Digits

• Take 16x16 grayscale images (8bit) of handwritten digits.

• Use Euclidean distance in raw pixel space (dumb!) and 7-nn.

• Classification error: 4.85%.

Nonparametric (Instance-Based) Models

•Q: in K-NN, what are the parameters?
A: the scalar K and the entire training set.
A model which needs the entire training set at test time but
(hopefully) has very few other parameters is known as
nonparametric, instance-based or case based.

•What if we want a classifier that uses only a small number of
parameters at test time? (e.g. for speed or memory reasons)
Idea 1: single linear boundary, of arbitrary orientation
Idea 2: many boundaries, but axis-parallel & tree structured

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

x1

x2

t1 t2

t3

t4

t5

A

B

C

D

EF

Linear Classification for Binary Output

• Goal: find the line (or hyperplane) which best separates two classes:

c(x) = sign[x>w︸︷︷︸
weight

− w0︸︷︷︸

threshold

]

•w is a vector perpendicular to decision boundary

• This is the opposite of non-parametric: only d + 1 parameters!

• Typically we augment x with a constant term ±1 (“bias unit”) and
then absorb w0 into w, so we don’t have to treat it specially.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

Fisher’s Linear Discriminant

•Observation: If each class has a Gaussian distribution (with same
covariances) then the Bayes decision boundary is linear:

w∗ = Σ−1(µ0 − µ1)

w∗0 =
1

2
w>(µ0 + µ1)−w>(µ0 − µ1)

[
log p0 − log p1

(µ0 − µ1)>Σ−1(µ0 − µ1)

]

• Idea (Fisher’36):
Assume each class is Gaussian even
if they aren’t!
Fit µi and Σ as sample mean and
sample covariance.

x1

x2

• This also maximizes the ratio of cross-class scatter to within class

scatter: (z̄0 − z̄1)
2/(var(z0)− var(z1))

Digits again

Train to discriminant “5” from others.
Error = 3.59%

1 2 3 4 5 6 7 8 9 0

w_0

Fisher Discriminant for 5 vs not−5

Linear Discriminants are Perceptrons

• The architecture we are using

c(x) = sign[x>w − w0]

can be thought of as
a circuit/network.

x1 x2 xi xjx3

w

y

• It was studied extensively in the 1960s and is known as a perceptron.

• There is another way to train the weights, other than Fisher.
Algorithm perceptronTrain (Rosenblatt’56)
w ← perceptronTrain(x-train,c-train) {

w = ‘‘small’’ random values;

do { errors=0;

for n=1:N {if(c-train(n) != sign[w’*xtrain(n)]) then {

w = w + c - train(n)*xtrain(n); errors++; } }

} until(errors==0)

}

Perceptron Learning Rules

• Now: cycle through examples, when you make an error, add/subtract
the example from the weight vector depending on its true class.

• Amazingly, for separable training sets, this always converges.
(We absorb the threshold as a “bias” variable always equal to -1.)

• For non-separable datasets, you need to remember the sets of weights
which you have seen so far, and combine them somehow.

•One way: keep the set that survived unchanged for the longest num-
ber of (random) pattern presentations. (Gallant’s pocket algorithm.)

• Better way: Freund & Shapire’s voted perceptron algorithm.

• Perceptron, voted-perceptron, weighted-majority, kernel perceptron,
Winnow, and other algorithms have a frumpy reputation but they are
actually extremely powerful and useful, especially using the kernel
trick. Try these before more complex classifiers such as SVMs!

Tree Structured Axis-Aligned Classifiers

•What if we want more than two regions?

•We could consider a fixed number of arbitrary linear segments (*)
but even cheaper is to use axis-aligned splits.

• If these form a hierarchical partition, then the classifier is called a
decision tree or classification tree.

• Each internal node tests one attribute; leaves assign a class.

• Equivalent to a disjunction of conjunctions of constraints on
attribute values (if-then rules).

x1

x2

t1 t2

t3

t4

t5

A

B

C

D

EF

x2<t3 x1<t2

x1<t1

x1<t5 x2<t4A

B C

D

EF

Cost Function for Decision Trees

• Define a measure of “class impurity” in a set of examples.

• Goal: minimize expected sum of impurity at leaves.

• Two problems:
1) We don’t know true distribution p(x, y).
2) Search: even if we knew p(x, y) finding optimal tree is NP.

• So we will take a suboptimal (greedy) approach.

...
...

... ...

Learning (Inducing) Decision Trees

• Need to pick the order of split axes and values of split points.
Many algorithms: CART, ID3, C4.5, C5.0.

• Almost all have the following structure:

1. Put all examples into the root node.

2. At each node: search all dimensions, on each one chose split
which most reduces impurity; chose the best split.

3. Sort the data cases into the daughter nodes based on the split.

4. Recurse until a leaf condition:

– number of examples at node is too small

– all examples at node have same class

– all examples at node have same inputs

5. Prune tree down to some maximum number of leaves.

Impurity Measures

•When considering splitting data D at a node on xi, we measure:

Gain(D; xi) = I(D)−
∑

v∈split(xi)

|Div|

|D|
I(Div)

• Common impurity measures:
Entropy: I(D) = −

∑

c pc(D) log pc(D)
Misclass: I(D) = 1− pc∗

Gini: I(D) =
∑

c
∑

c′ 6=c pc(D)pc′(D) = . . .
(this is the avg. error if we stochastically classify with node prior)

• These often favour multi-way splits.

•One solution: normalize by “split information”:

S(D) = −
∑

v

|Div|

|D|
log
|Div|

|D|

Binary Splits

• A better solution is to always constrain ourselves to binary splits.

• For ordered discrete or real valued nodes, split is natural.
Also easy to compute (*).

• For a discrete attribute with M settings, looks like we need to
consider 2M − 1 splits. But for two classes, there is a trick:

1. Order the settings according to p(c|xi = m).

2. Search exhaustively over q, grouping first q and last M − q.

3. Optimal split is one of those.

x2<t3 x1<t2

x1<t1

x1<t5 x2<t4A

B C

D

EF

Real Valued Attributes

• For real valued attributes, what splits should we consider?

• Idea1: discretize the real value into M bins.

• Idea2: Search for a scalar value to split on.
Sounds hard! Lots of real values. But there is a trick:
Only need to consider splits at midpoints between observed values.
In fact, only need to consider splits at midpoints between observed
values with different classes.

• Complexity: N log N + 2N |C|

A B A BA A AB
x x x x xx xx

Algorithm: DT

root of decision tree = SplitNode(train-data,nmin)

subtree ← SplitNode(D) {

c = most common class in D

if (all class(D) same) or (all x(D) same) or (size(D) < nmin)

then return a leaf of class c

else for each xi measure Gain(D;xi)

return a node which splits on best xi and has daughters:

- SplitNode(Div) for all split vals v with nonempty Div

- leaf of class c for values with empty Div }

G ← Gain(D,i) {

G = I(D)

for each value v in split(xi)

Div = cases in D with xi=v

G = G - I(Div)*size(Div)/size(D) }

Overfitting in Trees

• Just as with most other models, decision trees can overfit. In fact
they are quite powerful.

• eg: Expressive power of binary trees
Q: If all input and outputs are binary, what class of Boolean
functions can DTs represent?
A: All Boolean functions.

• Hence we must regularize to control capacity.

• Typically we do this by limiting the number of leaf nodes.
Formally, we define: Φ(T) =

∑

leaves I(l) + α|leaves|.

•Minimizing this for any α is equivalent to finding the tree of a fixed
size with smallest impurity. (cf. Lagrange multipliers).

• Practically, we achieve this via pruning.

Pruning Decision Trees

• Finding the “optimal” pruned tree.
It can be shown that if you start with a tree T0 and insist on using
a rooted subtree of it, the following sequence of trees contains the
optimum tree for all numbers of leaves:

1. Let U(node) = I(node)-I(subtree-rooted-at-node)

2. Replace the non-leaf node with the smallest value of:
U(node)/leaves-below-node
with a leaf node having majority class.

• Still have problems:
- cannot capture additive structure (OR)
- cannot deal with linear combinations of variables

DT Variants

• ID3 (Quinlan)
- split values are all possible values of xi
- I(D) is entropy - no pruning

• C4.5, C5.0 (Quinlan)
- binary splits
- I(D) is entropy - error-pruning
- “rule simplification”

• CART (Breiman et. al)
- binary splits
- I(D) is Gini
- minimum-leaf subtree pruning

Still to come...

• How do we chose K in K-NN?

• How do we chose Tmax for decision trees?

• Can Fisher’s Discriminant overfit?

• Logistic regression

