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Abstract. This paper presents the first formal verification of the Ricart-
Agrawala algorithm [RA81] for distributed mutual exclusion of an arbi-
trary number of nodes. It uses the Temporal Methodology of [MP95a].
We establish both the safety property of mutual exclusion and the live-
ness property of accessibility . To establish these properties for an arbi-
trary number of nodes, parameterized proof rules are used as presented
in [MP95a] (for safety) and [MP94] (for liveness). A new and efficient
notation is introduced to facilitate the presentation of liveness proofs by
verification diagrams.
The proofs were carried out using the Stanford Temporal Prover (STeP)
[BBC+95], a software package that supports formal verification of tem-
poral specifications of concurrent and reactive systems.

1 Introduction

The Ricart-Agrawala algorithm (RA) [RA81] for achieving mutual exclusion
in a network is one of the venerable and well-known algorithms in distributed
computing. Nevertheless, the correctness of the algorithm has not been formally
verified.

The only previous attempt to formally prove the RA algorithm is the un-
published work [Kam95], but it is restricted to the safety property of mutual
exclusion and uses a simplified model. On the other hand, already [Lamp82]
presented a non-mechanized proof of a similar algorithm.

The main motivation for this work was to attempt a fully mechanized formal
deductive proof of the RA algorithm, establishing both its safety and liveness
properties, and using the deductive methods of [MP91].

These methods have been mechanized in a software package called the Stan-
ford Temporal Prover (STeP) [BBC+95]. A further motivation of this work
was to push STeP to its limits, and see whether it could be used to prove an
algorithm whose correctness proofs are quite complex.
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We successfully generated formal proofs of both mutual exclusion and acces-
sibility using STeP. This research points the way for further improvements both
in proof techniques and in software support for deductive verification methods.

2 Implementation of the Ricart-Agrawala Algorithm

To verify the RA algorithm, we have written it in a formal programming nota-
tion, the language SPL which is used in [MP91] as the programming language
(Figure 1).

in N : integer where N ≥ 2
local chq , chp : array [1..N, 1..N ] of channel [1..] of integer

where chq = Λ, chp = Λ
y, z : [1..N ] where y=1

type Nar = array [1..N ] of integer
Bar = array [1..N ] of boolean

value mini : Nar × Bar → [1..N ]

N

||
s=1

Node[s] ::



local osn, hsn, p, c : integer where osn = 0, hsn = 0, c = 0, p = 1
rcs : boolean where rcs = F
rd : array [1..N ] of boolean where rd = F

M ::



loop forever do

m1 : noncritical
m2 : 〈rcs := T ;osn := hsn + 1; c := N-1; p := 1;

y := mini(osn , rcs)〉
m31 : while p ≤ N do
m32 : 〈if p �= s then chq [s, p] ⇐ osn; p := p + 1〉
m4 : await c=0
m5 : critical
m6 : 〈rcs := F ; p := 1; y := mini(osn , rcs)〉

m71 : while p ≤ N do
m72 : 〈if rd [p] then [rd [p] := F ; chp[s, p] ⇐ 1]; p := p + 1〉




||

Q ::
N

||
t=1


local rq : integer

loop forever do

q1 :

〈 chq [t, s] ⇒ rq
if hsn < rq then hsn := rq
if (rq , t) ≺ (osn, s) ∨ ¬rcs

then chp[s, t] ⇐ 1 else rd [t] := T

〉


||

P ::
N

||
u=1

[
local rp : integer

loop forever do
r1 : 〈chp[u, s] ⇒ rp; c := c − 1〉

]



Fig. 1. Implementation of the RA algorithm.
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The structure of the program is as follows: we assume that there are N nodes,
where N is a parameter of the program which stays fixed during execution. Each
node is a concurrent process: in the notation Node[s] :: [. . .], the ellipsis indicates
the program text for the s’th node and s is the index of the node which may be

referenced within the program text. The entire program is
N

||
s=1

Node[s], implying

a concurrent execution of all the nodes.
The nodes are connected to each other in a complete graph: there is a pair

of uni-directional asynchronous channels connecting each node to every other
node, where chq is the outgoing channel for the REQUEST messages and chp
is the incoming channel for the REPLY messages. The notation for output is
chq [a, b] ⇐ e, meaning that node a sends the value of expression e to node b
along channel chq , and similarly, chq [a, b] ⇒ x, means that node b removes the
value coming from a and assigns it to x.

The additional global declarations are discussed below.
The program for process Node is composed of three concurrent processes:

– M is the main process containing the critical section and the protocols to
be executed upon entry and exit.

– P is the process which receives and counts replies.
– Q is the process which receives requests and decides if to reply or to defer

the reply.

Note that P andQ are themselves composed of concurrent processes, one for each
channel. Within Node[s], process Q[t] (which can also be identified as Q[t, s]) is
responsible for reading messages from channel chq [t, s]. Similarly, process P [u]
(P [u, s]) is responsible for reading messages from channel chp[u, s]. The synchro-
nization among the processes within the same node is based on shared variables,
and we use the notation < . . . >, to imply that the statements are to be executed
atomically. This can be easily implemented using semaphores. We include the
assignments c := N-1 and p := 1 within the atomic statement of line m2, and
p := 1 within line m6, to reduce the number of verification conditions in the
proof of accessibility.

Within each node there are global variables which are shared among the
processes of that node:

– osn - the sequence number chosen by the node.
– hsn - the highest sequence number seen in any request message received by

the node.
– rcs - a flag that is true if the node is requesting to enter the critical section.
– c - a counter of the number of outstanding reply messages.
– rd - an array that lists deferred requests. rd [j] is true when the node is

deferring a reply to the request from node j.
– p, rp, rq are auxiliary variables and could have been declared as local to the

processes of the node.
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The following variables are not needed by the algorithm; they were added to
facilitate the proof.

– z is the index of a generic node, which is used to specify and verify accessi-
bility.

– y is the index of the node with the minimal value of the rank (osn[i], i),
where the minimum is taken over all nodes i such that rcs[i] is true. If rcs [i]
are all false, y = 1.

– mini(osn, rcs) is a function that computes y, the index of the node with the
minimal rank.

3 Proof of the Mutual Exclusion Property

Invariance properties of the form 0 p, where p is an assertion (a state formula)
can be verified by the invariance rule b-inv, given by

Rule b-inv I1. Θ → ϕ
I2. ϕ ∧ ρτ → ϕ′ For every transition τ ∈ T

0 p

where Θ is the initial condition and T is the set of transitions of the verified sys-
tem. An assertion satisfying premises I1 and I2 of rule b-inv is called inductive.

In our case, the main invariance property is that of Mutual exclusion , which
can be specified as

PROPERTY excl: 0 ∀i, j : [1..N ] : m5[i] ∧m5[j] → i = j

Here and below, we use m5[i] to denote that processM [i] is currently executing
at location m5.

3.1 Bottom Up Assertions

At first we use a bottom-up approach to deduce some simple properties of the
program.

Locations at which rcs = 1 A first observed property is

PROPERTY rcs range: 0 (m31,32,4,5,6[i] ↔ rcs [i]).

Note, that whenever there is a free index, such as i in the above property, there
is an implicit universal quantification, implying that the property holds for every
i ∈ [1..N ].

Range of p[i] The variable p serves as a loop counter for the loops at
statements m31 and m71. The upper limit of these two loops is N .

PROPERTY p range: 0 (1 ≤ p[i] ≤ N + 1−m32,72[i])
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This inductive assertion claims that p[i] ≤ N + 1 at all locations, except for
locations m32 and m72, where the stronger inequality p[i] ≤ N holds.

The Message Chain Linkage

PROPERTY message chain:
0 ((m31,32[i] ∧ p[i] > j) +m4[i] ≥ |chq [i, j]|+ rd [j, i] + |chp[j, i]|)

Here, |chq [i, j]| and |chp[j, i]| denote the sizes of the buffers of these asynchronous
channels. This property states that the sum |chq [i, j]|+ rd [j, i] + |chp[j, i]| never
exceeds 1, and can be positive only if processM [i] is at locationm4 or at locations
m31,32 with p[i] > j.

The Reply Counter The role of the counter c[i] is to count the number of
positive replies Node[i] received since it last sent out requests for entering the
critical section. We would expect that, at any point, the value of c[i] will equal
the number of pending replies. This is stated by

PROPERTY c range: 0 (c[i] =
N∑

k=1

|chq [i, k]|+ rd [k, i] + |chp[k, i]|) +m31,32[i] · (N − p[i] + (p[i] > i))

Neither of properties message chain or c range is inductive by itself. How-
ever, their conjunction, to which we refer as msg range coun- ter, together
with the previously established property p range form an inductive assertion.

The Value of a Request Message As the last bottom-up invariant, we
formulate the following property:

PROPERTY request in channel:
0 (|chq [i, j]| > 0 → head(chq [i, j]) = osn[i])

This property states that if channel chq [i, j] is not empty, then the value it
contains is the current value of osn[i].

3.2 Top Down Assertions

We now move to a set of assertions which are derived based on the goal we wish
to prove, namely the property of mutual exclusion.

We start by introducing some definitions:

requested(i, j) : i �= j ∧ (m4,5[i] ∨ (m31,32[i] ∧ p[i] > j))
request received(i, j) : requested(i, j) ∧ |chq [i, j]| = 0
granted(i, j) : request received(i, j) ∧ ¬rd [j, i]
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Variable hsn Retains the Highest Message Number Seen So Far
The following property states that, after having read the recent message from
Node[i], the variable hsn [j] (“highest seen”) has a value which is not lower than
osn[i].

PROPERTY hsn highest:
0 (request received(i, j) → osn[i] ≤ hsn [j])

The Implication of Node[j] Granting Permission to Node[i] The
following property describes the implications of a situation in which Node[j] has
granted an entry permission to Node[i] before Node[i] exited its critical section:

PROPERTY permitted:
0 (granted(i, j) → ¬rcs [j] ∨ (osn [i], i) ≺ (osn [j], j))

Finally, Mutual Exclusion Finally, we establish the property of mutual ex-
clusion, specified by

PROPERTY excl: 0 (m5[i] ∧ m5[j] → i = j)

Fig. 2. Set of inductive properties leading to the proof of Mutual Exclusion. The
labels on the dependence edges identify the transitions for which the verification
of the higher placed property depends on the lower property.
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4 A Proof Rule for Accessibility

Rule p-well For assertions p and q = ϕ0, ϕ1[k], . . . , ϕm[k],
transitions τ1[k], ..., τm[k] ∈ J
a well-founded domain (A,�), and
ranking functions δ0, δ1[k], . . . , δm[k] : Σ �→ A

W1. p →
m∨

j=0

∃k : ϕj[k]

For i = 1..m

W2. ρτ [k] ∧ ϕi[k] →
m∨

j=0

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u]) ∨ (ϕ′

i[k] ∧ δi[k] = δ′i[k])

for every τ ∈ T

W3. ρτ i
[k] ∧ ϕi[k] →

m∨
j=0

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u])

W4. ϕi[k] → En(τ i[k])
p =⇒ 1 q

To verify liveness properties of parameterized programs, we can use a fixed
number of intermediate formulas and helpful transitions but they may refer to
an additional parameter k which is a process index. A parameterized rule for
proving accessibility properties of parameterized systems has been presented in
[MP95b]. However, to verify a complicated system such as the RA algorithm, it
was necessary to introduce a new version of this rule, which we present here.

To improve readability of formulas, we write ρτ i[k] as ρτi
[k]. Rule p-well uses

parameterized intermediate assertion, parameterized helpful transitions, and pa-
rameterized ranking functions. For each i = 1, ...m, the parameter k in ϕi[k],
τ i[k], and δi[k] ranges over some nonempty set, such as [1..N ].

The rule traces the progress of computations from an arbitrary p-state to
an unavoidable q-state. With each non-terminal assertion ϕi, i > 0, the rule
associates a helpful transition τ i, such that the system is just (weakly fair) with
respect to τ i. Premise W2 requires that the application of any transition τ to
a state satisfying a non-terminal assertion ϕi will never cause the rank of the
state to increase. Premise W3 requires that if the applied transition is helpful
for ϕi then the rank must decrease. Due to the well-foundedness of the ranking
functions, we cannot have an infinite chain of helpful transitions, since this will
cause the rank to decrease infinitely often. PremiseW4 stipulates that the helpful
transition τ i is always enabled on every ϕi-state. Thus, we cannot have an infinite
computation (which must be fair) which avoids reaching a q = ϕ0 state.

4.1 Representation by Diagrams

The paper [MP94], introduced the graphical notation of verification diagrams .
For our application here, verification diagrams can be viewed as a concise and
optimized presentation of the components appearing in rule p-well. We refer the
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reader to Figure 3 for explanation of some of the main elements which typically
appear in such diagrams.

The diagram contains a node for each assertion ϕi that appears in the rule.
The helpful transition taui associated with ϕi is identified by the label of one
or more directed edges departing from the node (labeled by) ϕi. Thus, in the
diagram of Figure 3, m2[z] is identified as the transition helpful for assertion
ϕ13, and the helpful transition for ϕ10 is q1[z, i] even though it labels two edges
departing from ϕ13.

The interconnection topology in the diagram provides a more specialized
(and efficient) version of the p-well rule. For a node ϕi, let succ(i) be the set
of indices of the nodes which are the targets of edges departing for ϕi. Then the
diagram suggests that, instead of proving premises W2 and W3 as they appear
in the rule, it is sufficient to prove their following stronger versions:

U2. ρτ [k] ∧ ϕi[k] → ϕ′
i[k] ∧ δi[k] = δ′i[k] for every τ ∈ T

U3. ρτ i
[k] ∧ ϕi[k] →

∨
j∈succ(i)

∃u : (ϕ′
j [u] ∧ δi[k] � δ′j [u])

It is not difficult to see that U2 and U3 imply W2 and W3. For example,
premise U3 for assertion ϕ6 as implied by the diagram is

ϕ6[i] ∧ ρm72
[i] → (ϕ′

7[i] ∧ δ6[i] � δ′7[i]) ∨ (ϕ′
4[i] ∧ δ6[i] � δ′4[i])

The more general notion of verification diagrams as presented in [MP94] admits
two types of edges, one corresponding to the helpful transitions, which are the
edges present in our diagram. The other type corresponds to unhelpful transi-
tions. It is suggested there to use a double line for helpful edges. In our case, we
only need to represent helpful transitions, so we draw them as single lines.

The rule also requires to associate with each non-terminal assertion ϕi a
ranking function δi. By convention, whenever a ranking function is not explicitly
defined within a node ϕi, the default value is the index of the node, i.e. δi = i.
For example, in the diagram, δ13 = 13. However, as we will see below, this is not
the end of the story.

4.2 Encapsulation Conventions

The diagram of Figure 3 contains, in addition to basic nodes such as those la-
beled by assertions, also compound nodes which are also called blocks . We may
refer to compound nodes by the set of basic nodes they contain. For exam-
ple, the successor of node ϕ13 is the compound node ϕ31,32. Compound nodes
may be annotated by λ-declarations, such as the compound node ϕ4..7, by addi-
tional assertions, such as m4[y] for block ϕ3..7, or ranking components, such as
(6,−p[i]) for block ϕ6,7. There are several encapsulation conventions associated
with compound nodes.

– An edge stopping at the boundary of a block, is equivalent to individual
edges which reach the basic nodes contained in the block. Thus, both ϕ11

and ϕ12 are immediate successors of node ϕ13.
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– For each basic node ϕi, the full assertion associated with this node is the
conjunction of all the assertions labeling the blocks in which the basic node
is contained. We denote this full assertion by ϕ̂i. For example,

ϕ̂7 = m4[z] ∧ (∀j : |chq[z, j]| = 0) ∧ m4[y] ∧ rd [i, y] ∧ m71[i]

– For each basic node ϕi, the full ranking function associated with this node
is the left-to-right concatenation of all the ranking components labeling the
blocks in which the basic node is contained. As the rightmost component,
we add i. For example,

δ7 = (1,−osn[y],−y, 4, c[y], 6,−p[i], 7)

In Figure 3 we present the full ranking functions for each of the nodes along-
side the diagram.

Note that whenever we have to compare ranking functions which are lexico-
graphic tuples of different lengths, we add zeroes to the right of the shorter one.
For example, to see that δ13 � δ12, we confirm that (13, 0, 0) � (11,−p[z], 12).

Note also that several components of the ranking functions are negative.
When STeP is presented with any ranking function, one of the proof obliga-
tions which are generated require proving that all components are bounded from
below. This has been done for all the components present in the diagram.

5 Proof of Accessibility Property

The property of accessibility may be written in the form

PROPERTY m2m5: m2[z] ⇒ 1 m5[z]

where z ∈ [1..N ].

5.1 Auxiliary Assertions Needed for the Proof

A crucial part in the proof is the computation of the index of the process y with
minimal signature. We define

ismin(osn , rcs, y) :
 y = 1 ∧ ∀j : ¬rcs [j]

∨ rcs [y] ∧ ∀j : (rcs [j] → (osn [y], y) ≺ (osn [j], j))


Thus, y has a minimal signature, if either there is no process j with rcs [j]

and then y = 1, or there exists some j with rcs[j] = 1 and y is such a j with the
minimal signature. In fact, rather then defining the function mini explicitly, we
inform STeP of the following axiom:

AXIOM mini: ismin(osn, rcs ,mini(osn , rcs)).
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There were several auxiliary assertions whose invariance was necessary in order
to establish the proof obligations generated by STeP, when being presented by
the verification diagram of Figure 3. We list them below:

rd osn : rd [i, j] → (osn [i], i) ≺ (osn [j], j)
not rd range : m1,2[i] ∨ (m71,72[i] ∧ p[i] > j) → ¬rd [i, j]
y eq mini : y = mini(osn, rcs)
y is min : ismin(osn , rcs , y)
rd to y : rd [i, y] → m71,72[i] ∧ p[i] ≤ y
y not change : (∀j : |chq [z, j]| = 0) ∧m4[z] ∧m2[s] →

(osn [y], y) ≺ (hsn [s] + 1, s)

The last property y not change is very crucial in order to establish that y
can stop being minimal only by retiring on exit from m6[y]. In particular, no
newcomer s can execute transition m2[s] and become minimal.

Fig. 3. Verification Diagram for the property m2[z] ⇒ 1 m5[z].
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5.2 Usage of STeP in the Proof

We used STeP version 1.4 from 2/XI/1999 in our proof. Some modifications
of the source program were necessary in order for STeP to accept our SPL
program. This version of STeP also fails to support lambda-blocks in the way
there were used in Figure 3. To overcome this difficulty, we had to feed STeP
with some processed fragments of this diagram and then modify manually some
of the resulting verification conditions. We hope that future versions of STeP
will provide direct support of lambda-blocks.

In spite of these minor inconveniences, we found STeP to be a very powerful
and useful verification system, specially geared to the temporal verification of
complex algorithms such as the Ricart Agrawala algorithm we considered here.
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