Finite Instantiations in Equivalence Logic with
Uninterpreted Functions

Amir Pnueli', Yoav Rodeh!2, and Ofer Shtrichman'>?

! Weizmann Institute of Science, Rehovot, Israel
2 IBM Haifa Research Laboratory

amir | yrodeh | ofers}@uwisdom.weizmann.ac.il
¥

Abstract. We introduce a decision procedure for satisfiability of equiv-
alence logic formulas with uninterpreted functions and predicates. In a
previous work ([PRSS98]) we presented a decision procedure for this
problem which starts by reducing the formula to a formula in equality
logic. As a second step, the formula structure was analyzed in order to
derive a small range of values for each variable that is sufficient for pre-
serving the formula’s satisfiability. Then, a standard BDD based tool
was used in order to check the formula under the new small domain. In
this paper we change the reduction method and perform a more careful
analysis of the formula, which results in significantly smaller domains.
Both theoretical and experimental results show that the new method is
superior to the previous one and to other methods that were suggested
in the last few years.

1 Introduction

Deciding equivalence between formulas with uninterpreted functions is of major
importance due to the broad use of uninterpreted functions in abstraction. Such
abstraction can be used, for example, when checking a control property of a
microprocessor, and it is sufficient to specify that the operations which the ALU
perform are functions, rather than specifying what these operations are. Thus,
by representing the ALU as an uninterpreted function, the verification process
avoids the complexity of the ALU. This is the approach taken, for example, in
[BD94], where a formula with uninterpreted functions is generated, such that its
validity implies the equivalence between the CPU checked and another version
of it, without a pipeline. Another example is given in [PSS98], where formulas
with uninterpreted functions are used for translation wvalidation, a process in
which the correct translation of a compiler is verified by proving the equivalence
between the source and target codes after each run.

In the past few years several different procedures for checking satisfiability of
such formulas have been suggested. Typically the first step of these procedures
is the reduction of the original formula ¢ into a formula in equivalence logic ¥
such that v is satisfiable iff ¢ is. This can be performed, for example, by us-
ing the Ackermann’s reduction scheme [Ack54]. Ackermann suggested replacing
each uninterpreted function instance with a new variable, and for every pair of

function instances add a constraint to ¢ that enforces functional consistency: if
the arguments of the two function instances are equal, then the variables that
replaced them are also equal. For example the formula ¢ : f(x) # f(y) is re-
duced to the equality formula ¢ : (x =y — f1 = f2) A f1 # f2. As a second
step, different procedures can be used for checking .

Goel et at. suggest in [GSZAS98] to replace all comparisons in ¢ with new
Boolean variables, and thus create a new Boolean formula ¢’. The BDD of 4’ is
calculated ignoring the transitivity constraints of comparisons. They then tra-
verse the BDD, searching for a satisfying assignment that will also satisfy these
constraints. Bryant et al. at [BV00] suggested to avoid this potentially exponen-
tial traversing algorithm by explicitly computing a small set of constraints that
are sufficient for preserving the transitivity constraints of equality. By checking
9’ conjuncted with these constraints with a regular BDD package they were able
to verify larger designs.

In [PRSS98] we suggested a method in which the Ackermann reduction
scheme is used to derive 1, and then ’s satisfiability is decided by assigning
a small domain for each variable, such that v is satisfiable if and only if it is
satisfiable under this small domain. To find this domain, the equalities in the
formula are represented as a graph, where the nodes are the variables and the
edges are the equalities and disequalities (disequality standing for #) in 9. Given
this graph, a heuristic called range allocation is used in order to compute a small
set of values for each variable. To complete the process, a standard BDD based
tool is used to check satisfiability of the formula under the computed domain.
In [PRSO01] we introduce new methods for range allocation given such graphs.

While both [PRSS98] and [GSZAS98] methods can be applied to any equality
formula, Bryant et al. suggest in [BGV99] to examine the structure of the original
formula . They prove that if the original formula ¢ uses comparisons between
variables and functions only in a certain syntactically restricted way (called
positive equality), the domain of the reduced formula can be restricted to a
unique single constant for each variable. However, this result cannot be obtained
using Ackermann’s reduction. Rather they use a different reduction method as
proposed in [BV98]. In section 2.2 we will describe in more detail the differences
between the two reduction methods.

The method which we propose in this paper roughly uses the framework we
suggested in [PRSS98]. We will use the reduction scheme suggested in [BV98]
(rather than Ackermann’s scheme) in order to generalize their result (in [BGV99])
in the case of positive equality formulas (we will explain this term in the next
section). We also show how this shift, together with a more careful analysis of the
formula structure, allows for a construction of a different graph, which results
in a provably smaller domain. The smaller implied state space is crucial, as our
experiments have shown, for reducing the verification time of these formulas.

In the next section we give basic definitions and concepts. We then describe
a simple version of the graph construction in section 3, and gradually generalize
the analysis in the subsequent sections. Some experimental results are presented
in section 9

2 Preliminaries and Definitions

We define the logic of equality with uninterpreted functions formally. The syntax
of this logic is defined as follows:

(Formula) «— {(Boolean-V ariable)

| (Predicate-Symbol)({Term),...,{Term))
| (Term) = (Term)

| ={Formula)

| (Formula) (Formula)

| IT

E((Formula), {Formula), (Formula))

(Functwn Symbol)((Term),...,(Term))

(Term) «— (Term-Variable)
|
| ITE({(Formula),{Term),(Term))

We refer to formulas in this logic as UF-formulas. We say that a UF-formula
o is valid iff for every interpretation M of the functions and predicates of ¢,
ME .

An equivalence logic formula, denoted as E-formula, is a UF-formula that
does not contain any function and predicate symbols. Throughout the paper we
use ¢ and 9 to denote UF-formulas and E-formulas respectively.

We will assume that formulas may contain internal variables (equivalently,
term-sharing is allowed).

We will first assume that ¢ does not contain Boolean variables and predicates.
In Section 8 we will explain how these are handled.

2.1 Deciding Satisfiability of E-formulas

We wish to check the satisfiability of an E-formula ¢ with term-variable set V. In
theory this implies that we need to check whether there exist some instantiation
of the term-variables of V' that satisfies 9. This is an infinite set of assignments,
but since 1 only queries equalities on the term-variables, it enjoys the small
model property, which means that it is satisfiable if and only if it is satisfiable
under a finite domain. It is not hard to see that the finite domain implied by
letting each variable in V' the range over {1...|V|} is sufficient. However, this
approach is not very practical, since it leads to a state space of [V|V!.

In [PRSS98] we suggested a more refined analysis, where rather than con-
sidering only |V|, we examine the actual structure of 9, i.e. the equalities and
disequalities in 1. This analysis enables the derivation of a state space which
is empirically much smaller than |V|IV]. In this section we repeat the essential
definitions from this work, except for several changes which are necessary for the
new techniques that we will present in later sections.

Definition 1. (E-graphs): An E-graph G is a triplet G = (V, Eq, Nq), where V
is the set of vertices, and Eq (Equality edges) and Nq (Disequality edges) are
sets of unordered pairs of vertices.

Given an E-graph G = (V, Eq, Nq), we denote V(G) = V, Nq¢(G) = Ngq and
Eq(G) = Eq. We use < to denote the dub-graph relation: H < G iff Eq(H) C
Eq(G) and N¢(H) C Eq(G). We will use E-graphs to represent information we
derive from the structure of a given E-formula, and they will therefore serve to
represent a conservative abstraction of E-formulas.

We say that an assignment « satisfies edge (a,b) if (a,b) is an equality edge
((a,b) € Eq(G)) and a(a) = a(b), or if (a, b) is a disequality edge ((a, b) € Ng(G))
and a(a) # a(b). We denote o = G if « satisfies all edges of G. G is said to be
satisfiable if there exists some « such that o |= G.

Construction of E-graph G(%): For an E-formula ¢ we construct the E-graph
G(%) (this is a construction suggested in [PRSS98]).
First rewrite all ITE terms according to the rewrite rule:

[t = ITE(cond, t1,t2)] = [(i At =t1) V (mi At =t3)]

Denote the resulting E-formula 1. Note that in 9’ all atomic propositions are
equalities between term-variables.

We now construct E-graph G(¢), by adding a node to V' for each term-variable
of ¥, and an edge for each equality or disequality of 9.

Obviously the distinction between the two types of edges can not be made
by the plain appearance of their corresponding equalities in %’. The number
of negations that enclose each equality term (the term’s polarity) changes the
effect of satisfying it on the satisfiability of 1)'. We thus distinguish between the
two types of edges by the corresponding polarity of the equalities which they
represent: the edge (a,b) belongs to Eq(G(v)) if there exists a term a = b in
9" with positive polarity (i.e it is enclosed in an even number of negations).
Equalities with negative polarity are put in Ng¢(G(v)). We refer the reader to
[PRSS98] for more details on this issue.

Ezample 1. The E-formula ¢ = (a = b) A (=(c = b) V (a = ¢)), results in the
graph depicted in Figure 1.

Fig. 1. The E-graph of ¢ = (a = b) A (=(c = b) V (a = ¢)). Dashed lines represent the
edges in Eq(G(v)), while solid ones represent the edges in Nq(G(v)).

Definition 2. (strong adequacy of E-graphs to E-formulas): An E-graph G is
strongly adequate for E-formula 1, if for every a such that o |= 9, any B that
satisfies the same edges of G as « does, also satisfies .

We state the following without proof (see [PRSS98]):
Proposition 1. G(1)) is strongly adequate for 1.

Given such an E-graph G(¢), we want to find a small set of assignments R that
will be sufficient for checking 1):

Definition 3. (adequacy of assignment sets to E-graphs): Given an E-graph G,
and R, a set of assignments to V(G), we say that R is adequate for G if for every
satisfiable H < G, there is a € R such that a = H.

Proposition 2. If an E-graph G is strongly adequate for 1, and assignment set
R is adequate for G, then 1 is satisfiable iff there is @ € R such that a = 1.

For example, the following set is adequate for the E-graph of Figure 1:
R={(a=0,=0,c=0),(a=0,b=0,c=1),(a=0,b=1,c=0)}

We say that G |= v if for every assignment « such that a = G, a |= 9. Intuitively,
this means that G contains all the information needed to satisfy .

The requirement of G being strongly adequate for ¥ can be weakened, because
in order to prove proposition we only need one satisfying assignment to be in R.

Definition 4. (adequacy of E-graphs to E-formulas): An E-graph G is adequate
for E-formula 1, if either 1 is not satisfiable, or there exists a satisfiable H < G
such that H = 1.

We then claim:

Proposition 3. If E-graph G is adequate for 1, and assignment set R is ade-
quate for G, then 1 is satisfiable iff there is « € R such that a = 1.

This weaker definition is not used in [PRSS98], but will be needed in this paper.
To demonstrate the difference between the strong and weak versions of adequacy,
we return to the graph appearing in Figure 1: if we remove the edge between ¢
and b, the graph remains adequate for 1, but it is no longer strongly adequate
for it.

We will now rephrase the decision procedure for the satisfiability of UF-
formulas as suggested in [PRSS98] according to the above definitions:

Reduce UF-formula ¢ to an E-formula ¢ using Ackermann’s reduction.
Calculate the E-graph G(v).

Calculate an adequate set of assignments R for G(v)).

Check if any of the assignments in R satisfies 7. (This step is done symbol-
ically, not by exhaustive search of R).

L

In this paper we alter Steps 1 and 2 of this procedure by replacing the reduction
scheme, and by calculating a different adequate E-graph for ¢. We will later
show that these changes guarantee smaller state spaces and thus a more efficient
procedure.

We will show that the replacement of the reduction scheme in Step 1 to the
reduction proposed by [BV98] enabled us to generalize their result on formulas
in the restricted logic of positive equality.

2.2 Reduction Methods

Ackermann’s Reduction Scheme: We will denote the Ackermann reduction
of a UF-formula ¢ to an E-formula ¢ by T4(¢).

Function instances of ¢ are numbered in some arbitrary order. For ', a sub-
formula or sub-term of ¢, we define simp(y') to be the result of replacing in ¢
every function instance F; by a new term-variable f;.

For function instance F; of ¢, define ARG;(F;) to be the term of ¢ corre-
sponding to the [-th argument of F;. Denote by F the set of function symbols
in ¢. T4(¢p) is then defined as follows:

A A (/\ simp(ARG(F;)) = simp(ARG\(Fy)) — fi = fj> A simp(p)

FeF 4,3

Clearly, ¢ is satisfiable iff T4(y) is

Ezample 2. We will use the following UF-formula in the next few sections to
illustrate the different constructions:

o1 := F(F(F(y))) # F(F(y)) A
((y ()))# F(z) A

We will number the function instances arbitrarily, except from the fact that
function instances with syntactically equivalent arguments are given the same

index number:
¢1 = Fa(F3(Fi(y))) # F3(Fi(y)) A

F3(Fi(y)) # Fa(z) A (1)
T = Fi(y)

The resulting T4(¢;) in this case will be:

y=x = fi=fr A

y=hHh = fi=fsA
VIR TR N £ SN Us £) A=)
T=fs = fa=fa A

h=f—=fs=/

Bryant et al. Reduction Scheme: We will denote this type of reduction of
a UF-formula ¢ to an E-formula ¢ by TZ(y).

The numbering of the function instances of ¢ in this scheme is important. It
should respect the natural pre-order < imposed by ¢. For two sub-formulas or
sub-terms ¢’ and " of p, ¢ < ¢" iff ¢' is in the input cone of ¢". For every
two function instances F; and F}, if F; < F; we must have ¢ < j. The indexing
of the functions in Equation 1 respect this requirement.

The reduced formula T2 () is given by replacing the function instance F; in
© by the term F* for all 4:

F = case
N TP(ARG|(F,)) = TP (ARG(F1)) - f;
N TP(ARGI(F)) =TP(ARG(F)) - f;

A TB(ARGI(F,)) = TE(ARGY(Fi1)) : fi1;
1 2 fi

esac

Note that since the numbering of the function instances respects the natural
pre-order of ¢, it is guaranteed that no cyclic definition is possible.

Ezample 3. TB(p,) is given by:
T5(p1) := (Ff # F§) A (F§ # F) A (z = FY)

fi =y

* . L S ?

Fi=h By = {fg Otherwise;
fl F?T =Y fl Fl* =y

Ff = F F?Z - 1';* F} .= {fg = .T:Z
fs F§ =F; fz Otherwise;

fa Otherwise;

A UF-formula ¢ is said to be of positive equality if no equality terms of ¢ are
in the input cone of a function instance, and all equality terms of ¢ appear in
negative polarity'. In [BGV99)] it was shown that given a UF-formula in positive
equality and by using the above reduction, it is possible to check for satisfiability
by assigning each term variable a single unique constant.

3 A Simplified Graph Construction

In this section we describe a simplified construction of E-graphs that are ade-
quate for T4 (), where ¢ is without ITE terms and all function instances have
only one argument. The fact that we consider T4 (y) rather than 75 (y) implies
that we will not be able to generalize the results of [BGV99] yet. In Section 5
we will give the general construction and proof.

! The confusion between ’positive’ equality and 'negative’ polarity is due to the fact
that in [BGV99], where this term was introduced, the analysis referred to validity
checking, rather than satisfiability as in this paper.

3.1 Definitions
Given an E-graph G, we denote:

— u =g v if there is a simple path in G between u and v consisting of equality
edges.

— u <g v if there is a simple path in G between u and v such that one edge in
the path is a disequality edge and all other edges are equality edges.

We have the following simple observations for a satisfiable E-graph G:

— If u g v then G |=u = v (every B |= G satisfies 8(u) = B(v)).

—Huxgvthen GEu#wv

— If u %¢g v (there is no equality edge path between u and v in G) then adding
disequality edge (u,v) to G will leave it satisfiable.

— If u #%¢g v then adding equality edge (u,v) to G will leave it satisfiable.

We denote by arg(F;) the variable corresponding to the argument of F; — the -
th instance of F' in ¢ (excluding, as before, instances with syntactically equivalent
arguments). This means that in case this argument is a function instance G, (and
not simply a term-variable) then arg(F;) is the new term-variable g;.

3.2 Graph Construction
Given a UF-formula ¢ we construct the following E-graph G:

1. The vertices are the term-variables of T4(¢y),

2. Add to G all the edges of G(simp(y)).

3. For every pair of F; and F}, where ¢ < j and arg(F;) ~¢g arg(F;), add the
following edges:
(a) Add (fi, f;) to Ea(9).
(b) If fi <g f; add (arg(F;),arg(Fj)) to Nq(G).
Repeat this process until a fix-point is reached.

4. For every u,v, such that u #g v, add the edge (u,v) to N¢(G). As will be
explained in Section 7, these edges do not affect the resulting state-space,
and we therefore refer to them as ’free edges’.

Ezample 4. We show the graph construction for ;. simp(e1) = ((f4 # f3) A
(fs # f2) A (z = f1)) and the resulting graph after step 2 appears in Figure 2.
The graph after the fix-point is reached in step 3, is depicted in Figure 3.

Notice that our construction has a sort of a cone-of-influence nature, since after
the transformation, the arguments of uninterpreted functions disappear.

It is interesting to compare G to the graph that was constructed in [PRSS98].
In the latter, all edges in T4 () are added to the graph, resulting in the graph
shown in Figure 4. If we ignore the free edges that were added in Step 4 (since
they do not increase the size of the assignment set needed), then we get that
G < G(TB(p)). We notice the following:

Fig. 2. The E-graph for ¢; after step 2. Under the vertex corresponding to function
variable f;, we’ve added arg(F;).

Fig. 3. The E-graph for ¢ after the fix point of step 3 is reached.

Claim. If assignment set R is adequate for E-graph H, then it is adequate for
any E-graph H' such that H' < H.

And therefore the assignment set size that resulting from our procedure should
generally be smaller. We cannot guarantee this because the procedure for finding
an adequate set of assignments for an E-graph may actually give a larger assign-
ment set for a smaller graph, but this should happen only rarely. An adequate
set of assignments for G (Figure 3 plus all free edges) is given, for example, by
the following assignment set:

a(z) =0 a(y)=1 o(fi)€{0,2}
a(f2) =3 a(f1) =5 a(fs) € {3,4}

Thus, we only need to check 4 assignments. On the other hand, we claim (the
proof is not trivial) that any set of assignments that is adequate for the graph
of Figure 4 must be of size at least 16. For example, the following assignment
set is adequate:

a(f1) €{0,1} a(f2) €{0,1} a(fs) =0
a(fs) €{0,1} o(z) € {f1,2} a(y) =3

Notice that one of the values z can get is the value of f;. Therefore, z can range
over {0,1,2}, but this does not mean that the size of the assignment set is 24 (it

10

Fig. 4. The E-graph for ¢, as constructed in , where all equalities are represented
as edges in the graph (note the clique of equality edges between all function variables
(f1, f2, fa, f3), and the clique of disequality edges between all the function arguments
(z,y, f1, f3)). The larger number of edges eventually results in larger domains.

is really 16), because not all combinations of values are possible. For example,
there are no assignments in the set with = 1 and f; = 0. See [PRS01] for more
details on procedures that produce this type of assignment sets.

3.3 Proof of Construction

Theorem 1. The Graph G that is constructed by the above procedure is adequate
for T4(p).

Proof. Assume there is a satisfying assignment a to T4(y) (otherwise G is ade-
quate for T4(y) trivially). We will construct a satisfiable E-graph H < G, such
that H |= T%(p). In other words, we will show that if 3 = H then:

- B | simp(p)
— For all F;, Fj, if B(arg(F;)) = Blarg(Fy)) then B(f:) = B(f;)-

If these two claims are true then 8 = T4 (p), implying H = T4(y).

— Denote by Hy < G the graph of all edges of G that « satisfies.

— Create H; from Hy by successively adding disequality edges from G to H;
while it remains satisfiable.

— Create Hs from H; by successively adding equality edges from G to Ha while
it remains satisfiable.

We define ‘H to be H,. Clearly H is satisfiable and H < G.

If 3 = H, then 8 |= simp(yp) since G(simp(p)) < G, a |= simp(yp), and S
satisfies all edges of G that a does.

It remains to prove that if B(arg(F;)) = B(arg(F;)), then B(f:) = B(f;). We
will prove this by proving that (f;, f;) € Eq(H).

Lemma 1. For 8 |="H:

1. If B(u) = B(v) then u =g v.

11

2. If u g v and (u,v) € Eq(G) then f(u) = B(v).
Proof. If 8 EH:

1. If u %¢g v then the disequality edge (u,v) is in G as a free edge, and will
always be added to H;. Since u %4, v, then B(u) # B(v).

2. The equality edge (u,v) of G will always be added to Hs, implying S(u) =
Bv).

To conclude we prove:

Claim. If B(arg(Fi)) = B(arg(F;)) then (fi, f;) € Eq(H).

Proof. If B(arg(F;)) = B(arg(F;)) then by Lemma 1 (Part 1), we have that
arg(F;) =g arg(Fj;) and therefore (fis fj) € Eq(G). We split to two cases:

— If f; #¢ f; then by Lemma 1 (Part 2), we have 8(f;) = 8(f;)-
- If f; xg f; then (arg(F;),arg(F;)) € Ng(G) by Step 3b of the graph con-
struction procedure.
Since B(arg(F;)) = B(arg(F})), this edge was not taken in H;, meaning
arg(F;) =y, arg(Fj), but then alarg(F;)) = a(arg(F;)) meaning a(f;) =
a(f;) and then (fuf]) € Eq(Ho).
O

4 Assignment Graphs

We now return to work our way towards our main result, a graph construction
for general UF-formulas that will generalize the results of [BGV99] and those of
section 3. For this we must use the reduction method of [BGV99]. We will also
need a new kind of graph — an Assignment graph (A-graph).

Definition 5. (A-graph): An A-graph & is a quadruple & = (V, Eq, Ngq, As),
where V is the set of vertices, Eq and Nq are sets of unordered pairs of vertices
and As (Assignment edges) is a set of ordered pairs of vertices.

Given an A-graph & = (V, Eq, Nq, As), we denote V(8) = V, Nqg(&) = Ny,
Eq(8) = Eq and As(®) = As.

Assignment edges (edges in As(®)) serve as a weak form of equality. We
denote a —¢ b, if there is a directed path (possibly of length 0) of assignment
edges from a to b in &. For assignment o and an A-graph &, we denote o |= &
if for every a —¢ b and ¢ —¢ d:

. If (b,d) € Eq(®), a(a) = a(c).
- 1t (b, d) € Nq(8), afa) # a(c).

12

Note that o = & implies that o satisfies all equality and disequality edges of
& (by setting the paths to be of length 0). For A-graph & denote by flat(®)
the E-graph received by replacing all assignment edges of & by equality edges.
We say that an A-graph & is satisfiable if flat(®) is satisfiable. This is not the
most natural definition, but we will need it for our translation from A-graphs to
E-graphs (Section 2.2)

For an E-formula 9 and a satisfiable A-graph &, we denote & = ¢ if for
every assignment « such that a = & we have a |= 9. The following definitions
are the exact analog of the definitions made for E-graphs:

Definition 6. (adequacy of A-graphs to E-formulas): An A-graph & is adequate
for E-formula 1, if either 1 is not satisfiable, or there exists a satisfiable $H < &
such that § = 1.

Definition 7. (adequacy of assignment sets to A-graphs): Given an A-graph
&, and R, a set of assignments to V (&), we say that R is adequate for & if for
every satisfiable $) < & there is a € R such that o |= §.

The analogous proposition follows:

Proposition 4. If A-graph & is adequate for 1, and assignment set R is ade-
quate for &, then 1 is satisfiable iff there is o € R such that o = 9.

In the following section, given a UF-formula ¢, we will construct an A-graph
& such that & is adequate for T8 (). In section 6 we will show how to create
an E-graph G from &, such that if R is adequate for G it is also adequate for
®. These two procedures combined with a procedure for finding an adequate
assignment set for an E-graph as described in [PRSS98] and [PRS01], give us a
more efficient decision procedure for satisfiability of UF-formulas.

5 Graph Construction

In this section we describe and prove the A-graph construction for general UF-
formulas. Note that we still do not handle predicates and Boolean variables which
will be discussed in Section 8. The intuition behind the construction and proof is
similar to those in section 3, but there are many new details and complications.

In this section we use a different UF-formula as our running example, which
we will denote by ¢2. We use shorthand notation for this formula, by writing
F;(...) whenever F;’s arguments were already specified:

2 = F(ITE(F; (b) = u,a,b)) =u A
F3(F2(. .)) # F4(ITE(& = b,u,a))

This example will assist us later in clarifying the definitions and the construction
procedure.

In the following discussion the distinction between F;, f;, and F}* is crucial. F;
is the 4-th function instance of a UF-formula ¢ (according to our predetermined
numbering of the function instances of). f; is the term-variable of T (¢) that
was introduced by the reduction, and F} is the term of T2 () which replaces
F; in o.

13

5.1 Definitions

We start with some notations for a UF-formula ¢, assignment a to the variables
of TB(p), and an A-graph &. For this purpose we will use the following example
assignment v to pa’s variables:

o

(@) =0 () =0 ~y(u)=1
Y(f1) =17(f2) =27(f3) =3 7(fa) =4

. For function instance F; of ¢, define ARG,(F;) to be the term of ¢ corre-

sponding to the [-th argument of F;.
Ezample 5. ARG1(F1) =b and ARG1(Fy) =ITE(a = b,u,a).

For a term t of TB(¢), we define a(t) to be the evaluation of ¢ under a.
For term-variable v of TB(y), define s,(v) (’s’ standing for source):
— If v is an original term-variable of ¢ then s,(v) = v.
— If v = f;, then take the minimal 4 such that for all I, o(TB (ARG (F}))) =
a(TB(ARG(F}))), and set s,(v) = f;.

Ezample 6. In ,:

sy(@)=a s,(b)=b sy(u)=wu
S"r(fl) =h 57(f2) =fi 57(f3) =f3 37(f4) =f3

Define assignment & to be:

— For v, a term-variable of ¢, set &(v) = a(v).

~ Forv = f;, a(f;) = a(Fy).
Notice that &(v) = a(s.(v)). & can be seen as the real assignment emanating
from «, and for ¢’ a sub-term or sub-formula of ¢ we have a(T2(x)) =

a(simp(x)). In particular o = T (p) iff & = simp(y).

Ezample 7.
Aa) =0 4(b) =0 H(u) =1
¥(f1) =14(f2) =14(f3) =3 4(fs) =3
This is because
— Y(T2(ARG(Fy))) = (T2 (ARG(F1))) =0
— 7(TP(ARG(Fy))) = v(TP(ARG(F3))) = 1

For term t of ¢, define vals(t) to be:

— If ¢ is a term-variable then vals(t) = {t}.

— If t = Fi(...) then vals(t) = {f;}.

— If t = ITE(cond, t1,t2) then vals(t) = vals(t;) Uvals(tz).
Notice that a(T8(t)) = a(v) for some v € vals(t), depending on the evalu-
ation of the Boolean conditions in the relevant ITE terms.

Ezample 8. In our example ¢;:

— vals(F3(...)) = {fs}

— vals(ITE(a = b,u,a)) = {u,a}

— vals(ARG; (Fz)) = {a, b}
For u,v € V(®), we mark u R¢ v iff u X fiq4(0) v, and u <o v iff u Xpi040) v.
Recall that for an A-graph &, flat(®) is & where all assignment edges are
replaced by equalities.
We extend this definition to sets of vertices U; and Us, and mark U; ~g Us
if there are some u; € U; and us € Uy such that u; ~e¢ us.

14
5.2 Graph Construction

Given a UF-formula ¢ we construct an A-graph &:

1. The vertices are the set of term-variables of T5 ().

2. Add at least all edges of G(simp(p)) to & (Naturally one would take exactly
G(simp(yp)), but we need this weaker statement for the proof).

3. For every F; and F; such that ¢ < j and for all [vals(ARG(F;)) =&
vals(ARG (F})), add the following edges:

— Add (fs, f;) to As(®).
— If f; < f; then for all {, for all v; € vals(ARG,(F;)) and v; € vals(ARG,(Fj))
add edge (v;,v;) to Ng(®). Also mark F; and F} as important.

4. For every important F;, if for some [the term ¢ = ITE(cond, t;,t2) appears
in simp(ARG (F3;)), then add all edges of G(cond) and G(—cond) to &. Also
add cond to set C' (which is initially empty).

5. Repeat steps 3 and 4 until a fix-point is reached.

6. For every u,v, such that u #¢ v, add edge (u,v) to Ng(®). Denote all these
edges free (see Section 7).

Ezxample 9. For 4, the edges are added as follows:

1. In Step 2, we add (f3, f1) to Nqg(®) and (u, f2) to Eq(®). The state of & at
this point is described in Figure 5(A).
2. In Step 3, we add the following edges:
— (f1, f2) to As(®) since b € vals(ARG1(f1)) and b € vals(ARG1(f2)).
= (f2, fa) to As(®) since a € vals(ARG1(f2)) and a € vals(ARG1(f4)).
— (f3, fa) is added to As(®) since fa =g u. Also, since f3 <g fa, F3 and
F, are marked as important, and (f2,u) and (f2,a) are added to N¢(®)
3. Since Fy was marked as important, (a = b) € C. Therefore, in Step 4, we
add (a,b) to both Eq(®) and Nq(®)2.
4. Now (this wasn’t the case before), since a ~g b, we add (f1, f1) to As(®).
See part B of Figure 5.
5. We now add all free edges. For every = € {a,b} and y € {f1, f2, f3, fa,u} we
add (z,y) to Ng(8).

Notice that throughout the construction we did not examine the condition of
the ITE term appearing in the argument of Fj, since F, was not marked as
important. This is the “cone of influence” effect we were aiming for.

We now prove the soundness of the suggested construction.

% Using a more careful analysis of the values that the arguments that F3 and Fy can
be assigned, it can be observed that it is not necessary to add (a,b) to Ng(&). This
and other optimizations were left out for simplicity.

@ ©

fa u,a

Fig. 5. Figure A is ¢2’s A-graph after Step 2. Figure B is ¢2’s A-graph after the fix-
point is reached (before free edges are added). Under a vertex corresponding to function
variable f;, we’ve added the list of vertices in vals(ARG:(F5)).

5.3 Proof of Soundness

Theorem 2. The A-graph G(v)) as constructed in the previous section, is ade-
quate for TE(yp).

The suggested construction gives rise to many different A-graphs, depending on
what A-graph we start with in Step 2 (recall that we only have a minimum
requirement in this step). We prove by induction on |C| that all of them are
adequate for T3 (y). The base case where C' = () is the difficult part, so we start
with the induction step.

If cond € C then there is F; and [such that a term ¢t = ITE(cond, t1,t2)
appears in simp(ARG,(F;)), where f; is marked important. This term also ap-
pears in ¢ as t' = ITE(cond',t],t,) where t = simp(t') (we use ' to mark the
corresponding un-simplified term appearing in).

Define:

p1 = cond' A @[t — t}]
p2 = —cond' A p[t' — th)

Clearly, ¢ = p; V po. It is now sufficent to prove that & is adequate for T2 (p;)
and for TB(p,), since then & is adequate for T2 ().

We first show that any & constructed for ¢ by our procedure can also be
constructed for p; (¢ € {1,2}) if one starts in Step 2 of the construction with our
& (the one constructed for ¢) instead of G(simp(p;)).

For this we need to show that G(simp(p;)) < &. For example, if we con-
sider p1, G(simp(p1)) is G(simp(p)) U G(simp(cond')). Clearly G(simp(p1)) <
G(simp(p)) < &. Also, since cond € C then G(cond) < & (Step 4). Since
simp(cond') = cond, we have that G(simp(p1)) < 6.

We also need to show that no new edges are added in the next steps. But this
is true because nothing in the procedure has changed except possibly removed
some elements from vals(ARG (F;)) for some F', i and [. Therefore & is a graph
that can be constructed by our procedure for p; and ps.

In both constructions (for p; and ps), the size of the set C' will always be
smaller than in the construction for ¢, since cond will no longer be part of the

16

formula, and no new conditions will be added to C. Therefore, by the induction
hypothesis, & is adequate for T2 (p;) and TB(p»).

We proceed to prove the case where C = (). By the fact that C is empty, we
know that for every important F;, for every I, vals(ARG(F};)) contains exactly
one term-variable. In this case we mark this variable by arg,(F;).

Assume there is a satisfying assignment a to T5(p). W.l.o.g we can assume
that a = & because & is also a satisfying assignment to ¢.

We will construct a satisfiable A-graph $ < &, such that if § = § then
B satisfies all equality and disequality edges of . $ will also contain all the
edges of ® that « satisfies, therefore: 8 = simp(p), because a | simp(p) and
G(simp(p)) < &. This means that 8 | T8 (p).

— Denote by $)o < & the graph of all equality and disequality edges of & that
a satisfies.
— Create $); starting from $), and using the following closure rule: If for all [,
vals(ARG (F})) =g, vals(ARG;(F})) then add the edge (fi, f;) to As($1).
— Create $)> from ;. For every pair F; and F; where ¢ < j, Proceed if the
following conditions are true:
o (fir f3) & As(91).
e fixe [
o (firf;) € As(®).
The last two conditions imply that F; and Fj; are important. therefore
argi(F;) and arg;(F;) are defined. We also know that (arg;(F}),argi(Fj)) €
Ng(®). Since (f;, f;) ¢ As($1), there is some [such that arg(F;) #s,
argi(Fj). Add (argi(F;),argi(F})) to Ng($2).
— Create 93 from $s by successively adding assignment edges from & to 3
that do not render it unsatisfiable.
— Add all free edges of & to $3 to create 4.

We define) to be $,. By the construction,) is satisfiable and) < &.
Lemma 2. For § = $:

1. If B(v) = B(u) then v ~e u.
2. Let u = sg(v). If u # v, then (u,v) € As(®).

Proof. The proof proceeds by a bit complex induction on the pairs (u,v). For
two variables z,y we denote x < y, if y = f;, and = # f; is in the fan-in cone of
F; in TB(yp). This is the standard pre-order on terms in a formula. Note that if
sg(a) # a, then sg(a) < a.

1. We prove 1 on an unordered pair (u,v), by assuming 2 on all unordered pairs
(z,y) such that either x =w or z = v, and y < z.

2. We prove 2 on unordered pair (u,v), by assuming 1 on all unordered pairs
(u',v") such that ' < u and v' < v.

This is a valid induction if < is any non-reflexive partial-order on a finite set
(which is the case here).
These are the two proofs:

17

1. We want to prove that if B(u) = 3(v) then u ~g v.

If B(u) = B(v) then u ~g v, since if u % v then by Step 6 of the A-graph
construction, disequality edge (u,v) will be in N¢(®) and it will always be
added to 94.
If B(u) = B(v) then B(sg(u)) = B(sp(v)). By the same argument as above
we have that sg(u) =e sg(v).

If sg(u) # u, then according to our induction hypothesis (2), (sg(u),u) €
As(®), meaning sg(u) =g u. Clearly, if sg(u) = u then also sg(u) ~¢ u. For
the same reason, sg(v) g v.

Since =~ is an equivalence relation, sg(u) =~ sg(v) (as we’ve shown above),
sg(u) ~¢ u and sg(v) =g v we get that v =g v.

2. Let w = sg(v). If w # v then for some function F', v = f; and u = f;, where
i < j. Also, for all I, B(TB(ARG\(F,))) = B(TE(ARG(F}))). Equivalently,
B(simp(ARG(F;))) = B(simp(ARG(Fy))). This means that for every I,
there is some v; € vals(ARG(F;)) and w; € vals(ARG(Fj)) such that

~

B(w;) = B(v;). Using our induction hypothesis (1), for all [, u; ~g v;, imply-
ing vals(ARG(F})) = vals(ARG(F;)), This means that (f;, f;) € As(®).
O

To conclude we prove:
Claim. For § = $:

1. B satisfies all equality and disequality edges of §).
2. Let w = sg(v). If u # v. then (u,v) € As(9).

Proof. We use the same induction strategy as in the proof of Lemma 2:

1. Recall we marked a — ¢ bif there is a directed assignment edge path (possibly
of length 0) from a to b in &. Using our induction hypothesis (2), sg(u) —¢ u
and sg(v) —g¢ v. Since § = 9, we get that if (u,v) € Eq($) then 5(sg(u)) =
B(sp(v)) and if (u,v) € Ng(9) then B(sg(u)) # B(sp(v)). Since always
B(a) = B(sp(a)), we conclude.

2. Let u = sg(v). From Lemma 2, we know that (u,v) € As(®). We split to

two cases:
— If u %4 v then the edge (u,v) of As(®) will always be added to $3 since

it will never make £ unsatisfiable.

— Assume u < v. We know that v = f; and u = f; where ¢ < j, and that
fi and f; are important. Therefore, for every I, arg;(F;) and arg;(F}) are
defined. Since (fi, f;) € As(®) and f; < f; then (arg(F;),argi(F;)) €
Nq(®).

If fE)r)some I, (argi(Fy),arqi(F;)) € Ng(9) then using our induction
hypothesis (1), we get B(arg(F;)) # ﬁ(argl(Fj)), but this contradicts
the fact that sg(f;) = fi.
Therefore for all I, (argi(F}),argi(F;)) ¢ Ng($), but then already in $,
for all I, argi(F;) =g, arg;(F;). If this is not true then for some ! the
disequality edge (arg:(F;), argi(F;)) would be taken in §)s.
Now, since for all [, arg,(F;) =g, argi(F;), then (fi, f;) € As($1). There-
fore (u,v) € As(9).

O

18

6 Transforming A-graphs to E-graphs

Given an A-graph &, we wish to construct an E-graph G such that if assignment
set R is adequate for G it will also be adequate for &.
For two vertices u and v, we denote v Cg u, if

— for every (v,w) € Eq(G), (u,w) € Eq(G).
— for every (v,w) € Nq(G), (u,w) € Nq(G).

The following procedure transforms A-graphs to E-graphs:

1. Initially, G = (V(®), Eq(®), N¢(®))
2. While there are vertices u,v, such that (u,v) € As(®) and either (u,v) ¢
Eq(G) or v Cg u, choose one of the following options:
(a) add edge (u,v) to Eq(G).
(b) — for every (v,w) € Eq(G) add (u,w) to Eq(G).
— for every (v,w) € Nq(G) add (u,w) to N¢(G).

Theorem 3. If R is adequate for G then it is also adequate for &.

Proof. Take some satisfiable § < &. We construct a satisfiable H < G such that
if B = "H then 8 = $.

Since) is satisfiable, there is some « that satisfies $ where all of §’s as-
signment edges are replaced by equality edges (recall the definition of the sat-
isfiability of an A-graph). We will prove that H is satisfiable by showing that
alEH.

Start with Eq(H) = Eq($), and Ng(H) = Nq(9). Clearly, at this stage
a |= H. For every edge (u,v) € As($)) (Notice that a(u) = a(v)):

— If (u,v) € Eq(G) add (u,v) to Eq(H). Obviously a = H,
— Otherwise, we have that v Cg u. Add the following edges to H:
1. for every (v,w) € Eq(H) add (u,w) to Eq(H).
2. for every (v, w) € N¢(H) add (u,w) to Ng(H).
Since a = H before this step, and a(v) = a(u), it is easy to see that also
after this step a = H.

We now prove that if 8 = H then § | $). Take some a —g b and ¢ —g d. We
need to prove that:

— If (b,d) € Eq(H) then 5(a) = B(c).
— If (b,d) € Nq(9) then 5(a) # B(c).

To simplify the proof we weaken the definition of ~ and <, so that the paths
need not be simple. Notice that under this definition we still have:

— If ~3; y then B(z) = B(y)
— If 2 <3, y then B(z) # B(y)

We will therefore prove:

19

— If (b,d) € Eq($) then a =4 c.
— If (b,d) € N¢($)) then a <4 c.

We will prove this by induction on the sum of the lengths of the assignment edge
paths from a to b and from ¢ to d. If this sum is 0, then a = b and ¢ = d, and
since we copied all equality and disequality edges of $) to H, the claim follows.

If this sum is greater than 0, then one of these paths is of length greater
than 0. W.l.o.g, assume this is the path between a and b. Mark by a' the next
vertex after a in the path to b (this may be b itself). According to our induction
hypothesis:

— If (b,d) € Eq($) then o' ~ c.
— If (b,d) € Nq(9) then o' x4 c.

Since (a,a’) € As($)), we have one of the two cases:

1. (a,a') € Eq(H). But then clearly a satisfies the two claims, since we simply
prolong the path a' & ¢ (in the first case) or a’ <4 ¢ (in the second) by
the equality edge (a,a’).

2. Otherwise, we know that o’ C; a. This time instead of prolonging these
paths, we replace their first edge. For example, if (b,d) € Nq(H), then a’ <y
¢. This means there is a path from a' to ¢ in H consisting of equality edges
except one edge which is a disequality edge. Take the first edge in this path
(a',z), and replace it by the same type (equality or disequality) of edge
(a,z). We know this edge is in H, since o’ Cy a.

O

We showed a general method for translating of A-graphs to E-graphs. When
using this method one has to choose between the two options for every assign-
ment edge: either replace it by an equality edge, or copy all edges of the end
vertex to the start vertex.

Note that if the original UF-formula ¢ is in positive equality then the A-
graph constructed in section 5.2 contains no equality edges, and therefore we can
translate it to an E-graph with no equality edges. An adequate set of assignments
for such an E-graph contains just one assignment in which every variable is
assigned a distinct constant. This is exactly the result of [BGV99].

In our implementation, we use a greedy approach for choosing between the
options, where we try to minimize the number of equality edges of the resulting
E-graph. In the case of positive equality formulas, we therefore get the optimal
result of [BGV99].

Ezxample 10. We demonstrate the transformation with the help of (1, the UF
formula that was first presented in Section 2.2. The resulting A-graph of ¢; from
the construction is described in Figure 6, and the result of transforming it to an
E-graph (using the greedy approach) is presented in Figure 7. This graph has
an adequate set of assignments that consists of 2 assignments, as opposed to 4
in our simplified construction in Section 3 and 16 in the procedure we presented
in [PRSS99] .

20

Fig. 7. The A-graph of ¢1 transformed to an E-graph.

7 Free Edges

Recall the last step of our graph construction: If u % v then the disequality
edge (u,v) is added to ®. We denoted these edges as free edges. The reason for
this is that they do not impose any increase in the size of the assignment set R
that is adequate for &.

Given an E-graph G (we will handle A-graphs later) and a set R that is
adequate for G, we construct assignment set R' that is adequate for G', where
G' is G plus all free edges. We will show that |R'| = |R).

Define C(G) = {C1,Cx,...} to be the set of connected components of the
graph (V(G), Eq(G)). Notice that u ¢ v iff there is some ¢ such that u,v € C;.
Take some number N such that for every o € R and every v € V(G), N >
2 - |a(v)]- For a € R we define o' to be the assignment that satisfies:

Vi Vo € C;, o' (v) =a(v) +i-N
Define R' = {&/ | @ € R}. We claim that R’ is adequate for G'.

Proof. Take H' < G'. ‘H' is composed of an H < G plus some free edges of G.
Since R is adequate for H, there exists @ € R such that o = H. We claim
that o = H'. Take some edge (u,v) of H'. There are C;,C; € C(G) such that
uw € C; and v € C;. We have that o/(u) =¢- N + a(u) and o/(v) =7 - N + a(v).
Subtracting one from another we get:

a'(v) —a/(u) = (i = j) - N + a(v) — a(u)

21

— If i # j then (u,v) must be a disequality edge (either free or originally in
G). Since N > |a(u) — a(v)| we get that |a'(u) — o'(v)| > |(i — 7)| - N — N.
Since ¢ # j we have that |o/(u) — &'(v)| > 0, implying o' (u) # o' (v).

— If i = j, then « satisfies edge (u,v) (equality or disequality). Also o'(u) —
o' (v) = a(u) — a(v), and therefore o' also satisfies this edge.

O

Thus, adding free edges to E-graphs does not increase the size of the assignment
set. In the case of A-graphs, if we examine the transformation to E-graphs that
we presented in section 6, we see that if u % v in the original A-graph, then
also u %g v in the resulting E-graph. Therefore, the free edges that we add to
the original A-graph appear as free edges in the resulting E-graph, and as we
have just shown, it will not increase the size of the resulting assignment set.

8 Uninterpreted Predicates

Up to now we assumed that there are no predicate symbols or Boolean variables
in the formula. We will justify this by showing how we simulate predicates using
uninterpreted functions (Boolean variables are merely predicates with 0 argu-
ments). Given ¢, a UF-formula with uninterpreted predicates, we transform ¢
to ¢’ without uninterpreted predicates.

For every predicate symbol P in ¢, take a new function symbol F¥ and
a new term-variable true’. Now replace in ¢ every occurrence of P(...), by
(FFP(...) = truef) to get ¢'. It is not hard to see that ¢’ is satisfiable if and
only if ¢ is.

The problem we are facing is that instead of adding a Boolean variable for
each predicate instance (as happens in [BGV99] reduction), we added a term-
variable and possibly increased the state space for checking ¢. But a more careful
examination proves that this is not the case.

Note that in the A-graph of ¢', all the new variables introduced for predicate
P are isolated (there are no edges between them and any of the other variables).
Therefore we can find an adequate assignment set for each such predicate sepa-
rately from each other and from the assignment set for the original graph (which
is unaffected by this addition). We first transform the component’s A-graph to
an E-graph by replacing all assignment edges by equality edges (this is a valid
transformation by section 6). In our case the graph of the component of some
predicate P cannot contain disequality edges other than (f7,true?). An ade-
quate set of assignments for this kind of E-graph is given by letting each variable
range over {0, 1}, and setting true’ to be the constant 1.

The state-space is therefore not increased. In fact this method gives us the
ability to treat predicates with the new method we used for functions, achieving
a similar cone-of-influence effect.

22

9 Experimental Results

As was mentioned before, the graphs that are generated by the method which was
presented in this paper are always smaller or equal to those that were generated
in [PRSS98], and therefore will result in a smaller state-space. This is not only
a theoretical result, since we were able to check in seconds UF-formulas that we
could not solve at all by using the previous method.

As for [BGV99], we generalize their result for the restricted logic of positive
equality, and therefore on these kind of formulas are supposed to get more or
less the same results, depending on implementation details. However, according
to our experience most formulas are not purely positive. For those parts that
are not in positive equality, our method is provably better: given the variables
{vo,...,vn} belonging to the non-positive part, they assign variable v; the range
{1,...,4}, resulting in a state space of n!, while we use the range allocation algo-
rithm, which analyzes the formula’s structure and allocates significantly smaller
domains.

References

[Ackb4] W. Ackerman, “Solvable Cases of the Decision Problem”, Studies in logic
and the foundations of mathematics, North-Holland, Amsterdam, 1954.

[BD94] J.R. Burch and D.L. Dill, “Automatic Verification of Microprocessor Con-

trol”, In Computer-Aided Verification CAV 9/ .

[BDLI6] Clark W. Barrett, David L. Dill and Jeremy R. Levitt, “Validity Check-
ing for Combinations of Theories with Equality”, In Formal Methods in
Computer Aided Design FMCAD 96 .

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz and V. Singhal, “BDD Based
Procedures for a Theory of Equality with Uninterpreted Functions”, In
Computer-Aided Verification CAV 98 .

[HIKB96] R. Hojati, A. Isles, D. Kirkpatrik and R. K. Brayton, “Verification Using
Finite Instantiations and Uninterpreted Functions”, In Formal Methods
in Computer Aided Design FMCAD 96 .

[PRSS98] A. Pnueli, Y. Rodeh, M. Seigel and O. Shtrichman, “Deciding Equality
Formulas by Small Domain Instantiations”, In Computer-Aided Verifica-
tion CAV 99 . In Computer Aided Verification CAV ’99.

[PSS98] A. Pnueli, M. Siegel and O. Shtrichman, “Translation Validation for Syn-
chronous Languages”, In International Colloquium on Automata, Lan-
guages and Programming ICALP 98 .

[PRS01] Y. Rodeh and O. Shtrichman, “Dynamic Range Allocation”, Submitted
to Computer Aided Verification CAV 2001.

[BVIg] R. E. Bryant and M. Velev, “Bit-level Abstraction in the Verification
of Pipelined Microprocessors by Correspondence Checking”, In Formal
Methods in Computer Aided Design FMCAD 98 .

[BGV99] R. E. Bryant, S. German and M. N. Velev, “Exploiting Positive Equality
in a Logic of Equality with Uninterpreted Functions”, In Computer-Aided
Verification CAV °99 .

[BVO00] R. E. Bryant and M. N. Velev, “Boolean satisfiability with transitivity
constraints”, In Computer-Aided Verification CAV 2000 .

