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Abstract. In spite of the impressive progress in the de-
velopment of the two main methods for formal verifi-
cation of reactive systems — Symbolic Model Checking
and Deductive Verification, they are still limited in their
ability to handle large systems. It is generally recognized
that the only way these methods can ever scale up is
by the extensive use of abstraction and modularization,
which break the task of verifying a large system into
several smaller tasks of verifying simpler systems.

In this paper, we review the two main tools of com-
positionality and abstraction in the framework of lin-
ear temporal logic. We illustrate the application of these
two methods for the reduction of an infinite-state system
into a finite-state system that can then be verified using
model checking.

The technical contributions contained in this paper
are a full formulation of abstraction when applied to a
system with both weak and strong fairness requirements
and to a general temporal formula, and a presentation
of a compositional framework for shared variables and
its application for forming network invariants.

Key words: Formal verification - Linear temporal logic
- Data abstraction - Control abstraction - Network in-
variant - Model checking - Safety and liveness property
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1 Introduction

In spite of the impressive progress in the development
of the two main methods for formal verification of reac-
tive systems — Model Checking (in particular symbolic)

* This research was supported in part by a gift from Intel, a
grant from the U.S.-Israel bi-national science foundation, and an
Infrastructure grant from the Israeli Ministry of Science and the
Arts.

and Deductive Verification, they are still limited in their
ability to handle large systems. It is generally recognized
that the only way these methods can ever scale up to
handle industrial-size designs is by the extensive use of
abstraction and modularization, which break the task
of verifying a large system into several smaller tasks of
verifying simpler systems.

In this paper, we review the two main tools of com-
positionality and abstraction in the framework of lin-
ear temporal logic. We illustrate the application of these
two methods for the reduction of an infinite-state system
into a finite-state system that can then be verified using
model checking.

To simplify matters, we have considered two special
classes of infinite-state systems for which the combina-
tion of compositionality and abstraction can effectively
simplify the systems into finite-state ones. The first class
is where the unboundedness of the system results from
its structure. These are parameterized designs consist-
ing of a parallel composition of finite-state processes,
whose number is a varying parameter. For such systems,
the source of complexity is the control or the architec-
tural structure. We describe the techniques useful for
such systems as control abstraction, since it is the con-
trol component that we try to simplify. Another source
for state complexity is having data variables which range
over infinite domains such as the integers. We refer to
the techniques appropriate for simplifying such systems
as data abstraction.

Many methods have been proposed for the uniform
verification of parameterized systems, which is the sub-
ject of our control abstraction. These include explicit
induction ([12], [33]) network invariants, which can be
viewed as implicit induction ([20], [35], [15], [23]), meth-
ods that can be viewed as abstraction and approximation
of network invariants ([4], [32], [6]), and other methods
that can be viewed as based on abstraction ([16], [13]).
The approach described here is based on the idea of net-
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work invariants as introduced in [35], and elaborated in
[20] into a working method.

There has been extensive study of the use of data
abstraction techniques, mostly based on the notions of
abstract interpretation ([9], [10]). Most of the previous
work was done in a branching context which complicates
the problem if one wishes to preserve both existential
and universal properties. On the other hand, if we re-
strict ourselves to a universal fragment of the logic, e.g.
ACTL*, then the conclusions reached are similar to our
main result for the restricted case that the property 1
contains negations only within assertions.

The paper [7] obtains a similar result for the frag-
ment ACTL*. However, instead of starting with a con-
crete property 1 and abstracting it into an appropriate
9“, they start with an abstract ACTL* formula ¥ evalu-
ated over the abstract system D* and show how to trans-
late (concretize) it into a concrete formula ¢ = C(¥).
The concretization is such that o™ (¢) = &.

The survey in [8] considers an even simpler case in
which the abstraction does not concern the variables on
which the property 1 depends. Consequently, this is the
case in which 9 = 1.

A more elaborate study in [11] considers a more com-
plex specification language — L, which is a positive ver-
sion of the p-calculus.

None of these three articles considers explicitly the
question of fairness requirements and how they are af-
fected by the abstraction process.

Approaches based on simulation and studies of the
properties they preserve are considered in [24] and [14].

A linear-time application of abstract interpretation is
proposed in [3], applying the abstractions directly to the
computational model of fair transition systems which is
very close to the FDS model considered here. However,
the method is only applied for the verification of safety
properties. Liveness, and therefore fairness, are not con-
sidered.

2 A Computational Model: Fair Discrete
Structure

As a computational model for reactive systems, we take
the model of fair discrete system (FDS), which is a slight
variation on the model of fair transition system [28]. The
FDS model was first introduced in [19] under the name
“Fair Kripke Structure”.

AnFDs D:{V,W,0,0,p,T,C) consists of the follow-
ing components.

o V ={uy,...,un} : A finite set of typed system vari-
ables, containing data and control variables. The set
of states (interpretation) over V is denoted by X.
Note that X can be both finite or infinite, depending
on the domains of V.

The variables in V' are classified as follows:

o W = {ws,...,w,} CV : A finite set of owned
variables. These are the variables that only the
system itself can modify. All other variables can
also be modified by the environment. A system is
said to be closed if W = V.

e O ={o01,...,0,} CV : A finite set of observ-
able variables. These are the variables which the
environment can observe.

It is required that V =W U O, i.e., for every system
variable u € V', u is owned, observable, or both.

e O : The initial condition — an assertion (first-order
state formula) characterizing the initial states.

e p : A transition relation — an assertion p(V, V'), re-
lating the values V' of the variables in state s € X to
the values V' in a D-successor state s' € X.

o J : {J1,..., Jx} : A set of justice (weak fairness)
requirements. The justice requirement J € J is an
assertion, intended to guarantee that every compu-
tation contains infinitely many J-state (states satis-
fying J).

o C:{(p1,q1)s---{Dn,qn)}: A set of compassion (strong
fairness) requirements. The compassion requirement
(p,q) € C is a pair of assertions, intended to guar-
antee that every computation containing infinitely
many p-states also contains infinitely many g-states.

We require that every state s € X has at least one D-
successor. This is often ensured by including in p the
idling disjunct V = V' (also called the stuttering step).
In such cases, every state s is its own D-successor.

Let o : s¢, 81, 2, ..., be an infinite sequence of states,
o be an assertion, and let 7 > 0 be a natural number.
We say that j is a p-position of ¢ if s; is a ¢-state.

Let D be an rDS for which the above components
have been identified. We define a computation of D to be
an infinite sequence of states o : sq, s1, $2, ..., satisfying
the following requirements:

¢ is initial, i.e., so = O.

For each j =0,1,..., the state s;41 is
a D-successor of the state s;.

For each J € J, o contains infinitely
many J-positions

For each (p,q) € C, if o contains in-
finitely many p-positions, it must also
contain infinitely many g-positions.

o Initiality:
o Consecution:

o Justice:

o Compassion:

For an ¥DS D, we denote by Comp(D) the set of all com-
putations of D. An FDs D is called feasible if Comp(D) #
(), namely, if D has at least one computation.

An infinite state sequence o is called a run of D if
it satisfies the requirements of initiality and consecution
but not, necessarily, any of the fairness requirements.
System D is said to be wiable if every finite run can
be extended into a computation. One of the differences
between the model of fair transition systems and the FDS
model is that every FTS is viable by construction, while
it is easy to define an FDS which is not viable, e.g., by
having the justice list include the assertion false. On the
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other hand, every FDS which is derived from a program
is viable.

All our concrete examples are given in SPL (Simple
Programming Language), which is used to represent con-
current programs (e.g., [28], [26]). Every SPL program
can be compiled into an FDS in a straightforward man-
ner. In particular, every statement in an SPL program
contributes a disjunct to the transition relation. For ex-
ample, the assignment statement

by:y:=x+1; 4 :

can be executed when control is at location £y. When
executed, it assigns z + 1 to y while control moves from
£y to 1. This statement contributes to p the disjunct

peo: at by AN at by ANy =xz+1 Az =1

The predicates at_¢y and at_¢; stand, respectively, for
the assertions 7; = 0 and 7} = 1, where 7; is the control
variable denoting the current location within the process
to which the statement belongs.

Every variable declared in an SPL program is specified
as having one of the modes in, out, in-out, or local. This
specification determines whether the variable is consid-
ered to be owned or observable or both according to the
following table

Mode | Owned? | Observable?
in N Y
out Y Y
in-out N Y
local Y N

3 Operations on FDS’s

There are several important operations, one may wish
to apply to FDS’s.

The first useful set of operations on programs and
systems is forming their parallel composition, implying
that the two systems execute concurrently. Consider the
two fair discrete systems Dy = (Vi, Wy, 04,01, p1,J1,C1)
and Dy = (Va, Wy, 02,02, pa, J2,C2). We consider two
ways of forming the parallel composition of D; and Da.

3.1 Asynchronous Parallel Composition

The systems D; and D, are said to be composable if
WinWy, =0, V1NV, = O; N Oy and neither system
modifies the variables owned by the other, i.e.,

p1— pres(Won Vi) and py — pres(Wyn Vs).

The first condition requires that a variable can only be
owned by one of the systems. The second condition re-
quires that variables known to both systems must be
observable in both.

For composable systems D; and D2, we define their
asynchronous parallel composition, denoted by D; || D2,
to be the system D = (V,W, 0,0, p,T,C), where

V = ViuWw, W = Wy uWs,
O = O, U0, @ = O, N6,
J = S UJs C = C1UCy

P (pll\pres(Vg—Vl) V)

p2 A pres(Vi — V2)

For a set of variables U C V, the predicate pres(U)
stands for the assertion U’ = U, implying that all the
variables in U are preserved by the transition.

Obviously, the basic actions of the composed system
D are chosen from the basic actions of its components,
i.e., D; and D,. Thus, we can view the execution of D
as the interleaved execution of D1 and Ds.

As seen from the definition, D; and D, may have
disjoint as well as common system variables, and the
variables of D are the union of all of these variables. The
initial condition of D is the conjunction of the initial
conditions of D; and D,. The transition relation of D
states that at any step, we may choose to perform a step
of D1 or a step of D». However, when we select one of
the two systems, we should also take care to preserve
the private variables of the other system. For example,
choosing to execute a step of D;, we should preserve all
variables in V5 — V; and all the variables owned by Ds.

The justice and compassion sets of D are formed as
the respective unions of the justice and compassion sets
of the component systems.

Asynchronous parallel composition corresponds to the
SPL parallel operator || constructing a program out of
concurrent processes.

3.2 Synchronous Parallel Composition

We define the synchronous parallel composition of D
and Dy, denoted by D ||| D2, to be the system

D: (V’W3o,97p7jﬂc)3

where
V = ViuW, W = W;uUW,
O = 0,U0, © = O, N6,
J = "hUde C = CiUCy
p=pL A p2

As implied by the definition, each of the basic actions of
system D consists of the joint execution of an action of
D and an action of Ds. Thus, we can view the execution
of D as the joint execution of Dy and Ds.

The main, well established, use of the synchronous
parallel composition is for coupling a system with a tester
which tests for the satisfaction of a temporal formula,
and then checking the feasibility of the combined sys-
tem. In this work, synchronous composition is also used
for coupling the system with a progress monitor, used to
ensure completeness of the data abstraction methodol-
ogy presented in section 7.
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3.3 Modularization of an FDS

Let P be an SPL program and D its corresponding FDS.
The standard compilation of a program into an FDS
views the program as a closed system which has no in-
teraction with its environment. In the context of com-
positional verification, we need an open system view of
an FDS, which takes into account not only actions per-
formed by the system but also actions (in particular,
variable changes) performed by the environment.

Let D:(V,W,0,0,p,T,C) be an FDS and s ¢ V be
a fresh boolean variable. The modular version of D, is
given by DM : <VM ? WJ OM ? @7 pM ) \7’ C>7 Where?

V, =V Uu{s} 0, = O0U{s}
Py =(AS) vV (W =WA=s.

That is, D,, the modular version of D admits as an ad-
ditional action a transition which preserves the values of
all variables owned by D but allows all other shared vari-
ables to change in an arbitrary way. This provides the
most general representation of an environment action.
The scheduling variable s is used to ensure interleaving
between the module and its environment. We refer to
D,, as the modular or open version of system D.

We define a modular computation of D to be any

computation of D,, .

3.4 Restricting an Open Shared Variable

When constructing a system out of smaller components,
it is often the case that all processes within the system
are allowed to access a certain shared variable, but only
a subset of the processes is allowed to modify its value.
For example, we may have a system

D =D | D | Ds,

in which all processes are allowed to access variable ,
but only processes D; and D, are allowed to modify its
value.

We provide a special restriction (sealing-off) oper-
ation, which moves one of the system variables to the
category of owned variables, thereby disallowing its mod-
ification by the environment.

Let D:(V,W,0,0,p,7,C) be an FDS and let U C
V — W be a set of variables which are not owned by D.
The result of restricting U in D, denoted by D\U is the
FDS D, (V,W,,0,0,p,7,C), where W, =W UU.

Thus, to represent a system consisting of sub-systems
D1, Dy, and D3, in which D3 is not allowed to modify
variable xz, we may write

D = (D1 D2)\z) || Ds.

To represent the closing off of an entire system D,
we write D, which is an abbreviation for D\(V — W).
This restricts the environment from writing on any of
the system variables. A system such that W = V is
often described as a closed system, because it can have
no interaction with its environment.

4 Specification Language: Temporal Logic

As a requirement specification language for reactive sys-
tems we take temporal logic (TL) [27]. For simplicity, we
consider only the future fragment of TL. Extending the
approach to the full logic is straightforward.

We assume an underlying assertion language £ which
contains the predicate calculus and interpreted symbols
for expressing the standard operations and relations over
some concrete domains. A temporal formula is constructed
out of state formulas (assertions) to which we apply the
boolean operators - and V (the other boolean opera-
tors can be defined from these), and the basic temporal
operators O (next) and U (until).

A model for a temporal formula p is an infinite se-
quence of states o : sg, s1,..., where each state s; pro-
vides an interpretation for the variables mentioned in
.

Given a model o, we present an inductive definition
for the notion of a temporal formula p holding at a po-
sition j > 0 in o, denoted by (o, j) = p.

e For a state formulap, (0,j)Ep < s;Ep
That is, we evaluate p locally, using the
interpretation given by s;.

e (oj)E-w <= (o) Fp

e (oj)EPVe <= (oj)Epor(oj)Eq

e (j))FEOP <= (oj+1)EP

o (0,j) EpUq <= forsomek > j (0,k) =g,

and for every i such that j <i <k, (0,i) Ep
Additional temporal operators can be defined by

O p = true U p (eventually)
O p =< —p (henceforth)

For a temporal formula p and a position 5 > 0 such
that (o,7) = p, we say that j is a p-position (in o). If
(0,0) = p, we say that p holds on o, and denote it by
o = p. A formula p is called satisfiable if p holds on some
model. A formula p is called valid, denoted by = p, if p
holds on all models.

Given an FDS D and a temporal formula p, we say
that p is D-valid, denoted by D = p, if p holds on all
models which are computations of D. A property ¢ is
said to be modularly valid over FDS D, denoted D =,, ¢,
if p is D,,-valid, i.e., D,, = ¢.

An algorithm for model checking whether a temporal
formula p is valid over a finite-state FDS D is presented in
[19]. The paper presents a version of the algorithm using
explicit state enumeration methods as well as a symbolic
version. Based on the ideas developed in [22] and [5],
the approach calls for the construction of a tester for the
negation of p. This is an FDS D-, whose computations
are all the sequences which satisfy the negated formula
—p. Then, we form the synchronous parallel composition
D .omb = DIID-p and check for feasibility. If D1 is
found to be feasible, this implies that D has a compu-
tation which violates p and therefore p is not valid over
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D. If D,yypp is found to be infeasible, we can conclude
that p is D-valid.

5 Control Abstraction

Let U C V be a subset of the system variables. For
a V-state s, we denote by sy the U-state obtained
by projecting s onto U. That is, the interpretation s
restricted to the domain U.

The state sequence o : g, 81, ... is defined to be an
observation of the FpDs D : (V,W,0,0,p,7,C) if o is a
stuttering variant of the O-projection

0’~U0= So»u(g, 81~Uo, ey

where o : s, 81,... is a computation of D. Let Obs(D)
denote the set of all observations of system D.

The two FDS’s DA (VA3WA3OA3@A3pA’jA,CA)
and D, : (V,,W.,0,,0.,p.,T.,C.) are defined to
be comparable, if O, =0, and O, "W, = O, NW,.
The FDS D, is an abstraction of the comparable D, de-
noted by D, C D,, if Obs(D,) C Obs(D,), i.e., every
observation of D, is also an observation of D,. We refer
to D, and D, as the concrete and abstract systems, re-
spectively. The abstraction relation is obviously reflexive
and transitive.

It would have been very useful if the abstraction
relation as defined above, would have been composi-
tional with respect to (asynchronous) parallel compo-
sition. That is, if D, C D, would have implied (D, ||
Q) C (D, || Q) for every FDS Q. Unfortunately, this is
not the case.

Consider, for example, the FDS’s correponding to pro-
grams INCX and INCY presented in Fig. 1. Up to stut-
tering and idling, both of these FDS’s have the unique
observation

(x:0,y:0), (z:1,9y:1), (x:2,9:2), ...

It follows that INCX and INCY have the same set of ob-
servations. In particular, this implies that INCX C INCY.
However, when we consider the program @ given by

in-out z : integer

loop forever do
mo: x:=0

we find out that the observation
(£:0,y:0),{x:1,y:1),{(x:0,y:1),(x:1,y:1),...

belongs to Obs(INCX || @) but does not belong to the set
Obs(INCY || @). Consequently, while INCX C INCY,

(iNex || @) & (Ney || @),

which shows that the abstraction relation C is not com-
positional.

Obviously, the problem lies in the fact that the rela-
tion C is based on the set of observations of the closed-
system FDS semantics of programs. The difference be-
tween programs INCX and INCY can be observed only
when we take into account actions of the environment,
such as resetting variable x to 0. In the definition of the
compuatations (and therefore observations) of the FDS
assigned to these programs, such actions are not repre-
sented.

Once we diagnose the malady, the remedy is quite
straightforward. We say that ¥DS D, is a modular ab-
straction of the comparable D, denoted by D, C,, D,,
if Obs((D,),,) C Obs((D,),,), i-e., every observation of
(D.),, the modularized version of D, is also an obser-
vation of (D, ),, the modularized version of D, .

Note that, while INCY is a plain abstraction of INCX,
it is not a modular abstraction of INCX. To see this we
point to

(8:0,2:0,y:0),(s:1,z:1,y:1),(s:0,2:0,y:1),
(s:1,2z:1,y:1),...,

which is an observation of INCX,, but not of INCY,,.

When we upgrade from plain abstraction to modu-
lar abstraction, we obtain the desired property of com-
positionality of the abstraction relation with respect to
the operations of parallel composition and restriction, as
stated by the following claim:

Claim 1. Let D, and D, be two comparable FDS’s such
that D, C,, D,. Then, for every FDS @, and temporal
formula ¢,

1. (D, 1Q)C,, (D, Q)

2. (Do)n C,y (D.)s

3. D, Epimplies D, = ¢

We describe these compositionality properties by saying
that the operations of parallel composition and restric-
tion are monotonic with respect to modular abstraction,
while temporal validity is anti-monotonic.

This indicates how we propose to use abstraction in
order to simplify the verification task. Namely, given a
property p to be verified over a complex system D,
we use modular abstraction in order to derive a simpler
system D, and then verify that p is D, -valid. Note that
the implication is still in one direction. Namely, validity
over the abstract system implies concrete validity but
not, necessarily, vice versa. The most striking applica-
tions of this strategy are when D, is an infinite-state
system, while its abstraction D, is finite-state and thus
amenable to verification by model checking.

The comparable ¥nS’s P and @) are defined to be
modularly equivalent, denoted P ~,, @,ifboth PC, @
and QC,, P.

6 Verification by Abstract Network Invariants

In this section, we concentrate on cases in which the
system is a parallel composition P(n): (Py || --- || Ppn)g,
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in-out z : integer where z =0
out y : integer where y =0

loop forever do
lo: (z,y):=(z+1,z+1)

— INCX —

in-out z : integer where z =0
out y : integer where y =0

loop forever do
Lo: (z,y) =W+ Ly+1)

— INCY —

Fig. 1. Programs INCX and INCY

where each P; is a finite-state system. The final restric-
tion of the parallel composition guarantees that no fur-
ther interference from the environment is possible. The
unbounded number of states for system P(n) comes from
the fact that we consider an infinite family of systems,
and yet wish to verify uniformly (i.e., for every value of
n > 1) that the property p is valid.

The general principles of the method and one of the
examples presented in this section are shared with [20].
The main differences between the two presentations are
that, while [20] considers processes communicating by
synchronous message passing, we focus here on commu-
nication by shared variables, and we find the abstraction
we use somewhat simpler to comprehend, perhaps due
to the different communication mechanisms.

For simplicity, assume that the property p only refers
to the observable variables of P, and that processes

Ps,...,P,

are identical (up to renaming). The strategy we propose
can be summarized as follows:

Verification by Abstract Network Invariants

1. Devise a network invarient 7, which is an FDS in-
tended to provide a modular abstraction for the par-
allel composition Py || --- || P, for any n.

2. Confirm that 7 is indeed a network invariant, by
model checking that P, C, 7 and that (Z || Z) C,,
Z. The technique of model checking a modular ab-
straction is presented in Subsection 6.3.

3. Model check D, |= p, where D, is the restricted
system (P || Z),.-

We argue that this strategy is sound. Namely, if D,, = p
then P(n) = p for every n > 1. Step 2 of the strategy
establishes P || --- || P, C,, Z. By monotonicity of the
parallel composition (Claim 1), it follows that
Pl Pn E

—M

(P | D).

By monotonicity of the restriction operation, we can con-
clude that
Pn) = (Pl Pa)r E

—M

(P T)r = Dy-

Due to the anti-monotonicity of the validity relation, it
follows that D,, |= p implies P(n) |= p, establishing that
the proposed strategy is sound.

local y: natural where y =1

loop forever do
N; : NonCritical
T; : request y
C; : Critical; release y

Fig. 2. Program MUX-SEM.

Step 1 in the strategy is the only one requiring inge-
nuity and which cannot be fully mechanized. However,
while presenting the examples, we will provide some ex-
planations and clues for the choices we made.

6.1 Mutual Exclusion by Semaphores

As our first running example, we use program MUX-SEM
presented in Fig. 2. The program consists of n processes.
Each process P[i] cycles through three possible locations:
N;, T;, and C;. Location N; represents the non-critical
activity which the process can perform without coor-
dination with the other processes. Location T}, is the
“trying” location, at which a process decides it needs to
access its critical location. At the trying location, the
process waits for the semaphore variable y to become 1.
On entering the critical section C;, the process sets y
to 0. Finally, C; is the critical location which should be
reachable only exclusively by one process at a time. On
exit from the critical section, variable y is reset to 1.

The mode local specified for variable y identifies y as
being owned by the entire system but not by any of the
individual processes. This specification ensures that he
variable y cannot be modified by an enviornment agent
external to the program. By the standard compilation of
SPL programs, each process P[i] is associated with a jus-
tice requirement 7; : ~C; and a compassion requirement
Ci: (T; ANy > 0,C;). The justice requirement ensures
that process P[i] does not remain stuck forever at loca-
tion C;. The compassion requirement ensures that P[]
does not remain stuck forever at location T; while y turns
positive infinitely many times. Note that a process may
choose to stay forever at N; or may get stuck at 7; if
y turns positive only finitely many times and then re-
mains zero forever. The latter behavior cannot occur in
program MUX-SEM but this can be established only by a
global analysis of the complete system.
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release y

O

request y

J: C

Fig. 3. Process INV-CAND, a candidate for a network invariant.

In Fig. 3, we present process INV-CAND, which is
our first candidate for the network invariant abstracting
P[2] || --- || P[n]. In this section we choose to repre-
sent FDS’s by transition diagrams, in which we explicitly
list the fairness requirements. Process INV-CAND can be
obtained by simpilfying a single copy of the concrete
P[2]. The simplification consists of merging locations N
and T into a single location N and relaxing the fair-
ness requirements associated with this combined loca-
tion. This simplification is suggested by noting that the
main liveness requirement of accessibility is studied only
for process P[1]. The only liveness properties we require
from the environment processes P[2],..., P[n], is that
they eventually exit their critical sections and release
the semaphore. Thus, while being at location N, pro-
cess INV-CAND may choose non-deterministically to stay
at N or move to C if y equals 1. There is no justice
requirement associated with location N, due the possi-
bility that the process may choose to remain there. On
the other hand, with location C, we associate the jus-
tice requirement —C' which excludes behaviors in which
INV-CAND get stuck at C. Let us denote by C, the FDS
corresponding to INV-CAND .

A useful heuristic that often leads to the generation
of network invariants is forming the sequence of FDS’s
Il = Ca, IQ = Ca || Ca, I3 = IQ || Ca, ey and compar-
ing every two successive Z;’s, hoping that the sequence
will converge. Convergence means that we identify an
index j > 0 such that 7; ~,, 7;4,. Trying this ap-
proach with the FDs C, fails. Comparing Z»:C, || C,
with Z;: Cy, we find that (Z),, can generate the obser-
vation

(y:1,8:0), (y:0,8:1), (y:1,5:0), (y:0,5:1),
(y:las:l)a <y:035:0)3 (y:las:l)a Ty

which cannot be generated by (Z1),,. Such a behav-
ior can be explained as a scenario in the behavior of
P[2] || P[3] under an unrestricted environment. First,
P[2] enters its critical section according to the step (y :
1,8:0) - (y : 0, s :1). Then, while P[2] is still in
its critical section, the environment raises y to 1, ac-
cording to the step {(y : 0,8 : 1) — {(y : 1,5 : 0) (we
know that this is an environmet step because s’ = 0.
Then PJ[3] enters its own critical section, as recorded in
(y:1,5:0) > (y:0,s:1). Following that, P[2] exits
its critical section ({y : 0, s : 1),— (y : 1, s : 1)), the
environment resets y to 1 ({y : 1, s:1) = {y: 0, s:0)),

release y y:=0
y>0
request y y:=1
J: C

Fig. 4. The FDS Z,nuz, a network invariant for MUX-SEM.

and finally P[3] exits ({y : 0, s:0), (y: 1, s:1)). What
is special about this behavior is that 7, exits twice in
succession without an observable entry between these
two exits. In all behaviors of 7; = C,, which has only
one copy of P[2], every two exits must be separated by
an observable entry.

In a similar way, we find that Z3 can exit its critical
sections three times in succession, if the environment
cooperates, which cannot be done by Z,. This shows
that the sequence 71,75, ... will never converge.

Looking closer at this example, we realize that the
factor that differentiates between Z; and 75 and between
T and Z3 is their response to a behavior of the environ-
ment which will never be realized in the closed system,
namely raising the semaphore variable to 1 while one of
the processes is in its critical section. This leads us to the
next (and final) abstraction Z,,.z, presented in Fig. 4.

The system 7,,,, behaves as C, as long as the envi-
ronment behaves properly. However, once it detects that
the environment raised the value of y from 0 to 1 while
the system was in the critical section, it goes into a chaos
control state in which “anything goes”. That is, all arbi-
trary sequences of values for the observable variables will
be accepted from this point on. It is obvious that Z,,uz
is an abstraction of C, because it differs from C, in all
the additional behaviors it is ready to generate once it
reached the chaos state.

It is not difficult to verify that Z,,,, is a network
invariant. We model checked that C, C,, Z;,,, and that

It only remains to perform step 3 in the abstrac-
tion strategy presented in the beginning of the section.
We form the closed system ¥DsS D = (P, || Z),, and
use model checking to verify the liveness property D =
(N1 — < Ch). This has been done and established
that process P[1] of program MUX-SEM has the property
of accessibility for any number of processes.

6.2 The Dining Philosophers Problem

As a more advanced example, we applied the technique
described above to the problem of the dining philoso-
phers. As originally described by Dijkstra, n philoso-
phers are seated at a round table. Each philosopher al-
ternates between a thinking phase and a phase in which
he becomes hungry and wishes to eat. There are n chop-
sticks placed around the table, one chop-stick between
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-

release L : release R
SO ONFONNO

request L Ll |R request R

\ B
request L request R
X

release L »_release R D

J: ~C,, C: (R, =Cy)

Fig. 6. The FDS Z,.,n¢p, the network invariant for program DINE-
CONTR.

every two philosophers. In order to eat, each philoso-
pher needs to acquire the chop-sticks on both sides. A
chop-stick can be possessed by only one philosopher at
a time.

A solution to the dining philosophers problem, us-
ing semaphores, is presented by program DINE-CONTR
of Fig. 5.

In this program, philosophers P[2],..., P[n] reach
first for the chop-stick on their left, represented by sema-
phore variable ¢[j] for philosopher j, and then for their
right chop-stick (semaphore c[j &, 1]). Philosopher P[1]
behaves differently, reaching first for his right chop-stick
(c[2]) and only later for his left chop-stick (¢[1]). We wish
to prove the liveness property of accessibility for each of
the philosophers, which can be specified by the temporal
formula

¢accz D(at*ZQ[]] - <>(at*€4[-7]))7

for every j = 1,...,n. This property ensures that every
hungry philosopher eventually gets to eat.

Proceeding through a sequence of abstraction steps
similar to the previous example, we finally wind up with
the FDS Z ,ptr Presented in Fig. 6.

The diagram of Fig. 6 consists of two components
that operate in parallel, one taking care of the left sema-
phore L and the other handling the right semaphore R.
Whenever an environment fault is detected, i.e. the en-
vironment raises a semaphore that has been lowered by
the system, both components escape to the chaos state
after which all behaviors are possible. By the graphical
conventions, the transitions to a chaos state have prior-
ity over internal transitions such as the one connecting
(N, R) to (C,, ~R).

Since Z o4y is intended to abstract behaviors of a
string of consecutive philosophers

P Pla+ 1]l --- 1| P,

we should not be surprised that the behavior of the left
semaphore L is only loosely coupled with that of the

right semaphore R. This is because L stands for c[i] (as-
suming ¢ > 1) the left semaphore of process P[i] the left-
most process in the string, while R stands for ¢[j &, 1]
the right semaphore of P[j], the rightmost philosopher.
There is still a weak coupling which is expressed through
the fairness requirement. For ordinary philosophers, who
take the right chop-stick last, the obligation to release
semaphore R once it is taken, can be guaranteed locally,
independently of the environment. This is expressed by
the justice requirement —C',. forbidding the system to re-
main forever in C,. with the semaphore R occupied. The
situation is different with the left semaphore L. No sub-
system (modeled by Z.ontr) can unconditionally guar-
antee release of L once it is taken. Consequently, the
fairness requirement guaranteeing the release of L is for-
mulated as the compassion requirement (R, —C;) making
the release of L (as implied by being at N;) conditional
on the infinite recurrence of an available R. Already at
the level of a single philosopher, after acquiring L the
system proceeds to acquire R. If R is not available with
sufficient frequency, the system will fail in obtaining it,
and will keep L occupied forever.

It is straightforward to verify (using model checking)
that Z .4 modularly abstracts any of the processes
P[2],..., P[n] and that (Zeontr | Zeontr) Eu Zeontr-
It follows that Z .,y is @ network invariant for any se-
quence of regular philosophers. We can combine Z 4y
with P[1] to establish the accessibility properties of the
contrary philosopher P[1].

We can also verify the accessibility property for all
ordinary philosophers. To do so, we consider the combi-
nation P[1] || Zcontr || Plordinary] || Z contr, in which
we use the network invariant 7 .,,4- as an abstraction
for the sequence of philosophers separating P[1] from
Plordinary] and then again as an abstraction for the se-
quence of philosophers separating P[ordinary] from P[1]
in the other direction.

In all of these combinations, we should remember to
close the ring by identifying the leftmost semaphore of
the combination with the rightmost semaphore.

6.3 Model Checking Modular Abstraction

When carrying out the abstraction process as described
in this section, we are repeatedly required to verify that
one FDS modularly abstracts another. Most of the avail-
able computer aided verification (CAV) tools for LTL (e.g.,
sTeP [2] and TLV-BASIC[31]) are designed to support ver-
ification tasks. That is, they accept as inputs a system
description, equivalent to an ¥DS D, and a temporal for-
mula ¢ and attempt to establish (or refute) that D = .
In this subsection, we show how the modular abstrac-
tion problem D_ C,, D, can be reduced into a verifica-
tion problem. This reduction can be used in order to
establish the modular abstraction relation between sys-
tems while using the available LTL verification tools.
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4o : loop forever do
¢1 : NonCritical
£y : request c[j]
Plj] = 43 : request c[j ®n 1]
: Critical
45 : release c[j]
£g : release c[j ®n 1]

| —3

in n:integer where n > 2
local ¢ : array [1..n] where c=1

4y : loop forever do
{1 : NonCritical
{3 : request c[2]
|| P[] = {3 : request c[l]
{4 : Critical
{5 : release c[2]
Lg : release c[1]

Fig. 5. Program DINE-CONTR: solution with one contrary philosopher.

The idea of proving abstraction (equivalently refine-
ment) by forming a superposition of the abstract and
concrete systems, as we do here, has been proposed in
[17]. The underlying theory of proving abstraction by
simulation relations is thoroughly discussed in [1] and
applied in [25], [34], [29], [21].

In theory, for the case that both D, and D, are
finite-state, the modular abstraction problem is algorith-
mically solvable. All that is required is to convert the
two systems into w-automata, compute the complement
of the D,-automaton, and check that the languages of
D, and D, have an empty intersection. However, very
few symbolic model checkers provide that capability of
complementing a system and, even when they do, this
operation could be exponentially expensive.

Instead, we base our approach on the simple obser-
vation that when D, is deterministic, it is possible to
construct a combined system which will try to emulate
the joint computation of the two systems. For the case
that D, is non-deterministic, we rely on the user to pro-
vide an additional restriction on the possible actions of
D,, reducing them to a single possible action. Thus, we
trade computational complexity for full automation, and
our approach may require user interaction.

Consider two comparable FDS’s:
DC : (VC’WC7OCJOCJPCJ¥7CJCC>

and it’s proposed abstraction
DA : <VA’WA7OA76AJpA"-7AJCA>J

and assume we wish to establish that D, C,, D,. With-
out loss of generality, we can assume that V, NV, =0,
but that there exists a 1-1 correspondence between the
variables of O and those of O, .

We say that the FDS D, : (V,,W,,04,60,ps,Ts,Cs)
is a superposition of D, and D, if it has the following

form:

V, =V, uV,

W, = W, uUW,

O, =0,U0,

O, = O0,N0,NOy4

A@EV,:0, A0, AN O, =0,) - 0, =0,)
ps = (b A (V] :p, NO, =0,) = O, =0L))
Vo(ps A ((AV]ipg NO, = 0L) 0, = OL))

Pp = Pc N Py N pd
ps = pres(W,) A pres(W,)
J, = T, and C,=C,

The general idea in the construction of the superposition
system D, is that every computation of D induces a
computation of D, (when projected on V) and a run
of D, (when projected V). Thus, a computation of D
can be viewed as a joint computation of the two systems
D, and D,. There are two desired features a successful
superposition of D, and D, should satisfy.

1. Every computation of D, is induced by some com-
putation of D,. Thus, the additional conjuncts in O
and p, should not restrict the behavior of D, .

2. To the best of its ability, D, should attempt to main-
tain the correspondence O, = O, . This explains the
role of the implications conjuncted into @, and p,.
These implications require that, if it is possible to
choose abstract variables which are consistent with
the constraints of D, and maintain O, = O,, then
such a choice should be made.

Note also that the system D has already been modu-
larized by defining p. as the choice between a system
step p, which is comaptible with p, A p, and an envi-
ronment step p, which only guarantees the preservation
of W, =W_UW,.

The system D, has ©4 and pg as open parameters,
which should be provided by the user. Once they are
specified, D, can be automatically constructed from D,
and D,, and this is what has been implemented in the
current TLV-BASIC implementation of the modular ab-
straction checker within TLV.
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Al.0, -3V, :0, AN Oq
A2.p, =3V, :p, A pa
(O =0,)
A3.D, = [ A Nser, OO
A /\(p,q)ECA(D <>P_’ ] <>q)
DC EM DA

Fig. 7. Rule MOD-ABST.

A very simple choice is to take ©4 = pg = 1, namely,
take them both as being identically true. This choice
is adequate in all cases that the abstract system D, is
deterministic. Determinism in the abstraction context
means that, for every D, -state s and a set of specified
values U for the observable variables O, , there exists at
most one s’ a p,-successor of s, such that s'[0,] =U.
All the examples presented in this section such as the
network invariants presented in Fig. 4 and Fig. 6 are
deterministic. In fact, one of the reasons for eliminating
the trying location 7" in process INV-CAND and the other
network invariants was to make them deterministic. In
view of this, all the modular abstractions mentioned in
this section were resolved by superposition systems in
which we have taken @4 = pg = 1.

The following claim makes precise the relation be-
tween computations of D, computations of D, and runs
of D,.

Claim 2. 1If o is a computation of D, then oy _ is a
computation of D, and o}y, isarunof D,.

In the preceding discussion, we listed two features which
are desirable in a good superposition. However, these
features are not automatically guaranteed. In Fig. 7, we
present a proof rule whose premises guarantee that the
system D, has the desired features.

Premise Al guarantees that for every value assign-
ment to the concrete variables V satisfying ©_, there
exists a value assignment to the abstract variables V,
satisfying © , A ©4. Thus, ©, A B4 does not restrict the
choice of values for V..

Premise A2 stipualtes a similar non-restriction re-
quirement for p.. It requires that, for every value as-
signments to V., V!, and V,, which make p,(V,,V/)
true, there exists a value assignment to V| which satis-
fies p,(V,, Vi) A pa(V,,, V., V,,V}). Thus, p, A pg does
not restrict the choice of values for V,, V!, and V,.

Finally, premise A3 requires that every computation
o of D, maintains the invariant [1(O, = 0,), and o}y,
the projection of o on the abstract variables V, yields
a computation of D,. According to Claim 2, olly, is a
run of D,. Adding to it the fact that o satisfies all the
fairness requirements of D,, as established by A3, we
can conclude that o}y, is also a computation of D,,.

The following claim states that rule MOD-ABST is
sound.

Claim 3. If the premises of rule MOD-ABST are valid
for some choice of @4 and pq, then D, is a modular
abstraction of D,,.

7 Data Abstraction

In this section, we present a general methodology for
data abstraction, strongly inspired by the notion of ab-
stract interpretation [9]. Since in this case we do not
deal with compositionality and modularization, we use
a slightly simpler FDS model, in which system variables
are not classified into W and O.

Let D =(V,0,p,J,C) be an FDS, and X' denote the
set of states of D, the concrete states. Let v : X — X,
be a mapping of concrete states into abstract states. We
say that « is a finitary abstraction mapping, if X, is a
finite set. The strategy of verification by data abstraction
can be summarized as follows:

Verification by Data Abstraction

1. Define a finitary abstraction mapping « to ab-
stract the (possibly infinite) concrete ¥FDS D
into a finite, abstract FDS D“.

2. Abstract the concrete temporal property
into a finitary abstract temporal property <.

3. Verify D™ = 9°.

4. Infer D = 4.

An implementation of this general strategy which speci-
fies a recipe for defining the abstractions D* and ¢ for
a given « is called a data abstraction method.

A data abstraction method is said to be safe (equiv-
alently, sound) if, for every FDS D, temporal formula ),
and a state abstraction mapping a (not necessarily fini-

tary), = ¢ implies = 4, and D* |= 9® implies D = 9.
7.1 Safe Abstraction of Temporal Formulas

To provide a syntactic representation of the abstraction
mapping, we assume a set of abstract variables V, and a
set of expressions £%, such that the equality V, = £%(V)
syntactically represents the semantic mapping a.

Let p(V') be an assertion. We wish to define the ab-
straction p*(V,) such that | p*(V,) implies = p(V).
We introduce the operator a—, defined by

o (V) W (V,=E(V) - p(V).

The assertion a~ (p) holds for an abstract state S € X,
iff the assertion p holds for all concrete states s € X' such
that s € a~1(9), i.e., all states s such that S = a(s).
Alternatively, o~ (p) is the largest set of states X C X4
such that a=1(X) C ||p||, where ||p|| represents the set
of states which satisfy the assertion p. If = (p) is valid,
then [|la~ (p)|| = &, implying a~*(|la~ (p)[}) = & which,
by the above inclusion, leads to ||p|| = X establishing
the validity of p.
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For complex formulas, we have to consider assertions
which are nested within an odd number of negations. To
abstract an assertion under such a context, we define the
operator a*t, dual to a—, as follows

oatp)): W (V=€) A (V).

The assertion o (p) holds for an abstract state S € X,
iff the assertion p holds for some concrete state s € X
such that s € a~1(9), i.e., some state s such that S =
a(s). Alternatively, a™(p) is the smallest set X C X4
such that ||p|| C o~ 1(X).

An abstraction « is said to be precise with respect to
an assertion p if at(p) ~ a~(p). A sufficient condition
for a to be precise w.r.t. p is that the abstract variables
include a boolean variable B, with the definition B, = p.

Having defined the abstractions a~ and o+ which
operate on assertions, we lift them to the abstractions
a; and o which can be applied to temporal formulas.
These temporal abstractions are defined inductively, as
presented in Fig. 8.

We respectively refer to a; (p) and o (p) as the uni-
versal (or contracting) and existential (or ezpanding) ab-
straction of the formula p.

Note that equivalent temporal formulas may have
different abstractions. For example, the contracting ab-
stractions of the equivalent formulas

pV(gv<r) and (pve)Vv O,

where p, ¢, and r are assertions (state formulas) are re-
spectively given by the formulas

a”(p)Vea (g v<a (r) and a”(pve) Vv a(r),

which may be inequivalent. Similarly, the respective ab-
stractions of

pA(gAOT) and pAg

are
(

and at(pAq).

at(p) Aa*(q)

Claim 4. Let ¥ be a temporal formula and a be an
abstraction mapping. Then

E o, (1) implies 1 and [=4 implies E of (1)

The proof of this claim appears in [18].
In the following sections, we denote by ¥* the con-
tracting abstraction a; (¢) of the temporal formula .

7.2 Safe Abstraction of FDS’s

In the previous subsection, we established that the ab-
straction of the temporal formula ¢ into ¥* = a; (¢) is
safe (equivalently sound) in the sense that if ¢ is valid,
then so is 7.

Here we will establish sufficient conditions for the
joint abstraction of the FDS D and the temporal formula

1 to be safe (sound) in the sense that D* = ¢* implies
D [= 9. To do so, we reduce the problem of the safe joint
abstraction of an FDS and a temporal property into the
problem of safe abstraction of a single temporal prop-
erty, a problem that has been solved in the preceding
subsection.

Given an FDs D = (V, 0, p, J,C), there exists a tem-
poral formula Sem(D), called the temporal semantics of
D [30], such that, for every infinite state sequence o, it
holds that o |= Sem(D) iff o € Comp(D). The temporal
semantics of an FDS D is given by

o) A Op(V,OV) A

Niey OOIV) A ,
Apgec (O OpV) = OO e(V))

where we use the temporal expression OV to denote the
next values of the system variables V. Given a verifica-

Sem(D):

?
tion problem D |= 1, we construct the temporal formula
Ver(D,):

It is not difficult to establish that D | ¢ iff Ver(D,v)
is valid.

Applying a safe a-abstraction to Ver(D, ), we ob-
tain

Sem(D) — 1.

at (@) A Oatt(p) A

a, (Ver(D,9)) = | Ajey OO (JI) A

Apyec (OO (p) » O O(at(9)

where

V, =&%V) A
Ov, =£4(QV) A
p(V,OV)

att(p): 3V,0V:

Based on the way a; (Ver(D,)) abstracts the different
components of D, we define the a-abstracted version of
D to be the Fps D™ = (V,, 0%, p*, J*,C), where

0% = at(0) p* =at*(p)
Je={a"(J) | J€ T}
C* ={(a=(p),a*(9) | (p,q) € C}

The following claim defines our recipe for verification by
data abstraction and states its soundness (safety).

Claim 5 (Soundness). The abstraction method which,
for a given a, abstracts ¢ into a; (¢) and abstracts D
into D* = (V,,0%, p*, J*,C*), is safe. That is,

De g Dk .

Proof:  An immediate consequence of claim 4 and the
definitions of D and . O

As an example, we consider program BAKERY-2, pre-
sented in Fig. 9.

Program BAKERY-2 is obviously an infinite-state system,
since the variables y; and y» can assume arbitrarily large
values.

implies
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For a state formula p,
ar(p)  =a(p)
a7 (=p) =-af(p)
a;(pVq) =a(p)Var(q)
a7 (Op) = Oar(p)
a; (pUq) = (ar (p))U(ar (¢))

87

For a formula ¢ € {-p,pV q, O p,pUq}, which is not a state formula,

T  =at(p

= =a; (p)

+
T(Op) =0Qaf(p
TpUq) = (af (p))U(ai (q))

Fig. 8. Abstractions of temporal formulas.

local yi,y2 : natural where y; =y =0
4o : loop forever do myo : loop forever do

/1 : NonCritical mi : NonCritical
ly:y1:=y2+1 mo:ys:=y1+1
l3:await y2 =0 V y1 <92 ms:await y1 =0 V y2 <y
44 : Critical my : Critical
ls:y1:=0 ms :ys =10

_ P - _ P —

Fig. 9. Program BAKERY-2: the Bakery algorithm for two processes.

The temporal properties we wish to establish are
given by

1pezc : D _‘(at_g4 A at_m4)
Yace * D(at7‘€2 - <> at,&;),

The safety property ez requires mutual exclusion, guar-
anteeing that the two processes never co-reside in their
respective critical section at the same time. The liveness
property ¥,.. requires accessibility for process Py, guar-
anteeing that, whenever P; reaches location £y it will
eventually reach location £4.

Following [3], we define abstract boolean variables
BPI ) Bp2 3o
the atomic data formulas for BAKERY-2 are y; = 0,
y2 = 0, and y1 < y2. Note that the formula yo < 9
is equivalent to the negation of y; < y2 and needs not
be included as an independent atomic formula.

The abstract system variables consist of the concrete
control variables, which are left unchanged, and a set
of abstract boolean variables By, , By,, ..., Bp,. The ab-
straction mapping « is defined by

BPk = pk}

That is, the boolean variable B, has the value true in
the abstract state iff the assertion p; holds at the corre-
sponding concrete state.

It is straightforward to compute the a-induced ab-
stractions of the initial condition ©“ and the transition
relation p*. In Fig. 10, we present program BAKERY-2

a: {BP1:p17BP2:p27"'7

., By, , one for each atomic data formula, where

(with a capital B), the a-induced abstraction of program
BAKERY-2.

Since the properties we wish to verify refer only to the
control variables (through the at ¢ and at_m expres-
sions), they are not affected by the abstraction. Program
BAKERY-2 is a finite-state program, and we can apply
model checking to verify that it satisfies the two prop-
erties of mutual exclusion and accessibility. By Claim 5,
we can infer that the original program BAKERY-2 also
satisfies these two temporal properties.

7.8 Augmentation by Progress Monitors

Program BAKERY-2 is an example of successful data
abstraction. However, there are cases when abstraction
alone is inadequate for transforming an infinite-state sys-
tem satisfying a property into a finite-state abstraction
which maintain the property. In the following we illus-
trate the problem and the proposed solution on a simple
example. For the treatment of the general case, see [18].
In Fig. 11, we present a simple looping program. The
assignment at statement £, assigns to y non determin-
istically the values y + 1 or y. The property we wish to
verify is that program SUB-ADD always terminates, in-
dependently of the initial value of the natural variable
9.

A natural abstraction for the variable y is defined by
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4o : loop forever do
#1 : NonCritical
£3 1 (By,=0, By, <y,) = (0,0)
£3: await By,—0 V By, <y,
{4 : Critical
L5 : (By,=0, By; <y,) = (1,7 By,=0)

_ P -

local By,—g, By,—0, By, <y, : boolean initially By,—o = By,—0 = 1, By;<y, =0

myo : loop forever do

m1 : NonCritical
(Byy=0; By; <y,) := (0,1)
mg : await By,=0 V By, <y,
my : Critical
ms 1 (Byy=0, By;<y,) := (1,0)

mo
|

—_ P —

Fig. 10. Program BAKERY-2: the Bakery algorithm for two processes.

y: natural
lo : while y > 1 do

bi:y:=y—2
by :={y+1y}
43 : skip

by :

Fig. 11. Program SUB-ADD .

Y : {zero, one, large}
Lo : while Y = large do
[61 Y = sub2(Y)

lL: Y :={add1(Y),Y}
43 : skip

by :

Fig. 12. Program SUB-ADD-ABS-1 abstracting program SUB-ADD.

if y = 0 then zero
else if y = 1 then one
else large,

Y =

where y is abstracted into the three-valued domain
{zero, one, large}.

However, applying this abstraction yields the abstract
program SUB-ADD-ABS-1, presented in Fig. 12, where the
abstract functions sub2 and addl are defined by

_ (if Y = {zero, one} then zero
sub2(Y) = (else {zero, one, large}, )

0ddl (V) = (1fY:zero then one)

else large.

Unfortunately, program SUB-ADD-ABS-1 needs not ter-
minate, because the function sub2 can always choose to
yield large as a result.

Termination of programs like program SUB-ADD can

that never increases and sometimes is guaranteed to de-
crease. In this case, for example, we can use the progress
measure 6 : y + at_f> which never increases and always
decreases on the execution of statement ¢;. To obtain a
working abstraction, we first compose program SUB-ADD
with an additional module, to which we refer as the
progress monitor for the progress measure §, as shown
in Fig. 13.

The construct always do appearing in MONITOR Mj
means that the assignment which is the body of this con-
struct is executed at every step. The comparison func-
tion comp(é, ') is defined by

if § < ¢ then 1
else if § = §' then 0
else —1.

comp(8,8') =

Note that the expressions on the right-hand-side of the
assignments in the monitor allow references to the new
values of § as computed in the same step by the moni-
tored program.

The presentation of the monitor module My in Fig. 13
is only for illustration purposes. The precise definition of
this module is given by the following FDS:

V =Vp U {inc:{-1,0,1}}
O:T

p:inc’ = comp(8,6")

J 0, C : {(inc < Oinc > 0)}

where Vp are the system variables of the monitored
FDS D. Thus, at every step of the computation, mod-
ule Ms compares the new value of § (') with the cur-
rent value, and sets variable inc to -1, 0, or 1, accord-
ing to whether the value of § has decreased, stayed the
same, or increased, respectively. This FDS has no jus-
tice requirements but has the single compassion require-
ment (inc < 0,4inc > 0) stating that § cannot decrease
infinitely many times without also increasing infinitely
many times. This requirement is a direct consequence of
the fact that ¢ ranges over the well-founded domain of
the natural numbers, which does not allow an infinitely

always be established by identification of a progress measure decreasing sequence.
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that SUB-ADD-ABS-2 always terminates can now be suc-

The extension to the case that the progress measure
ranges not over the naturals but over lexicographic tu-

y: natural
£o : whil 1d
ez % define 6 =y + at_£>
Zl:y::y_ 1 e :{-1,0,1}
; yk.'_ ly+1,9} myo : always do
3 : SKIP inc := comp(8,6")
E4 H
— SUB-ADD — — MONITOR Mg —
Fig. 13. Program SUB-ADD composed with a monitor.
y : natural
inc: {—1,0,1} cessfully model-checked.
4o : while y > 0 do
bi: (y,inc) == (y—2, comp(8,8"))
£ (y,ine) == ({y + 1,9}, comp(§,68")) ples of naturals is straightforward.
L3 me = comp(6,8")
by :

Fig. 14. A sequential equivalent of the monitored program.

Y : {zero, one, large}
inc : {-1,0,1}
compassion (inc < 0,inc > 0)
fo : while Y = large do
£y : (Y, inc) := (sub2(Y), —1)
t2: (¥, inc) i= ({add1 (V), Y}, {0, ~1})
03 : inc := 0

by :

Fig. 15. Abstracted version of the monitored- Program suB-ADD-
ABS-2.

It is possible to represent this composition as (al-
most) equivalent to the sequential program presented in
Fig. 14, where we have conjoined the repeated assign-
ment of module M with every assignment of process
SUB-ADD. The “almost” qualification admits that we did
not conjoin this assignment with the transition associ-
ated with location £y which tests the value of y and de-
cides when to terminate. In a fully formal treatment of
this example, the assignment will also be conjoined to
this testing transition.

The abstraction of the program of Fig. 14 will abstract
y into a variable Y ranging over {zero, one, large}. The
variable inc, ranging over the finite domain {—1,0,1},
is not abstracted. The resulting abstraction is presented
in Fig. 15.

The program SUB-ADD-ABS-2 (Fig. 15) differs from pro-
gram SUB-ADD-ABS-1 (Fig 12) by the additional com-
passion requirement (inc < 0,inc > 0). However, it is
this additional requirement which forces program SUB-
ADD-ABS-2 to terminate. This is because a run in which
subl always yields large as a result is a run in which
inc is negative infinitely many times (on every visit to
£1) and is never positive beyond the first state. The fact

7.4 The Data Abstraction Method is Complete

In a separate work [18], concentrating on the data ab-
straction method, we have established that this method
is relatively complete. Completeness in this context means
that for every (possibly infinite) system D and a tempo-
ral property 1, such that D |= 9, there exists a (progress)
monitor Ms whose composition with D does not con-
strain the computations of D, and a finitary state ab-
straction mapping «, such that (D||Ms)* = ¥*. This
implies that whenever 1 is a property valid for D, we
can apply the method of data abstraction described in
this section in order to formally verify that ¢ is D-valid.

8 Conclusions

The paper presented two central techniques for reducing
a big verification task into several smaller ones. These
techniques are specially impressive when they reduce an
infinite-state system into a finite-state one.

The first technique is based on control abstraction
and reduces an unbounded environment for a single mod-
ule into an abstract environment model which repre-
sents the relevant features of the environment. Often,
the unbounded environment represents a set of brother
processes and the derived abstract model represents a
network-invariant which is independent of the size of this
set.

The second technique is that of data abstraction in
which variables ranging over infinite domains are ab-
stracted into variables ranging over finite domains. The
method presents a general recipe for computing such an
abstraction for every user-provided state mapping, such
that the abstraction preserves all counter-examples to
any temporal property. This means that if the property
has been verified to be valid on the abstract level, its
concrete version is guaranteed to be valid (no false pos-
itives).



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Verification. 15

An important feature of our formulations of these two

methods is that they are not restricted to the verification
of safety properties as are many previous formulations of
similar approaches, but deal quite effectively with live-
ness properties, in fact with all temporally expressible
properties. On the system side, they take full account
of both weak (justice) and strong (compassion) fairness
requirements.

Acknowledgment: We gratefully acknowledge the valu-
able contribution of Elad Shahar who implemented rule
MOD-ABST in his TLV system. We thank Monica Marcus
for her help in debugging various versions of the rule.
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