
Lecture 12:

Meta-Learning Methods

Sam Roweis

November 25, 2003

Meta-Learning

• The idea of meta-learning is to come up with some procedure for
taking a learning algorithm and a fixed training set, and somehow
repeatedly applying the algorithm to different subsets (weightings)
of the training set or using different random choices within the
algorithm in order to get a large ensemble of machines.

• The machines in the ensemble are then combined in some way to
define the final output of the learning algorithm (e.g. classifier)

• The hope of meta-learning is that it can “supercharge” a mediocre
learning algorithm into an excellent learning algorithm, without the
need for any new ideas!

• There is, as always, good news and bad news....

– The Bad News: there is (quite technically) No Free Lunch.

– The Good News: for many real world datasets, meta learning
works very well.

Meta-Learning Cafeteria

•Many meta-learning methods that work well in practice.

•We will review the three main ones:

– Bagging: apply your algorithm to bootstrap datasets and average
the predictions of the resulting ensemble.

– Stacking: define a set of models by restricting the input to
subsets of various sizes. Use LOO-CV to choose weights which
blend these models.

– Boosting: iteratively reweight your dataset, placing higher
weights on the examples you are getting wrong. At each
iteration, refit and add the result to your ensemble.

Why does Meta-Learning Work?

• Either reduces variance substantially without affecting bias
(bagging, stacking), or vice versa (boosting).

• All meta-learning is based on one of two observations:
A) Variance Reduction: If we had completely independent training

sets it always helps to average together an ensemble of learners
because this reduces variance without changing bias.
B) Bias Reduction: For many simple models, a weighted average of
models has much greater capacity than a single model (e.g.
hyperplane classifiers, single-layer networks, Gaussian densities). So
averaging models can often reduce bias substantially by increasing
capacity.

Variance Reduction by Averaging

• Here is an example of how to show that averaging across
independent training sets always reduces expected squared error:

¯err1 =
∑

x,y

p(x, y) (y − f (x|ts1))
2

¯err = 〈〈
[

y2 − 2yf (x|ts) + f2(x|ts)
]

〉x,y〉ts = 〈 ¯err1〉ts

fmeta(xtest) =
1

T

∑

i

f (xtest|tsi) = 〈f (xtest|ts)〉ts

¯errmeta =
∑

x,y

p(x, y)(y − 〈f (x|ts)〉ts)
2

= 〈
[

y2 − 2y〈f (x|ts)〉ts + (〈f (x|ts)〉ts)
2
]

〉x,y

≤ 〈
[

y2 − 2y〈f (x|ts)〉ts + 〈f2(x|ts)〉ts

]

〉x,y

≤ ¯err since 〈f〉2 ≤ 〈f2〉

Bagging (Breiman 1994)

• Bagging ≡ bootstrap aggregation.

• Idea is simple. Generate B bootstrap samples from your original
training set. Train on each one to get fb. Now average them:

fbag =
1

B

∑

b

fb

• For regression, average predictions, for classification, average class
probabilities or take the majority vote if only hard outputs available.

• Bagging approximates the Bayesian posterior mean. The more
bootstraps you use, the better, so use as many as you have time for.

• The size of each bootstrap sample is equal to the size of the
original training set, but they are drawn with replacement, so each
one contains some duplicates of certain training points and leaves
out other training points completely.

Bagging Can Hurt

• Bagging helps when a learning algorithm is good on average but
unstable with respect to the training set.

• But if we bag a stable learning algorithm, we can actually make it
worse. For example, if we have a Bayes optimal algorithm, and we
bag it, we might leave out some training samples in every bootstrap,
and so the optimal algorithm will never be able to see them.

• Bagging almost always helps with regression, but even with
unstable learners it can hurt in classification. If we bag a poor
unstable classifier we can make it horrible.

• Example: true class = A for all inputs.
Our learner guesses class A with probability 0.4 and class B with
probability 0.6 regardless of the input. (Very unstable!).
It has error 0.6.
But if we bag it, it will have error 1.

Stacking (Wolpert 1990)

• In bagging, we created an ensemble of models by creating many
synthetic training sets using the bootstrap.

•We can also create an ensemble of models in other ways, e.g. by
restricting each model to look at only a subset of inputs, by trying
the whole “kitchen sink” of regressors or classifiers (e.g. neural nets
vs. logistic regression vs. naive bayes vs. KNN).

• In stacked generalization or stacking we try to find the best
nonuniform weights to average our models together:

fstack(x) =
∑

m

wmfm(x)

• How should we set the weights? Using training error of each model?
No! This will put too much weight on the most complex models.

Setting the Stacking Weights

•We estimate the optimal weights by setting them to minimize the
average leave-one-out cross validation error:

w∗m = arg min
w

N
∑

i=1

[

yi −
∑

m

wmf−i
m (xi)

]2

where f−i
m is the result of model m trained on all points except i.

• These weights can be found exactly using linear regression.

• This is like a generalization of model selection using LOO-CV.
Previously we picked the best model and set wmbest = 1 and all
other wm = 0. Now we are doing a smooth weighting.

• In more advanced stacking ideas, we can combine the models
nonlinearly and use weights which depend on the input x. This is
like a mixture of experts where we fit the gate using cross-validated
training points instead of the usual training set.

Boosting (Shapire 1990)

• Probably one of the three most influential ideas in machine learning
in the last decade, along with Kernel methods and Variational
approximations.

• In the PAC framework, boosting is a way of converting a “weak”
learning model (behaves slightly better than chance) into a
“strong” learning mode (behaves arbitrarily close to perfect).

• Very amazing theoretical result, but also lead to a very powerful
and practical algorithm which is used all the time in real world
machine learning.

• Basic idea, for binary classification with y = ±1.

fboost(x) = sign

[

∑

m

αmfm(x)

]

where fm(x) are models trained with reweighted datasets Dm, and
the weights αm are non-negative.

AdaBoost Algorithm

• Set initial observation weights wi = 1/N .

• Loop while (errm < .5) {

– Fit the base classifier to the training data weighted by wi.
This results in the mth round classifier fm(x).

– Compute errm =
∑

i wiemi/
∑

i wi
(emi = 1 if sign[yi] 6=sign[fm(xi)])

– Set αm = 1
2 log[(1− errm)/errm]

– Set wi← wi exp[2αmemi]

– m← m + 1
}

• Final classifier:

fboost(x) = sign

[

∑

m

αmfm(x)

]

Forward Stagewise Additive Modeling

• Recall the additive model setup:

fadd(x) =
∑

m

αmfm(x; θm)

• The overall function is a weighted sum of simpler functions, each
with their own set of parameters.
e.g.: hidden units in a MLP, wavelets, nodes in trees

• The optimization problem of finding the best {α} and {θ}
simultaneously is usually extremely hard.

• But we can use a greedy approximation:

– Initialize f0 = 0.

– for m = 1 : M {

set αm, θm = arg minα,θ
∑N

i=1 cost[yi, fm−1(xi) + αf (xi; θ)]
set fm(x) = fm−1(x) + αmf (x; θm)
}

Some Intuitions about Boosting

• At each round, boosting reweights the examples it is doing poorly
on more highly.

• The weight each intermediate classifier gets in the final ensemble
depends on the error rate it achieved on its weighted training set at
the time it was created.

• The reweighting over observations selected by boosting at each
round is such that the existing ensemble would perform at chance.

Boosting tries to minimize Exponential Loss

• An amazing fact, which helps a lot to understand how boosting
really works, is that classification boosting is equivalent to fitting a
greedy forward additive model using the following cost function:

cost[y, f (x)] = exp(−yf (x))

• This is called exponential loss and it is very similar to other kinds of
loss, e.g. classification loss.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

y ⋅ f(x)

lo
ss

misclass
exponential
bionomial
squared err
SVM

Boosting as Forward Additive Modeling

• At each round of boosting we must minimize:

C =

N
∑

i=1

exp[−yi(fm−1(xi) + αmf (xi; θm))]

=

N
∑

i=1

wm
i exp[−αmyif (xi; θm)]

with respect to αm and θm, where wm
i = exp(−yifm−1(xi)).

• The optimal function and weight are given by:

errm =

N
∑

i=1

wm
i [yi 6= f (xi; θm)]/

∑

i

wm
i

θ∗m(x) = arg min
θ

errm

α∗m =
1

2
log

1− errm

errm

Updating the observation weights

• Finally, we update our approximation to get

fm(x) = fm−1(x) + α∗mf (x; θ∗m)

• This sets the new weights:

wm+1
i = wm

i exp[−αmyif (xi; θ
∗
m)]

= wm
i exp[αm(2emi − 1)]

= wm
i exp[2αmemi] exp[−αm]

where the last factor of exp[−αm] just rescales all the weights
uniformly, so we can drop it.

More on Exponential Loss

• Exponential loss is very similar to other classification losses.

• It is minimized by setting f (x) to one half the log-odds:

f∗(x) =
1

2

Prob[y = 1|x]

Prob[y = −1|x]

which means we can interpret f (x) as the logit transform.

• Another loss function with the same population minimizer is the
binomial negative log-likelihood:

− log(1 + exp(−2yf (x)))

• But binomial loss places less emphasis on the bad cases (high
negative margin), and so it is more robust when data is noisy.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

y ⋅ f(x)

lo
ss

misclass
exponential
bionomial
squared err
SVM

