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Abstract. The paper considers the problem of uniform verification of
parameterized systems by symbolic model checking, using formulas in
Fsls (a syntactic variant of the 2nd order logic ws1s) for the symbolic
representation of sets of states. The technical difficulty addressed in this
work is that, in many cases, standard model-checking computations fail
to converge.

Using the tool TLV[P], we formulated a general approach to the acceleration
of the transition relations, allowing an unbounded number of different
processes to change their local state (or interact with their neighbor)
in a single step. We demonstrate that this acceleration process solves
the difficulty and enables an efficient symbolic model-checking of many
parameterized systems such as mutual-exclusion and token-passing pro-
tocols for any value of IV, the parameter specifying the size of the system.
Most previous approaches to the uniform verification of parameterized
systems, only considered safety properties of such systems. In this pa-
per, we present an approach to the verification of liveness properties
and demonstrate its application to prove accessibility properties of the
considered protocols.
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1 Introduction

The problem of uniform verification of parameterized systems is one of the most
thoroughly researched problems in computer-aided verification. The problem
seems particularly elusive in the case of systems that consist of regularly con-
nected finite-state processes (a process network). Such a system can be model
checked for any given configuration, but this does not provide a conclusive ev-
idence for the question of uniform verification, i.e., showing that the system is
correct for all possible configurations.
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In [KMM*97], we proposed an approach to the uniform verification of pa-
rameterized systems based on symbolic model checking in which the assertional
language used to represent sets of reachable global states is that of a regular
expressions over a finite alphabet which represents the local state of each of the
processes in the system. As a trivial illustrative example, consider a parameter-
ized system S(N) consisting of N processes arranged in a linear array. Assume
that the local state of each process can be represented by the two values 0 and
1, where the state of a process P[i] is 1 iff P[i] currently has the token which is
passed around.

The initial global state (to which we refer as a configuration) can be described
by the regular expression I = 10* representing the global state in which the
leftmost process has the token. Note that even though every instance of the
system S(IN) has a unique initial configuration, the expression 10* represents
the infinite set of initial configurations obtained by considering the infinitely
many different values of N.

The transition relation of this parameterized system can be represented by
the binary rewrite rule given by 10 —  01. This rewrite rules states that a
single step of the system applied to a configuration represented by a word w may
locate the substring 10 within w and replace it by the substring 01. Obviously,
such a step represents the transmission of a token from a process with a token
to its right neighbor, provided the neighbor is not currently in possession of a
token.

To represent such rewrite rules in the most general context, [KMM™*97] sug-
gested to use a finite-state transducer which is an automaton reading a string of
pairs of letters, one representing the pre-transition configuration and the other
representing the post-transition configuration. Using the standard notation of
unprimed and primed values to respectively represent these two configurations,
the transducer corresponding to the above transmission transition can again be
represented by the following regular expression:

T = (00 +11")*(10')(01') (00’ + 11')*

Given a finite-state transducer T representing the transition relation and a regu-
lar expression F representing a set of configurations, it is not difficult to compute
the set of T-postimages or T-preimages of the configurations in E which is guar-
anteed to be another regular expression. For example the T-postimage of 10* is
the regular expression 010*. We denote by E ¢ T and T ¢ E the T-postimages
(T-successor) and T-preimages (T-predecessor) of E, respectively.

To perform symbolic model checking we usually need the iterated versions of
these two operators computed as follows:

EoT*=FE 4+ EoT + (EoT)oT + (EoT)oT)oT + ---
T*oE=E + ToE + To(ToE) + To(To(ToE)) + ---

Now, if ¢ is a regular expression representing a property we wish to prove an
invariant of the system, then S(N) |= ¢ for every N iff

(IeT*) Np=10 or (T*op)NI=0,



where @ denotes the complement of . The first clause corresponds to forward
exploration starting from the initial condition I while the second clause cor-
responds to backwards exploration starting from the set of states violating the
property .

The difficulty specific to regular model checking of parameterized systems is
that, unlike BDD-based model checking of finite-state systems, the computation
of either IoT™* or T* ¢ may fail to terminate. In fact, theoretical considerations
predict that there will be cases in which these computations cannot terminate.
Termination of the computation of I¢T™ implies that the set of strings encoding
reachable configurations is a regular language, and it is easy to construct systems
in which the set of reachable configurations forms a context-free language.

However, experience with these methods shows that there are many cases
in which the set of reachable configurations is regular yet the straightforward
computation of I oT™* fails to converge. Assume that we wish to establish for the
above example system the invariance of the property ¢ = 0*10*, claiming that
all reachable configurations contains precisely one token. To apply backwards
exploration, we first compute the set of violating configurations, given by p =
0* + (0 4+ 1)*1(0 + 1)*1(0 + 1)*. The computation of T* ¢ terminates in one
step, yielding T* o g =@ = 0*+ (0+1)*1(0+ 1)*1(0 + 1)* which, obviously, has
an empty intersection with I = 10*, establishing that ¢ is an invariant of the
considered system.

On the other hand, the computation of the forward exploration according to
I oT* fails to terminate, yielding the following infinite sequence of approxima-
tions:

10* + 010* 4+ 0010* 4+ 00010* + - - -

The source of the problem was identified in [ABJN99] as stemming from the
fact that the transition relation T" represents a step in which only one process (or
a pair of contiguous processes) makes a move. The remedy proposed by this paper
is to use the notion of an accelerated transition in which several (unbounded
many) processes can make a move at the same step. For example, the accelerated
version of the transition relation 7" = (00’ + 11’)* (10") (01") (00" 4+ 11")* can be
computed to be

T, = (00" +11")*(10') (00")* (01') (00’ + 11')*

Applying the accelerated transition in a forward exploration terminates now in
a single step and yields I o T = 0*10*.

The work in [ABJN99] proposes a “speed-up” (acceleration) operation which
transforms a single-process transition relation presented by a transducer T into
an accelerated transducer T, which represents the effect of many processors
taking an action in the same step, under certain conditions restricting the de-
pendency of a single-process action on the local states of the other processes.
The analysis there is based on a language-theoretic representation of the asser-
tions and the representation of transition relations by finite-state transducers.
Using such acceleration techniques, [ABJN99] managed to verify fully automat-
ically various parameterized protocols such as the Bakery and Ticket algorithms



by Lamport, Burn’s protocol, Dijkstra’s and Szymanski’s algorithms for mutual
exclusion.

The methods of [ABIN99] could only accelerate elementary transitions which
only modified the local state of one process at a time. This made them inap-
plicable to the representation of systems which included synchronous message
passing, such as the binary transformation 10 — 01 appearing in our example
system. This drawback has been recently corrected in [JNOO] which presents a
speed-up operation which can be applied to elementary transitions that modify
several contiguous processes at the same time.

The work presented here improves upon the results of [ABJN99] and [JNOO]
in several directions. To start with, our presentation framework uses the logic
Fsls (a syntactic variant of wsls, the weak second-order monadic theory of one
successor [Tho90]) to present sets of configurations, e.g. the initial condition
and the properties, as well as the transition relation. This uniform presentation
by a powerful logic enables us to formulate several acceleration schemes still
within the same language. Furthermore, the soundness of the transducer-based
acceleration schemes of [ABJN99] and [JN00] depends on particular assumptions
that the transition relation has to satisfy, such as a particular forms of left-
and right-contexts, These have to be checked whenever one wants to apply the
acceleration schemes of [ABJN99] and [JNOO] to a particular transition relation.
In our case, the acceleration is always sound and could never lead to false positive.
In the worse case, they will not produce a useful acceleration and the process
will continue to diverge even after the acceleration.

Using our acceleration schemes which are applicable to unary and binary el-
ementary transitions in an unrestricted way, we managed to verify the protocols
considered in [ABJN99] in a very efficient manner, and consider some additional
protocols which use synchronous communication, such as a token-passing proto-
col for mutual exclusion and the distributed termination detection algorithm of
[DFvG83|.

However, the most important contribution of this paper is the extension of
the regular model checking method to include verification of liveness proper-
ties, while all previous efforts concentrated on the parameterized verification of
safety properties. Using these extensions, we managed to verify the property of
accessibility for some of the protocols considered above.

Related Work

There are several results on algorithmic verification of parameterized sys-
tems [SG92,AJ98,CGJ95]. In most of these works the transitions are guarded by
local conditions involving the local states of a fixed (unparameterized) number
of processes, in contrast with the general global dependency which is allowed in
[KMM*97, ABJN99,JN00]. The notions of speed-ups and acceleration of transi-
tions were considered in [BG96,BGWW97,BH97,ABJ98]. However, the acceler-
ations considered there only condensed several moves of a fixed number of pro-
cesses, while in our case (and in [ABJN99,JN00]) we consider speed-ups obtained
by performing actions of an unbounded number of different processes, sequen-
tially or in parallel. Previous attempts to verify parameterized protocols such as



Burn’s protocol [JL98] and Szymanski’s algorithm [GZ98, MAB*94,MP90] relied
on abstraction functions or lemmas provided by the user. Other approaches to
uniform parameterized verification are based on induction, where the user sup-
plies the induction hypothesis either in the form of an assertion or in the form
of a network invariant [CGJ95,KM89,WL89).

A recent work which has a significant overlap with our work has been pre-
sented by Bodeveix and Filali in [BF00]. Similarly to our approach, they ad-
vantageously employ the expressive power of WS1s to present explicit formulas
which capture various acceleration schemes. They report about a tool FMoONA
which is a high-level macro-processor for MONA [HJJT96]. The main differences
between their work and ours are that, at this point, they do not consider live-
ness. Also, on the technical level, unlike the TLV[P] tool which we use for the
verification reported in this paper, the FMONA tool does not seem to support
a programming layer in which algorithms such as model-checking for safety and
liveness can be programmed. As a result, if one wants to iterate the application
of a transition relation to a set of states until it converges, it is necessary to
provide an a priori bound n on how many iterations are necessary and to invoke
the FMONA macro processor which will expand the appropriate iteration into a
pure MONA code of size linear in n.

2 The Logic Fsls

We use the logic Fs1s, (finitary second-order theory of one successor) as a spec-
ification language for sets of global states of parameterized systems. This logic
is derived from the weak second order logic of one successor [Tho90] and also re-
sembles the language M2L used in MONA [HJJ*96]. The main difference between
wsls and FS1S is that, in FS1S, we assume the existence of a special variable
M which provides an upper bound to the size of all arrays. We found the use
of this common upper bound to be of much help in the description of circular
architectures such as rings. This is only a matter of convenience, because, it is
always possible to introduce M as a second-order variable of ws1s and postulate
its upper-bound properties.

It is well known that Fsls (as well as wsls) has the expressive power of
regular expressions, as well as finite automata which are the representation un-
derlying our implementation. Following is a brief definition of the logic.

Syntax

We assume a signature £ : {X1,..., X} consisting of a finite set of finite al-
phabets. The wvocabulary consists of position variables py,ps, ... and, for each
X € =, a set of X;-array variables X;,Y;, Z;, ... . The special position variable
M denotes the upper bound on the length of all arrays and all position variables.
e Position (First-order) terms:
The constant 1 and any position variable p; are position terms. If ¢ is a
position term then so is ¢t + 1.
e Letter terms:



m Every a € X, is a X;-term.

» If X isa X;-array variable and ¢ is a position term, then X[t] is a X;-term.
e Atomic Formulas:

m t; ~ t2, where t; and ¢, are position terms and ~ € {=, <}.

m =y, where x and y are X;-terms for some X; € =.
e Formulas:

» An atomic formula is a formula.

m Let ¢ and 9 be formulas. Then —p, ¢ V4, Ip : ¢, X : ¢ are formulas,

where p is a position variable and X is an array variable.

For example, assume that IT is an array over the alphabet ¥ = {N,T,C} in-
tended to represent the control location of a process in a process-array P[1],. .., P[M].
Similarly, assume that tok is a Boolean array (special case of Xy = {0,1}) in-
tended to represent the fact that process P[i] currently has the token. Then, the
wsls-formula
O: Vi:(II[i{]=N) A tok[1] A Vj # 1 : —tok[j]

characterizes the set of initial configurations in which all processes are in their
initial control location N and only the leftmost process (process P[1]) has the
token.

We refer the reader to [KMM™197] for the definition of the semantics of Fs1s.

3 The Logic Fsls is Adequate

In this section we demonstrate the use of Fsls for expressing the constituents
of a parameterized system. As a running example, we will use program MUX of
Fig. 1 which implements mutual exclusion by synchronous communication.

The body of the program is a variable-size parallel composition of processes
P[1],...,P[M]. Each process P[i] has two local state variables: a local boolean
variable tok whose initial value is 1 (¢rue) for ¢ = 1 and 0 (false) for all other
processes, and a control variable IT ranging over the set of locations {N,T,C}
(the noncritical section, the trying section, and the critical section, respectively).
Process P[i] sends the boolean value 1 on channel afi @ 1] to its right neighbor
(1@ 1 is addition modulo M) and reads into variable tok a (true) boolean value
from its left neighbor on channel a[i]. As seen in the program, process PJ[i] can
enter its critical section only if P[i].tok = 1.

As our computational model we use the model of fair discrete systems con-
sisting of a set X of state variables, an initial condition ©, a transition relation
p, a set J of justice (weak fairness) requirements, and a set C of compassion
(strong fairness) requirements. We proceed to show how these constituents can
be specified in Fs1s for system MUX .

The State Variables: We define the type
state = record of (II : {N,T,C}, tok : boolean)
and the array variable
X : array 1..M of state.
Note that this is equivalent to the definition of two arrays, the array II[1..M]
and the Boolean array tok[1..M]. Therefore, we will often abbreviate X [¢].IT and



in M : integer where M > 1
local o : array [1..M] of channel of boolean

Fig. 1. Parameterized Program MUX.

X[j]-tok to II[i] and tok[j] respectively. On the other hand, we write X [i] = X[j]
as an abbreviation for (X[i].II = X[j].II) A (X[i].tok = X[j].tok) and 3X : ¢
as an abbreviation for 3X.IT : 3X.tok : .

The Initial Condition: The initial condition can be given by the Fs1s formula

©: (Yi:I[]=N) A tok[1] A Vi# 1 :~tok[i]

The Transition Relation: The transition relation can be formed as the disjunc-
tion of three types of elementary transitions. Using the abbreviation presX (j) =
X'[j] = X[j], these can be expressed as follows:

idle 1V : presX(j)
p1(X, X"d) s idle v (V] #i:presX(j)) A
(IT[i] = N) A (IT'[i{) =T) A (tok'[i] = tok[d])
V (IT[i]=C) A (I'[i] = N) A (tok'[i] = tok[i])
V (II[i]=T) A (IT'[i] =C) A (tok'[i] = tok[i] = 1)
p2(X, X' 0) ridle v (V5 & {i,i®n 1} : presX(f))
A (II[{]=N) AN tok[i] N (II[i®nm 1] € {N,T}) A —tok[i @ 1]
A (IT'i)=N) A =tok'[i] A (T'i®y 1] =i Dy 1]) A tok'[i ®p 1]

Subtransition idle represents the case that the system does not change it’s state.
Subtransition p; (X, X',4) is a unary transition in which a single process P[]
takes a local action that can only modify the local state of P[i]. All other pro-
cesses retain their local state. Finally, subtransition p; (X, X’,4) corresponds to



a binary transition in which process P[i] sends the token to process P[i @ 1].
Only the two involved processes change their local states.
We can now define the global transition relation by taking

p(X, X"y =ddle v (Fi:p;(X,X",i) V p2(X, X', 1)).

However, as explained in the introduction, this single-action transition can be
used in few cases for backwards exploration model checking but will often fail
to converge when used in a forward exploration model checking.

We defer the specification of the justice and compassion requirements of sys-
tem MUX to Section 5 in which we discuss the verification of liveness properties,
where the fairness requirements become relevant.

3.1 Model Checking

Having obtained the Fs1s representation of the transition relation p(X, X') of
a system such as MUX, there are several symbolic model checking tasks we can
perform. For an Fs1s formula ¢(X) representing a set of configurations, we can
compute the p-successor and p-predecessor of ¢ by the following expressions:

pop=unprime(3IX : p(X) A p(X,X"))
pop=3V:p(X,V) A V),

where unprime is a substitution operation which transforms each occurrence of
X'[k] into X [k], and V is an auxiliary array variable of type state.

Note that p o ¢ computes the set of states satisfying EX¢ from which, by
iteration and boolean operations, we can compute EFyp and AGy, provided the
iteration converges.

4 Acceleration

Acceleration condenses a potentially unbounded number of applications of tran-
sitions into a single transition, by defining a single “accelerated transition re-
lation”. It is up to the user to observe that acceleration is required and select
the appropriate accelerations schemes to be applied. Since all accelerations are
sound, there is no danger (except loss of time) in applying all the acceleration
schemes which are available at a particular implementation.

Since the verification problem for parameterized system is, in general, unde-
cidable [AKS86], there is no chance of accumulating a “complete” set of accelera-
tion schemes. The best we can hope for is the assembly of a large set of schemes
which can cover many of the useful examples.

To handle most of the cases in which regular model checking with single-
action transition relation failed to terminate, we found it necessary to consider
three types of acceleration which we will now present.



4.1 Local Acceleration

In this mode of acceleration, we allow several actions to be taken in succession
by the same process P[i]. Given a unary transition relation py (X, X',4), we can
compute its locally accelerated version by the repeated composition

o

P = PV propt V (prop)opt V ((propr)op)opt V -+,
where the composition p, © pp is defined by
pap(X,X"0) = AV :p (X, Vi) A pp(V,X',7)).

For example, applying local acceleration to the unary transition relation
p1(X, X',4) of program MUX, we obtain (after some manual simplification) the
following accelerated unary transition:

II[i] € {N,T,C} A tok[i]' = tok][i]
A Vj#i: (IT'j] = I[j] A tok'[j] = tokl]])
pf(X,Xl,i) = H[Z]I = H[Z]
A | Vitok[i]=0 A II'li] € {N, T}
Vtok[il]=1 A II'lij € {N, T, C})

4.2 Global Acceleration of Unary Transitions

Next, we consider the acceleration of a unary transition on which each of a set
of processes takes a single action. Assume as before that the unary transition
relation of process P[i] is given by p1 (X, X', ), and that idle — p;. The following
formula expressing this acceleration uses the auxiliary state-array variables T
and V.

X'li] = X[i]
Vi T[j] =if j < i then X'[j] else X[j]
v 3T,V | Y| V[j] =if j < i then X'[j] else X[j]
A pl(T7 V77’)

PUX,X") =Vi

This accelerated transition applies p1 (X, X', %) to processes P[1],..., P[M] in se-
quential order. Every activated process P[i] may non-deterministically choose to
idle (which is one of the options allowed by p1) or change its local state according
to p1. For process P[i] we require that, after all processes P[1], P[2],..., P[i — 1]
have taken their actions, we reach a configuration from which P[i] can take its
action. This is done by forming the two arrays 7" and V. where V represents the
configuration prior to P[i]’s action and V represents the configuration resulting
from P[i]’s action.

For example, applying global acceleration to the accelerated unary transition
relation p§(X, X', 4) of program MUX, we obtain (after some manual simplifica-
tion to improve readability) the following accelerated unary transition:

IIli) € {N,T,C} A tok[i)' = tok[i]
II[) = IIi]
A | Vitok[i]=0 A II'i] € {N, T}
Vitok[il]=1 A II'li] € {N,T,C})

PX,X) = Vi



Note that the acceleration scheme presented here proceeds from left to right.
It is straightforward to define an acceleration scheme which proceeds from right
to left.

4.3 Global Acceleration of Binary Transitions

Finally, let us consider the acceleration of a binary transition, such as pa(X, X', %)
previously presented for program MUX.

Unlike the acceleration of unary transitions, where the local state of each
process changed at most once, in the case of binary acceleration some processes
may change their local state twice. For example, they may change their state once
when they receive the token from their left neighbor and then once more when
they send the token to their right neighbor. Thus the acceleration of a binary
token-passing transition may in one step move the token from process P[i] to
process P[j] for an arbitrary j > i. To accommodate the phenomenon that some
processes may change their values twice, we employ an additional state-array W
to save the sequence of intermediate local states for these processes.

Let p2(X, X',7) be a binary transition which may affect at most the compo-
nents X[i] and X[i @ 1]. Without loss of generality, assume that idle — ps.
The formula X, X'), expressing the global acceleration of po (X, X', %) is given

by

Wl = X[1] A W[M] = X'[M]

[ case
j=i:W[j]
Thl = | <i:X'l]
1 X[j]
| esac
aw _ Vil A
ANYi< M3T,V [ case
j=i+1: W[
viil=| d<i X))
1 : X[7]
| esac
A p2 (TJ VJ Z)
As we can see, in the binary acceleration case, we sequentially apply the binary
transition ps to processes P[1],...P[M — 1], where any of them may nondeter-
ministically choose to take the idling transition. In the general case, each of the
processes P[2],..., P[M — 1] may change their local states at most twice, while

processes P[1] and P[M] may change their local state at most once. We use
the auxiliary array W to store the intermediate value of the local state of all
processes.

Note that this acceleration scheme does not apply ps to process P[M]. When
we compute the total transition relation we add p2(X, X', M) as an additional
explicit disjunct.



These acceleration schemes were successfully applied to program MUX and
transformed the regular model checking procedure based on forward exploration
from a divergent process into an efficiently convergent one, requiring no more
than 4 iterations to converge in a matter of few seconds. More details about
these computations are presented in Section 6.

5 Liveness

All of the previous results for the uniform algorithmic verification of parame-
terized systems concentrated on proofs of safety properties. Here we present an
approach to the verification of liveness properties, using regular symbolic model
checking. The main problem with parameterized verification of liveness proper-
ties is not so much that the property to be proven is more complex, but that
we have to take into account an unbounded number of fairness assumptions,
several for each process, and that these requirements are also parameterized. To
appreciate the problem, let us specify the fairness requirements associated with
program MUX which, for the sake of simplicity of presentation, we restricted to
justice (weak fairness) only.

5.1 Justice Requirements for Program MUX

There are three justice requirements associated with each process of program
MUX. Respectively, they require that the process will never get stuck at location
C, that it will never get stuck at location 7" while the process has the token, and
that the process will not retain the token forever while it’s right neighbor is con-
tinuously ready to receive it. In the computational model of fair discrete systems,
justice requirements are presented as a set of assertions J = {Ji,..., Ji}, with
the requirement that a computation should infinitely often visit states satisfying
J; for each j = 1,...,k. In the parameterized case, each justice requirement is
also parameterized by a process index 4, and the requirement should be extended
to cover all ¢ € [1..M].
For program MUX, the justice requirements are given by

Ji[d] : ~(I i) = C)
Joli] : ~((I[:) =T) A tokl[i])
J3[i] - =(tok[i] A (II[i @y 1] € {N,T}))

In theory, one may try to verify a liveness property “every p is eventually followed
by ¢” of a parameterized system using the standard symbolic model-checking
algorithm. The core of this algorithm is the computation of the set of states
lying on a fair —¢-path. This computation can be succinctly described by the
following fix-point formula:

E;/G~q = vY(=qg A poY A Vi: (/\((p/\ =q)* o (Y A J;[4]))))
J
Unfortunately, this computation seldom converges, even if we use an accelerated
version of the transition relation. This is certainly the case for program MUX.



5.2 Detecting Bad Cycles

Since the systems we analyze are finite-state (for every value of their parameter),
it is obvious that the formula E;G-gq characterizes the states from which there
exists a (—¢)-path leading to a fair (—g)-cycle, where the cycle being fair means
that it visits at least once a J;-state, for each j = 1,..., k. Denoting by G the set
of states that participate in a fair (—¢)-cycle, an equivalent requirement is that
each s € G has a successor in G and that, for each s € G and each j =1,... k,
there exists a cycle from s to itself which visits on the way some Jj-state.

Assume that p(X, X') represents the total transition relation of the parame-
terized system, after all accelerations. The following algorithm computes the set
of states participating in a fair (—q)-cycle:

1.y :=(Bop*) AN —¢

2.pp:=p A1 A (Vi:U'[i] =UJi))

3. p:=p1 AN (Vi:U[i] = X[i])

4.3 =3 A pio(p10p2)

5.for j:=1,...,k do

6. w3:=p3 A (Vizpio(Ji[i] A g1 A (p]ow2)))
7.4 2= (3U : p3)

Line 1 places in 1 the set of (—g)-states which are reachable. Line 2 places in
p1 a version of p restricted to move only within ¢;-states and to preserve a set
of variables called U, which is a newly introduced copy of the state variables.
Line 3 adds to the sets of states the interpretation of the auxiliary variables
U and places in g5 the subset of ¢;-states in which the interpretations of X
and U agree. Line 4 places in 3 the set of py-states from which there exists a
non-empty p;-path leading to another y»-state.

To see this, consider a state s; belonging to 3, and let sy be the ps-state
reached at the end of the non-empty p;-path. Since s is a p2-state, we know that
$2|U] = s2[X], i.e. the interpretation of U in s, is identical to the interpretation
of X in so. Since any p;-path preserves the interpretation of U, we also have
that s; and sy agree on the interpretation of U, i.e., s1[U] = s2[U]. Since s1
is also a @q-state, it follows that s;[X] = s1[U]. Consequently, we have that
$1[X] = $1[U] = s2[X] = s2[U] which implies that s; and s, are identical states
and, therefore, s; participates in a non-empty @;-cycle.

Following a similar argument, the iterations at line 6 retain at @3 only the
o-states which reside on a cycle containing a J;[i] state for each j and each i.
The cycles may be different for different values of 7 and 4, but they can always
be combined into a very big cycle which contains them all, and may revisit the
originating state many times.

It follows that, when (and if) the algorithm terminates, 4 contains the states
which reside on a non-empty fair (—gq)-cycle.

The algorithm presented above can, in principle, be used also for conventional
(non-parametric) symbolic model checking of liveness properties. However it is
not advisable to do so, because the algorithm is highly inefficient in the con-



ventional context due to the introduction of the auxiliary copy U of the state
variables.

Normally, assertions of states and transitions relations are specified as hav-
ing the types ¢ : V. — {0,1} and p : V x V! — {0,1}. When adding an addi-
tional copy of the state variables we obtain assertions: ¢ : V x U — {0,1} and
p:VxUxV'xU" — {0,1}.

Note that all the work on acceleration actually computes pop separately from
its application to any assertion ¢. This kind of computation is usually avoided
whenever possible. For example, in symbolic backwards exploration, it is more
efficient to compute p o (p ¢ ) rather than (po p) o .

For these reasons the additional copy of the state variables excises a heavy
penalty, as is evident from the performance figures presented in Table 1 of Sec-
tion 6. However, in the parameterized context, this is the only fully automatic
algorithm we managed to successfully use for the verification of liveness proper-
ties.

5.3 Liveness Using Pseudo Cycles

Realizing the heavy price one has to pay for a full second copy of the state vari-
ables, we developed another approach which replaces the notion of a cycle by a
pseudo cycle. Assume that the set of reachable states is partitioned by a parti-
tion IT into a set of disjoint classes. A pseudo-cycle, relative to the partition I1,
is a path which begins and ends in two states belonging to the same class. Note,
that when the partition IT is the finest possible, that is, each class containing a
single state, then the notions of a pseudo-cycle and a cycle coincide.

To use this approach, the user has to provide a parameterized assertion E(4),
which defines the partition, consisting of a class for each value of i. The pseudo-
cycle method is guaranteed to be sound but may produce false negatives due to
its approximative nature.

The following is the improved algorithm for finding fair (—¢)-pseudo-cycles:

1= (@Op*) AN —q
=p N 1
=1 A E(l)

=2 A pio(p1op)
rj:=1,...,k do

w3 =3 A (Vi:pio(L[i] A o1 A (pf o))

[y

S 36
w N

S

S N

Let E(i) be an assertion such that ¢; — E(¢). E(i) should be such that it
partitions the space of (—¢g)-reachable states. This partition corresponds to the
set of state classes we use in order to find pseudo cycles.

The improved algorithm is similar to the original one, except for lines 2,3,
in which we omitted the references to U, and line 7 which is omitted entirely.
Instead, line 3 includes a conjunct of E(i). The original constraint on line 3,
(Vi : Uli] = Xi]), uses U to form the finest partition, where each partition class
contains only a single state.



It is clear that if there exists a real fair —¢-cycle, then the improved algorithm
will find it. Therefore, if the algorithm declares that there are no bad pseudo-
cycles, this implies that, in particular there are no bad cycles, which establishes
the soundness of the algorithm when it is used to deduce the absence of any bad
cycles.

6 Results

In table 1, we present the results of our regular uniform verification applied to
several well-known algorithms. The results do not include the computations of
the accelerated transitions. It is obvious that the verification of safety properties
is significantly more efficient than the verification of liveness properties.

Algorithm Safety Liveness Improved Liveness

Time|Iterations| Time|(Iterations| Time| Iterations

Token ring 0.4 3| 53 40[ 9.2 32
Szymanski 0.2 8 - - - -
Termination detection| 5.6 9| - - - -
Dining philosophers 0.6 3 - - - -

Table 1. Experimental results (times in seconds)

7 Conclusions

In this paper we presented several significant extensions to the state-of-the art in
uniform verification of parameterized systems. We demonstrated the expressive
power of the logic FS1s as an efficient vehicle for expressing both the system
constituents as well as the meta-operations of acceleration. We presented several
acceleration schemes that lead to a very efficient regular model checking of safety
parameterized properties.

Finally, we presented the first approach to the uniform verification of liveness
properties of parameterized systems using the FS1s framework and the TLV[P)
tool.
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