LECTURE 12:

META-LEARNING METHODS

Sam Roweis

November 25, 2003

META-LEARNING

- The idea of meta-learning is to come up with some procedure for taking a learning algorithm and a fixed training set, and somehow repeatedly applying the algorithm to *different* subsets (weightings) of the training set or using *different* random choices within the algorithm in order to get a large ensemble of machines.
- The machines in the ensemble are then *combined* in some way to define the final output of the learning algorithm (e.g. classifier)
- The hope of meta-learning is that it can "supercharge" a mediocre learning algorithm into an excellent learning algorithm, without the need for any new ideas!
- There is, as always, good news and bad news....
 - The Bad News: there is (quite technically) No Free Lunch.
 - The Good News: for many real world datasets, meta learning works very well.

META-LEARNING CAFETERIA

- Many meta-learning methods that work well in practice.
- We will review the three main ones:
- Bagging: apply your algorithm to bootstrap datasets and average the predictions of the resulting ensemble.
- Stacking: define a set of models by restricting the input to subsets of various sizes. Use LOO-CV to choose weights which blend these models.
- Boosting: iteratively reweight your dataset, placing higher weights on the examples you are getting wrong. At each iteration, refit and add the result to your ensemble.

WHY DOES META-LEARNING WORK?

- Either reduces variance substantially without affecting bias (bagging, stacking), or vice versa (boosting).
- All meta-learning is based on one of two observations:
- A) Variance Reduction: *If we had completely independent training sets* it always helps to average together an ensemble of learners because this reduces variance without changing bias.
- B) Bias Reduction: For many simple models, a weighted average of models has much greater capacity than a single model (e.g. hyperplane classifiers, single-layer networks, Gaussian densities). So averaging models can often reduce bias substantially by increasing capacity.

VARIANCE REDUCTION BY AVERAGING

 Here is an example of how to show that averaging across independent training sets always reduces expected squared error:

$$\begin{split} e\bar{r}r_1 &= \sum_{x,y} p(x,y) \left(y - f(x|ts_1)\right)^2 \\ e\bar{r}r &= \langle \langle \left[y^2 - 2yf(x|ts) + f^2(x|ts)\right] \rangle_{x,y} \rangle_{ts} = \langle e\bar{r}r_1 \rangle_{ts} \\ f_{meta}(x_{test}) &= \frac{1}{T} \sum_i f(x_{test}|ts_i) = \langle f(x_{test}|ts) \rangle_{ts} \\ e\bar{r}r_{meta} &= \sum_{x,y} p(x,y) (y - \langle f(x|ts) \rangle_{ts})^2 \\ &= \langle \left[y^2 - 2y\langle f(x|ts) \rangle_{ts} + (\langle f(x|ts) \rangle_{ts})^2\right] \rangle_{x,y} \\ &\leq \langle \left[y^2 - 2y\langle f(x|ts) \rangle_{ts} + \langle f^2(x|ts) \rangle_{ts}\right] \rangle_{x,y} \\ &\leq e\bar{r}r \\ &\qquad \qquad \text{since } \langle f \rangle^2 \leq \langle f^2 \rangle \end{split}$$

Bagging (Breiman 1994)

- Bagging \equiv bootstrap aggregation.
- Idea is simple. Generate B bootstrap samples from your original training set. Train on each one to get f_b . Now average them:

$$f_{bag} = \frac{1}{B} \sum_{b} f_{b}$$

- For regression, average predictions, for classification, average class probabilities or take the majority vote if only hard outputs available.
- Bagging approximates the Bayesian posterior mean. The more bootstraps you use, the better, so use as many as you have time for.
- The size of each bootstrap sample is equal to the size of the original training set, but they are drawn *with replacement*, so each one contains some duplicates of certain training points and leaves out other training points completely.

BAGGING CAN HURT

- Bagging helps when a learning algorithm is good on average but *unstable* with respect to the training set.
- But if we bag a stable learning algorithm, we can actually make it worse. For example, if we have a Bayes optimal algorithm, and we bag it, we might leave out some training samples in every bootstrap, and so the optimal algorithm will never be able to see them.
- Bagging almost always helps with regression, but even with unstable learners it can hurt in classification. If we bag a poor unstable classifier we can make it horrible.
- ullet Example: true class = A for all inputs. Our learner guesses class A with probability 0.4 and class B with probability 0.6 regardless of the input. (Very unstable!). It has error 0.6.

But if we bag it, it will have error 1.

STACKING (WOLPERT 1990)

- In bagging, we created an ensemble of models by creating many synthetic training sets using the bootstrap.
- We can also create an ensemble of models in other ways, e.g. by restricting each model to look at only a subset of inputs, by trying the whole "kitchen sink" of regressors or classifiers (e.g. neural nets vs. logistic regression vs. naive bayes vs. KNN).
- In *stacked generalization* or *stacking* we try to find the best nonuniform weights to average our models together:

$$f_{stack}(x) = \sum_{m} w_m f_m(x)$$

• How should we set the weights? Using training error of each model? No! This will put too much weight on the most complex models.

SETTING THE STACKING WEIGHTS

• We estimate the optimal weights by setting them to minimize the average leave-one-out cross validation error:

$$w_m^* = \arg\min_{w} \sum_{i=1}^{N} \left[y_i - \sum_{m} w_m f_m^{-i}(x_i) \right]^2$$

where f_m^{-i} is the result of model m trained on all points except i.

- These weights can be found exactly using linear regression.
- ullet This is like a generalization of model selection using LOO-CV. Previously we picked the best model and set $w_{mbest}=1$ and all other $w_m=0$. Now we are doing a smooth weighting.
- ullet In more advanced stacking ideas, we can combine the models nonlinearly and use weights which depend on the input x. This is like a mixture of experts where we fit the gate using cross-validated training points instead of the usual training set.

BOOSTING (SHAPIRE 1990)

- Probably one of the three most influential ideas in machine learning in the last decade, along with Kernel methods and Variational approximations.
- In the PAC framework, boosting is a way of converting a "weak" learning model (behaves slightly better than chance) into a "strong" learning mode (behaves arbitrarily close to perfect).
- Very amazing theoretical result, but also lead to a very powerful and practical algorithm which is used all the time in real world machine learning.
- Basic idea, for binary classification with $y = \pm 1$.

$$f_{boost}(x) = \text{sign}\left[\sum_{m} \alpha_m f_m(x)\right]$$

where $f_m(x)$ are models trained with reweighted datasets D_m , and the weights α_m are non-negative.

ADABOOST ALGORITHM

- Set initial observation weights $w_i = 1/N$.
- Loop while $(err_m < .5)$ {
- Fit the base classifier to the training data weighted by w_i . This results in the m^{th} round classifier $f_m(x)$.

$$- \text{Compute } err_m = \sum_i w_i e_{mi} / \sum_i w_i \\ \left(e_{mi} = 1 \text{ if } \operatorname{sign}[y_i] \neq \operatorname{sign}[f_m(x_i)] \right) \\ - \operatorname{Set } \alpha_m = \frac{1}{2} \log[(1 - err_m) / err_m] \\ - \operatorname{Set } w_i \leftarrow w_i \exp[2\alpha_m e_{mi}] \\ - m \leftarrow m + 1 \\ \}$$

• Final classifier:

$$f_{boost}(x) = \text{sign}\left[\sum_{m} \alpha_m f_m(x)\right]$$

FORWARD STAGEWISE ADDITIVE MODELING

• Recall the additive model setup:

$$f_{add}(x) = \sum_{m} \alpha_m f_m(x; \theta_m)$$

- The overall function is a weighted sum of simpler functions, each with their own set of parameters.
- e.g.: hidden units in a MLP, wavelets, nodes in trees
- The optimization problem of finding the best $\{\alpha\}$ and $\{\theta\}$ simultaneously is usually extremely hard.
- But we can use a greedy approximation:
- $$\begin{split} &-\text{Initialize } f_0 = 0. \\ &-\text{for } m = 1: M \qquad \{ \\ &\text{set } \alpha_m, \theta_m = \arg\min_{\alpha,\theta} \sum_{i=1}^N \text{cost}[y_i, f_{m-1}(x_i) + \alpha f(x_i; \theta)] \\ &\text{set } f_m(x) = f_{m-1}(x) + \alpha_m f(x; \theta_m) \end{split}$$

Some Intuitions about Boosting

- At each round, boosting reweights the examples it is doing poorly on more highly.
- The weight each intermediate classifier gets in the final ensemble depends on the error rate it achieved on its weighted training set at the time it was created.
- The reweighting over observations selected by boosting at each round is such that the existing ensemble would perform at chance.

BOOSTING AS FORWARD ADDITIVE MODELING

• At each round of boosting we must minimize:

$$C = \sum_{i=1}^{N} \exp[-y_i(f_{m-1}(x_i) + \alpha_m f(x_i; \theta_m))]$$
$$= \sum_{i=1}^{N} w_i^m \exp[-\alpha_m y_i f(x_i; \theta_m)]$$

with respect to α_m and θ_m , where $w_i^m = \exp(-y_i f_{m-1}(x_i))$.

• The optimal function and weight are given by:

$$err_m = \sum_{i=1}^{N} w_i^m [y_i \neq f(x_i; \theta_m)] / \sum_i w_i^m$$

$$\theta_m^*(x) = \arg\min_{\theta} err_m$$

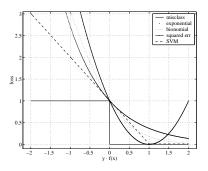
$$\alpha_m^* = \frac{1}{2} \log \frac{1 - err_m}{err_m}$$

BOOSTING TRIES TO MINIMIZE EXPONENTIAL LOSS

 An amazing fact, which helps a lot to understand how boosting really works, is that classification boosting is equivalent to fitting a greedy forward additive model using the following cost function:

$$cost[y, f(x)] = exp(-yf(x))$$

• This is called *exponential loss* and it is very similar to other kinds of loss, e.g. classification loss.



UPDATING THE OBSERVATION WEIGHTS

• Finally, we update our approximation to get

$$f_m(x) = f_{m-1}(x) + \alpha_m^* f(x; \theta_m^*)$$

• This sets the new weights:

$$w_i^{m+1} = w_i^m \exp[-\alpha_m y_i f(x_i; \theta_m^*)]$$

$$= w_i^m \exp[\alpha_m (2e_{mi} - 1)]$$

$$= w_i^m \exp[2\alpha_m e_{mi}] \exp[-\alpha_m]$$

where the last factor of $\exp[-\alpha_m]$ just rescales all the weights uniformly, so we can drop it.

More on Exponential Loss

- Exponential loss is very similar to other classification losses.
- \bullet It is minimized by setting f(x) to one half the log-odds:

$$f^*(x) = \frac{1}{2} \frac{Prob[y = 1|x]}{Prob[y = -1|x]}$$

which means we can interpret f(x) as the logit transform.

• Another loss function with the same population minimizer is the binomial negative log-likelihood:

$$-\log(1+\exp(-2yf(x)))$$

• But binomial loss places less emphasis on the bad cases (high negative margin), and so it is more robust when data is noisy.

