Verification of Clocked and Hybrid Systems*

Yonit Kesten!  Zohar Mannat Amir Pnueli$

Abstract. This paper presents a new computational model for real-
time systems, called the clocked transition system (CTS) model. The CTS
model is a development of our previous timed transition model, where
some of the changes are inspired by the model of timed automata. The
new model leads to a simpler style of temporal specification and ver-
ification, requiring no extension of the temporal language. We present
verification rules for proving safety and liveness properties of clocked
transition systems. All rules are associated with verification diagrams.
The verification of response properties requires adjustments of the proof
rules developed for untimed systems, reflecting the fact that progress in
the real time systems is ensured by the progress of time and not by fair-
ness. The style of the verification rules is very close to the verification
style of untimed systems which allows the (re)use of verification meth-
ods and tools, developed for untimed reactive systems, for proving all
interesting properties of real-time systems.

We conclude with the presentation of a branching-time based approach
for verifying that an arbitrary given CTS is non-zeno.

Finally, we present an extension of the model and the invariance proof
rule for hybrid systems.
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1 Introduction

A formal framework for specifying and verifying temporal properties of reactive
systems often contains the following components:

o A computational model defining the set of behaviors (computations) that are
to be associated with systems in the considered model.

e A requirement specification language for specifying properties of systems
within the model. The languages we have considered in our previous work are
all variants of temporal logic extended to deal with various aspects specific to
the considered model, such as real-time and continuously changing variables.

o A system description language for describing systems within the model. We
frequently use both a textual programming language and appropriate exten-
sions of the graphical language of statecharts [Har87] to present systems.



e A set of proof rules by which valid properties of systems can be verified,
showing that the systems satisfy their specifications.

o A set of algorithmic methods enabling a fully automatic verification of decid-
able subclasses of the verification problem such as the verification of finite-
state systems (model checking).

In [MP93a], we considered a hierarchy of three models, each extending its pre-
decessor, as follows:

e A reactive systems model that captures the gualitative (non-quantitative)
temporal precedence aspect of time. This model can only identify that one
event precedes another but not by how much.

o A real-time systems model that captures the metric aspect of time in a
reactive system. This model can measure the time elapsing between two
events.

e A hybrid systems model that allows the inclusion of continuous components
in a reactive real-time system. Such continuous components may cause con-
tinuous change in the values of some state variables according to some phys-
ical or control law.

The computational model proposed for reactive systems is that of a fair transi-
tion system (FTS) [MP93b].

The approach to real time presented in [MP93a] and [HMP94] is based on
the computational model of timed transition systems (TTS) in which time itself
is not explicitly represented but is reflected in a time stamp affixed to each state
in a computation of a TTS.

In this paper we present a new computational model for real-time systems,
the clocked transition system (CTS) model. This model represents time by a set
of clocks (timers) which increase uniformly whenever time progresses, but can be
set to arbitrary values by system (program) transitions. The ¢TS model can be
viewed as a natural first-order extension of the timed automata model [AD94].

It is easy and natural to stipulate that one of the clocks T is never reset. In
this case, T represents the master clock measuring real time from the beginning
of the computation. This immediately yields the possibility of specifying timing
properties of systems by unextended temporal logic, which may refer to any of
the system variables, including the master clock 7'.

Consider, for example, the following two important timed properties:

e Bounded response: Every p should be followed by an occurrence of a ¢, not
later than d time units.

o Minimal separation: No ¢ can occur earlier than d time units after an oc-
currence of p.

Within the ¢TS computational model, these two yardstick properties can be
specified by the following (unextended) temporal formulas:

e Bounded response:  p A (T'=t)) = (g AT <ty+d).
e Minimal separation: p A (T'=ty) = OT <to+d — —q).



The new computational model has several advantages over previous models such
as the model of timed transition systems (TTS, see [HMP94]).

The first advantage of the new model, as shown above, is that it leads to a
more natural style of specification, explicitly referring to clocks, which are just
another kind of system variables, instead of introducing special new constructs,
such as the bounded temporal operators proposed in metric temporal logic (MTL)
(see [KVdR83], [KdR83], and [Koy90]) or the age function proposed in [MP93a].

A second advantage of the ¢TS model is that we can reuse many of the
methods and tools developed for verifying untimed reactive systems (e.g. [MP95])
for verifying real-time systems under the TS model. The move from TTS to CTS
brings us closer to the approach proposed in [AL91], which also recommends
handling real time with a minimal extension of the reactive-systems formalism.

The model of Clocked Transition Systems, as presented in this paper, has
been successfully implemented in the Stanford Temporal Verifier support sys-
tem sTeP[BBCT95]. We refer the reader to the paper [BMSU97] which uses
clocked transition systems to model and verify the generalized railroad crossing
benchmark problem.

A model similar to the ¢TS model presented here was introduced in [AH94],
and proof rules for establishing response properties for this model were presented
in [HK94]. However, the response verification rules presented there for the general
case were based on consideration of the region graph associated with timed
automata which, in many cases, becomes very big. Our approach to response
verification, while considering the general case, does not refer to the region graph
and can be viewed as a natural modification of the response rules for untimed
fair transition systems, except that the notion of fairness is replaced by the
guaranteed progress of time.

We refer the reader to [AH89], [Ost90], [AL91], and the survey in [AH92], for
additional logics, models, and approaches to the verification of real-time systems.
In the process algebra school, some of the representative approaches to real time
are [NSY92], [MT90], and many others are listed in [Sif91].

The paper is organized as follows. In Section 2, we present the real-time
computational model of clocked transition systems (CTs). In Section 3, we show
how programs augmented with timing bounds for the execution of statements
can be represented as clocked transition systems. In Section 4, we present rules
and verification diagrams for verifying safety properties of ¢TS’s. In Section 5,
we present rules and verification diagrams for establishing response properties
of clocked transition systems. In Section 6, we present an approach to verifying
that a given CTS is non-zeno. Finally, in Section 7, we present the extension of
the ¢TS model to deal with general hybrid systems. This yields an extended
model to which we refer as a phase transition system. A proof rule for verifying
safety properties of hybrid systems is introduced and illustrated.

A part of an ongoing research has implemented support for phase transition
systems in sTeP [MS98], and has used it to successfully (and actually without
too much user interaction) verify a few of the HyTech examples [HHWT95].

An earlier workshop version of this paper appeared in [KMP98].



2 Real-Time Systems

We now introduce a computational model for real-time systems.

2.1 Computational Model: Clocked Transition System

Real-time systems are modeled as clocked transition systems (cTS). A clocked
transition system & = (V,0,7,II) consists of:

e V : A finite set of system variables. The set V = D U C is partitioned into
D = {uy,...,un} the set of discrete variables and C = {t1,...,t;} the set
of clocks. Clocks always have the type real. The discrete variables can be
of any type. We introduce a special clock T' € C, representing the master
clock, as one of the system variables.

o O : The initial condition. A satisfiable assertion characterizing the initial
states. It is required that

@ — t1:...:tk:T:0,

i.e., the clocks are reset to zero at all initial states.
e 7T : A finite set of transitions. Each transition 7 € 7 is a function

7Y 2%,

mapping each state s € X' into a (possibly empty) set of 7-successor states
T(s) C X.

The function associated with a transition 7 is represented by an assertion
p-(V, V"), called the transition relation, which relates a state s € X to its
T-successor s' € 7(s) by referring to both unprimed and primed versions of
the system variables. An unprimed version of a system variable refers to its
value in s, while a primed version of the same variable refers to its value in
s'. For example, the assertion 2’ = x + 1 states that the value of z in s’ is
greater by 1 than its value in s.

We say that a transition 7 € 7 is enabled (denoted En(r)) in some state s,
if the following formula is satisfied:

En(r): @V (V,V"),

Thus, En(7) is true in s iff s has some 7-successor.
For every 7 € 7, it is required that

Pr T = T,

i.e., the master clock is modified by no transition.
o IT : The time-progress condition. An assertion over V. The assertion is used
to specify a global restriction over the progress of time.



Extended Transitions

Let & : <V, 6,7, H> be a clocked transition system. We define the set of extended
transitions Tt associated with @ as follows:

Tr = T U {tick}.

Transition tick is a special transition intended to represent the passage of time.
Its transition relation is given by:

prck: JA.2(A) A D'=D A C'=C+ A,
where 2(A) is given by
N(A): A>0 A Vte[0,A).II(D,C +1t).

Let D = {uy,...,un} be the set of discrete variables of & and C = {t1,...,t, T}
be the set of its clocks. Then, the expression C' = C + A is an abbreviation for

ti=ti+A A - A tp=ti +A AN T' =T + A,
and II(D, C +t) is an abbreviation for IT(uy, ..., Um,t1 + &, ..., tx + 1, T +1).

Runs and Computations
Let & : <V,@,T, H) be a clocked transition system. A run of @ is a finite or
infinite sequence of states o : sg, s1, - . . satisfying:

o Initiation:  so = ©
o Consecution: For each j € [0, |0]) s;j+1 € 7(s;), for some 7 € T7.

A state is called (@-)accessible if it appears in a run of .
A computation of @ is an infinite run satisfying:

o Time Divergence: The sequence so[T], s1[T], ... grows beyond any bound.
That is, as ¢ increases, the value of T" at s; increases beyond any bound.

A Frequently Occurring Case
In many cases, the time-progress condition IT has the following special form
IT: /\(pi_>ti<Ei);
iEN
where N is some finite index set and, for each ¢ € N, the assertion p; and
the real-valued expression E; do not depend on the clocks, and ¢; € C' is some
clock. This is, for example, the form of the time-progress condition for any cTS

representing a real-time program. For such cases, the time-increment limiting
formula £2(A) can be significantly simplified and assumes the following form:

2A): A>0 A N\@i—ti+A<E)
1EN

Note, in particular, that this simpler form does not use quantifications over t.



Non-Zeno Systems

A ¢tTs is defined to be non-zeno if every finite run can be extended into a
computation (see [AL91], [Hen92]). An equivalent formulation is that & is non-
zeno if it satisfies the following

A finite sequence o is a run of @ iff ¢ is a prefix of some computation
of &.

A consequence of ¢ being non-zeno is that a state s is $-accessible iff it appears
in some computation of &.

Examplel. Consider the ¢Ts’s ¢; and &, presented in Fig 1. In Fig 2, we

y: integer where y =0 y: integer where y =0
t,T: real wheret =T =0 t,T: real where t =T =0
yi=y+1 (y,t) =(y+1,0)
lo: t <2 o t < 21’%
Zl ‘el
crs @1 cTS P2

Fig. 1. Two CTS’s.

present these two CTS’s in textual form.

It is not difficult to establish that both &; and &5 are non-zeno cTS’s. This
is because, from any accessible state, we can always move to state £; from which
we can continue to take infinitely many time steps with increment 1.

The tick transitions for these two CTS’s are given by

Phik: 3A > 0. (1, y) = (m,y) A (,T) = (t+ AT +A) A (1=0—t+A<2)
Priar: IA>0.(r',y') = (m,y) A (', T) = (t+ AT+ A) A (1 =0—t4+ A< 557).



V: {n:{0,1}; y:integer} U {t, T: real}

D <
O:mr=y=t=T=0
T: {70, 71 }with transition relations
=1 =0Ay =y+1
ALT) = (,T)
mr=0AT =1A (y,t,T) = (v,t', T
II'r=0—-1t<2

InI:mr=0—-t<

V:{m:{0,1};y: integer} U {t, T real}

D <
O:nr=y=t=T=0
T: {70, 71 }with transition relations
Tom=7 =t =0Ay =y+1
AT =T

:m=0AT =1A (y,t,T) = (v, t',T")

y+1
cTS @, CTS P
Fig. 2. The two CTS’s in textual form.

Following is a computation of CTS &4:
(W:O,y:O,t:O,TO)mk(l)( :0,9:0,¢:1,7T:1) —
(r:0,y:1, ¢:1, T:1) 2% (: 0,y:2,t:1,T:1)mk(1
(r:0,y:2,t:2,T:2) — (m:0,9:3,¢:2,T:2) —
(r:0,y:4,t:2,T:2) — (m: 1,y:4,t:2,T:2)twk(1
( >tzck(1) < 1, y:4, 4, T4> tick(1)

ml,y:4,t:3,T:3

Note that to be a computation, time must grow beyond any bounds. Since,
at location ¢y of @; time cannot grow beyond 2, any computation of $; must
eventually move to location ¢;, where time can grow beyond any bounds. 4

2.2 Specification Language

To specify properties of reactive systems, we use the language of temporal logic,
as presented in [MP93b]. Here, we only use the following:

e State formulas (assertions) - any first-order formula, possibly including at_2¢

expressions
e Up
an invariance formula.
e p=(qWr)

Always p, where p is an assertion. We refer to such a formula as

p entails ¢ waiting for r, where p, ¢, and r are assertions.

We refer to such a formula as a waiting-for formula.

o p=>r

p entails eventually r, where p and r are assertions. We refer
to such a formula as a response formula.

For a state s and assertion p, we write s |=p to indicate that p holds (is true)

over s. Let o : 80,51 ...

be an infinite sequence of states, to which we refer as a



model. For an assertion p, we say that j > 0, is a p-position if s; |= p. Satisfaction
of (the three considered) temporal formulas over a model o is defined as follows:

e A model o satisfies the invariance formula []p, written o | [p, if all
positions within o are p-positions.

e A model o satisfies the waiting-for formula p = (¢W r), written o | p =
(gW r), if every p-position 7 within ¢ initiates an interval of positions, all of
which satisfy ¢q. This continuous-q interval can either extend to infinity or
terminate in an r-position which is not in the interval. That is,

oi] |=p implies o[j] |= ¢ for all j >4, or
olk] |= r for some k > i and o[j] |F ¢ for all j,4i < j < k.

¢ A model o satisfies the response formula p = & r, written o = p = O, if
every p-position ¢ within o is followed by an r-position 7 > .

A temporal formula ¢ is said to be valid over cTS @ (or $-walid) if o |= ¢ for
every computation o of . We write & = ¢ to indicate this fact. An assertion p
is called &-state valid if it holds at every $-accessible state. We write & |=p to
indicate that assertion p is ®-state valid.

A temporal formula is specified over a set of variables, partitioned into flexible
and rigid variables. Flezible variables may assume different values in different
states. Rigid variable must assume the same value in all states.

The temporal formulas that specify program properties can be arranged in a
hierarchy that identifies several classes of formulas, differing in their expressive
power. For a full presentation of the hierarchy, we refer the reader to [MP95]
(chap. 0), and to [MP93b] for a more extensive discussion. In this paper, we
present proof rules for the verification of two subclasses of the general class of
safety properties (state-invariance and waiting-for properties), and a subclass
of the general class of liveness properties (response). These restricted sets of
properties are sufficient to demonstrate the similarity between the verification
methods developed for untimed reactive systems and the verification methods
that can be used with the ¢TS and PTS models for real time and hybrid systems.

3 Programs as Clocked Transition Systems

In this section we show how to represent real-time programs as clocked transition
systems. First we introduce a simple conccurrent programming language in which
example programs will be written. Next we show the representation of such
programs as CTS.

3.1 A Simple Programming Language

In [MP93b], we introduced a simple programming language SPL. Here we consider
a subset of the language, restricting our attention to the following statements:



assignment, await, noncritical, critical, conditional, concatenation, se-
lection, while, and block.

In this restricted subset, concurrent processes communicate by shared variables,
and parallelism is allowed only at the top level of the program.
We start by presenting the syntax of statements and programs in SPL.

Basic Statements

First, we consider basic statements. These are statements that can be executed
in a single atomic step
e Assignment: For a variable y and an expression e of appropriate type,
y = €
is an assignment statement. We use the skip statement as an abbreviation for
a trivial assignment y := y.
e Await: For a boolean expression c,
await ¢
is an await statement. We refer to condition ¢ as the guard of the statement.
Execution of await ¢ changes no variables. Its sole purpose is to wait until ¢
becomes true, at which point it terminates, allowing the execution of subsequent
statements.

Schematic Statements

The following statements provide schematic representations of segments of code
that appear in programs for solving the mutual-exclusion problem. Typically,
we are not interested in the internal details of this code but only in its overall
behavior concerning termination.
o  Noncritical:
noncritical
is a noncritical statement. This statement represents the noncritical activity in
programs for mutual exclusion. It is not required that this statement terminate.
The name “noncritical” given to this statement is appropriate for programs that
deal with critical sections.
o Critical:
critical
is a critical statement. This statement represents the critical activity in programs
for mutual exclusion, where coordination between the processes is required. It is
required that this statement terminate.

Compound Statements

Compound statements consist of a controlling frame applied to one or more
sub-statements, to which we refer as the children of the compound statement.

e Conditional: For statements S; and Sy and a boolean expression c,
if ¢ then S; else S,



is a conditional statement. Its intended meaning is that the boolean condition
¢ is evaluated and tested. If the condition evaluates to T (true), statement Sy
is selected for subsequent execution; otherwise, if the condition evaluates to
F (false), S is selected. Thus, the first step in an execution of the conditional
statement is the evaluation of ¢ and the selection of S; or S, for further execution.
Subsequent steps continue to execute the selected sub-statement.
A special case of the conditional statement is the one-branch-conditional
statement
if ¢ then S;.
Execution of this statement in the case that ¢ evaluates to F terminates in one
step.
e  Concatenation: For statements Si,..., Sk,
S15--+5 Sk
is a concatenation statement. Its intended meaning is sequential execution of
the statements Si,..., Sk one after the other. The first step in an execution of
S1;-++; Sk is the first step in an execution of S;. Subsequent steps continue to
execute the rest of 51, and when S; terminates, proceed to execute Ss, Ss, ..., Sk.
In a program presented as a multi-line text, we often omit the separator ;’
at the end of a line.
e Selection: For statements Sy,..., Sk,
Sior --- or Sg
is a selection statement. Its intended meaning is a nondeterministic selection of
a statement S; and its execution. The first step in the execution of the selection
statement selects a statement S;, 4 = 1,..., k, that is currently enabled (ready to
be executed) and performs the first step in the execution of S;. Subsequent steps
proceed to execute the rest of the selected sub-statement, ignoring the other S;’s.
If more than one of Si,...,S, is enabled, the selection is nondeterministic. If
none of the branches are enabled, execution of the selection statement is delayed.
e  While: For a boolean expression ¢ and a statement S,
while cdo S
is a while statement. Its execution begins by evaluating c. If ¢ evaluates to F,
execution of the statement terminates. Otherwise, subsequent steps proceed to
execute S. When S terminates, execution of the while statement repeats.
We introduce the notation
loop forever do S
as a synonym for
while T do S.
Another useful abbreviation is the for statement
for i:=1 to m do S,
which is an abbreviation for the concatenation
i:=1; whilei<m do [S; i:=i+1].



Programs
A program P has the form
P [declara,tion; [P1 n [fy: Sy Zl JU - Pt Bt S Zm :]]],

where Py :: [€1: Si; Zl yeey Po it [bm: S Zm ;] are named processes. The
names of the program and of the processes are optional, and may be omitted.
The body [¢;: S;; ¥; :] of process P; consists of a statement S; and an ezit label
Z,-, which is where control resides after execution of S; terminates. Label Z, can
be viewed as labeling an empty statement following S;.
A declaration consists of a sequence of declaration statements of the form
variable, ..., variable: type where .

Each declaration statement lists several variables that share a common type and
identifies their type, i.e., the domain over which the variables range. The optional
assertion  imposes constraints on the initial values of the variables declared in
this statement.

Let ¢1,...,pn be the assertions appearing in the declaration statements of a
program. We refer to the conjunction ¢ : 1 A --- A @, as the data-precondition
of the program.

Fig. 3 presents a simple program consisting of two processes communicating
by the shared variable z, initially set to 0. Process P; keeps incrementing variable
y as long as x = 0. Process P, has only one statement, which sets z to 1.
Obviously, once x is set to 1, process P, terminates and some time later so does
Py, as soon as it observes that x # 0.

z, y: integer where x =y =0

lo : while z = 0 do
P [Elzy:=y+1j| H P, |:m02:)3::1:|

mi :
ls :

Fig. 3. Program ANY-Y: A simple concurrent program.

Let P be an SPL program. To obtain a real-time program, we associate with
each executable statement S of P, a pair of values [l,, u,], called the lower and
upper bounds of S. These values, satisfying 0 < I, < ug < oo, are intended to
provide a lower and upper bound on the length of time the statement can be
enabled without being taken. We refer to a program with an assignment of time
bounds as an SPLy program, and view it as a real-time program.



3.2 The CTS corresponding to an SPL,, program

In the following, we show how an SPL; program can be represented by a CTs,
identifying each of the components of a CTS for a given program.
Consider a program P given by

[declaration; [P [6y: Sy; 4 JU - |l Pt [€mt S U ]]]
Without loss of generality, we assume that all statements in the program are
labeled. Let L; denote the set of locations within process P;, i = 1,...,m, and

let Lp = Ly U---U L, denote the set of locations of the entire program P.

State Variables and States

The state variables V for system @ p consist of the data variables Y = yy1,...,yn,
that are declared at the head of the program, the set of control variables 7 =
{m1,-..,Tm}, one for each process P;, and the set of clocks C = {t1,...,tm, T},
one clock ¢; for each process P; and a master clock T. The data variables Y
range over their respectively declared data domains. The control variable m;
ranges over the location set L;, fori =1,...,m.

As states we take all possible interpretations that assign to the state variables
values over their respective domains.

The Initial Condition

Let ¢ denote the data-precondition of program P. We define the initial condition
@ for $p as

O: m=Ul,....tm =l AN @ ANt1=...=t, =T =0.
This implies that the first state in an execution of the program begins with
the control variables pointing to the initial locations of the processes, the data
variables satisfying the data precondition, and clocks reset to zero.

Transition Relation

Next, we consider each of the statements that may appear in an SPL; program
and, for each such statement, we identify its contribution to the transition rela-
tion p. Typically, each statement may contribute an additional disjunct to p.

We proceed to define the contributions of each of the previously introduced
statements. In these definitions, we use the notation pres(U) as an abbreviation
for

presU): - N\ (' =),

yeU

stating that all the variables in the variable set U C V are preserved by a
considered statement. The statements we consider are displayed in the form:

K:S;Z € P,



implying that the statement S with the pre-condition ¢ and post-condition is
a statement in process P;.
For locations £; and ¢ in a process F;, we denote

at_Kj T = Ej
at_Kj,k T = Ej Vi =4

e Assignment: The statement
lL:y:=e; L: € P
contributes the disjunct

pe: mi=L A W;ZZ/\ Y=eAt; >l A t;=0/\ pres(V — {mi, ti,y})

to the transition relation p. The conjunct ¢; > I, asserts that the transition can
be taken only when ¢;, the clock corresponding to the process F;, is not below
Iy, the lower bound associated with the transition. When taken, the transition
resets clock t; to 0. The last conjunct of p, asserts that all variables, excluding
m;,t; and y, retain their values over the transition 7.

e Await: The statement
l: await c; £: € P
contributes the disjunct

¢ Awh=0 A pres(V — {m, t:}) )
pe: T =LA Vv ANti>lg N t,=0.
—¢c A pres(V —t;)

The ewait transition is enabled once control reaches ¢ and t; > I,. Thus,
within a time lying between [, and u,, it will be taken. When taken, control
either moves from £ to £ (if ¢ is true) or remains in place. In any case, the clock
associated with this statement will be reset.

e Noncritical The statement
{: noncritical; ¢ € P
contributes the disjunct

pres(V —t;)
pe: m=4L4 A VA ANt; >l ANt =0
mo =0 AN pres(V — {m;,t;})

to the transition relation p. This statement makes a non-deterministic choice
between staying at the same location or terminating. It is acceptable that the
statement consistently chooses not to terminate, representing the behavior of a
non-critical section that never terminates. Note that a process can remain forever
in its non-critical section from a certain point on.

e Critical The statement
{: critical; ¢ € P;
contributes the disjunct

pe: m=4L A 71';:2/\ ti >l A t;:O/\ pres(V — {m;, t:})



to the transition relation p. The observable action of the critical statement is to
terminate.

e  Conditional The statement R
¢: [if c then ¢1: 5 else £5: S5]; £ € P,
contributes the disjunct

c N m=14

pe:mi=4L A \% ANt >l A t; =0A pres(V — {m;,t;}).
¢ A W;IEQ}

to the transition relation p. Thus, the transition for this statement moves from
£ to ¢ if the condition ¢ evaluates to T, and moves from ¢ to /- if the condition
¢ evaluates to F.
For the one-branch conditional
¢: [if c then (4:S]; ¢ € P, we take the transition relation
to be

pe:mi =LA \ ANt >l A t;=0/\ pres(V—{m,t,-}).

~

¢ A wh=14

e  While: The statement
¢: whilecdo [¢:S]; £: € P,
contributes the disjunct

c A=l ,
pe:imi =LA \Y; Ati>ly ANt =0A pres(V — {m;,ti}).
¢ A 7T£:€

to the transition relation. According to p,, when c evaluates to T control moves
from £ to £, and when ¢ evaluates to F control moves from £ to £. Note that the
enabling transition of 7 is m; = £ A t; > I, which does not depend on the value
of c.

The selection or the concatenation statements make no direct contribution
to the transition relation.

Time-Progress Condition
For each executable statement
l:S
in process P;, IT includes the conjunct

=0 — t <ug,



where u is the upper bound associated with statement S. This ensures that
control cannot wait at location £ for more than u, without the transition asso-
ciated with S (or another transition causing control to move away from £) being
taken.

Note that the lower bounds of statements are added as constraints to tran-
sitions, while the upper bounds are added as constraints to the time-progress
condition I7.

This concludes the definition of the transition system &p.

Examples of Computations

Consider the program ANY-Y presented in Figure 3. To make it an SPL program,
we uniformly associate each of its executable statements with the time bounds
[3,5]. The CTS Pnvy.v, 5, associated with ANY-Y(3 5] is defined as follows:

o System Variables: V = {mi,m2,x,y,t1,t2,T}. In addition to the control
variables 7m; and 72, and data variables x and y, the system variables also
include clock ¢;, measuring delays in process P;, clock 2, measuring delays
in process P, and the master clock 7', measuring time from the beginning
of the computation.

e Initial Condition:

O: 71'1:&)/\71'2:7’)10/\SL':y:O/\tlthIT:O.
e Transitions: T :{€y, €1, mp} with transition relations:
r=0 A 7l'll =/
pgoi’lrl:eo/\ \ /\t123/\tI1:0

z#0 A 71"1 =/
A pres({m2,z,y,t2,T})

Pyt 7T1:€1 /\71"1250 /\y'zy+1 At Z3/\t11:0
A pres({ma, x,t2,T})
Pmo & T2 = Mg /\7r'2=m1 AN =1At3>23At,=0
A pres({ﬂ_layatlaT})'
o Time-progress condition:
II : (at,Eo’l - 1 < 5) A (at,mo — 13 < 5)
The tick transition relation for this system is given by

Ptick:  JA > 0. pres(my, w2, m,y) A (11,15, T") = (t1 + A, ta + A, T+ A) A
(at_loy — t1 +A<5) A (at_mog — t2+AL5) 4

Having defined the ¢TS &, derived from an SPL; program P, we use the
terms P-valid, P-state valid, and P-accessible as synonymous to ¢,-valid, &, -
state valid, and &, -accessible. We also write P |= ¢ and P |=p to denote &, = ¢
and &, |= p, respectively.



4 Verifying Safety Properties of Clocked Transition
Systems

In this section, we present methods for verifying safety properties of clocked tran-
sitions systems. Safety properties are those that can be expressed by a formula
generated from state formulas, the boolean operators V and A, and the temporal
operators [] and W . we refer to a formula of this form as a cannonical safety
formula.

In this paper, we consider only invariance and wait-for properties specified
over state-formulas.

4.1 The Invariance Rule

First, we consider invariance properties, namely, properties that can be ex-
pressed by the formula [] p, for some assertion p.

The Accessibility Rule

As a preliminary step, we introduce a rule that establishes the ®-state validity
of an assertion p. This is rule ACC, presented in Fig. 4.

For assertions ¢ and p,

Al. ¢ - p
A2. © — ¢
A3. pr AN p — ¢ forevery T € Ir

?p

Fig. 4. Rule ACC (P-state validity of assertion p).

The rule uses an auxiliary assertion ¢. Premise A1 of rule ACC requires that
the auxiliary assertion ¢ implies assertion p, whose &-state validity we wish
to prove. Premise A2 of the rule requires that ©, the initial condition of P,
implies the auxiliary assertion (. Premise A3 requires that all transitions in 7,7
(extended transitions of @) preserve . Premises A2 and A3 state that ¢ holds
at the initial state of every run and that it propagates from any state to its
T-successor, for every transition 7 € 77 of the system. Thus, every state in each
run of @ satisfies . Due to the implication Al, every such state also satisfies
p. It follows that p holds on every accessible state of system & and, therefore,
assertion p is @-state valid.



Rule INV

Assume that we have shown that assertion p is @-state valid, i.e., every accessible
state of @ satisfies p. Since all states appearing in a computation are accessible
(every computation is a run), all states in every computation satisfy p. It follows
that every computation of @ satisfies []p. Thus, we may use the premises of
rule ACC to establish that the temporal formula [ p is $-valid. Consequently,
we propose rule INV, presented in Fig. 5, as the main tool for verifying invariance
properties of a CTS &.

For assertions ¢ and p,

II. ¢ — p
2. 0 = ¢
3. pr Ao — ¢ forevery T €Ty

oE=Op

Fig. 5. Rule INV (invariance) applied to CTs &.

Example2. We use rule INV to establish the invariance of the assertion
p: at_lo1 V at_my

over program ANY-Y[3 5 (Fig. ?7). This assertion claims that, at every state in
the execution of program ANY-Y|3 5], either control of process P is at £y or /1,
or control of P, is at my. In particular, it implies that if P; is at ¢5 then P, has
already arrived in m;.

We apply rule INV to this choice of p, taking

¢: (x=0Aat_Ly1) V at_ma

as the auxiliary assertion.
Premise I1 assumes the form

(xr=0Aat_Ly1)Vat_-m — at_ly1 V at_my,

~

~~ ~~

@ p
which is obviously valid.
Premise 12 assumes the form

at_ly A at_mo Az=0A--- — (z=0Aat_ly1)V---

/ ~ vl
v v~

(] @

which is obviously valid.



Premise I3 has to be checked for each 7 € {4y, 1, mq, tick}. For example,
premise 13 for £y assumes the form

=0 A at' 4

A \% Nx =x A -
.Z'#O A at’_Kg
"~ - —
Peg

A (z=0Aat_loy) V at_my

-~

@
(a:' =0A atLZg,l) V oat' mq.

~ vl
v~

@

I

It is not difficult to see that this implication is valid.
This establishes the P-validity of the invariant ] p, i.e.,

P lZ D(at_fo’l \Y at_ml). d

4.2 Verification Diagrams

In proofs of properties of clocked and hybrid systems, it is typically necessary to
deal with several assertions at the same time and trace which transitions lead
from one assertion to another. These proofs can be effectively presented by the
graphical formalism of verification diagrams. Verification diagrams have been
introduced as a visualization tool in the deductive proofs of untimed, reactive
systems (see [MP94], [BMS95]). In this paper we use the formalism with minor
changes, adapting it to the proof rules of clocked and hybrid systems.

In the following we define the basic verification diagram, a diagram whose
properties are common to all verification diagrams presented in this paper.

A basic verification diagram is a directed labeled graph constructed as follows:

e Nodes in the graph are labeled by assertions (¢g), ¢1,- - -, ©m. We will often
refer to a node by the assertion labeling it.

e Fdges in the graph represent transitions between assertions. Each edge de-
parts from one node, connects to another, and is labeled by the name of a
transition in the program. We refer to an edge labeled by 7 as a 7-edge.

e Some of the nodes may be designated as initial nodes. They are annotated

by an entry arrow .W .

e Optionally, one of the nodes is designated as a terminal node, (“goal” node).
In the graphical representation, this node is distinguished by having a bold-
face boundary, and is labeled by the assertion ¢y. No edges depart from a
terminal node.



Verification Conditions

With each verification diagram, we associate a set of verification conditions, each
corresponding to some premise of the proof rule represented by the diagram. To
facilitate the expression of verification conditions, we introduce the abbreviation

{p}r{q} standing for prAp — ¢,

for assertions p and ¢ and transition 7.
We say that a verification diagram is valid over a cTS @ ($-valid) if all the
verification conditions associated with the diagram are #-state valid.

Encapsulation Conventions

There are several encapsulation conventions that improve the presentation and
readability of verification diagrams. We extend the notion of a directed graph into
a structured directed graph by allowing compound nodes that may encapsulate
other nodes, and edges that may depart or arrive at compound nodes. A node
that does not encapsulate other nodes is called a basic node.

We use the following conventions:

e Labels of compound nodes: A diagram containing a compound node n, la-
beled by an assertion ¥ and encapsulating nodes n1,...,n; with assertions
Y1,...,%9k, is equivalent to a diagram in which n is unlabeled and nodes
ni,...,nk are labeled by ¥; A @, ..., and ¥ A @.

e Fdges entering and exiting compound nodes: A diagram containing an edge
e connecting node A to a compound node n encapsulating nodes nq,...,ng
is equivalent to a diagram in which there is an edge connecting A to each
n;, ¢ = 1,...,k, with the same label as e. Similarly, an edge e connecting
the compound node n to node B is the same as having a separate edge
connecting each n;, i =1,...,k, to B with the same label as e.

4.3 Invariance Verification Diagrams

An invariance diagram is a basic verification diagram with no terminal node. For
example, in Fig. 6 we present a verification diagram for program ANY-Y[3 5].

V1. T = 0A at_fo,l

Fig. 6. Verification Diagram D;.



Verification Conditions for Invariance Diagrams

With each invariance diagram, we associate the following verification conditions:

e Let ¢ be a node in the graph, 7 be a transition in the program, and let
©1,-..,9r be the nodes reached by 7-edges departing from ¢. The verifi-
cation condition associated with ¢ and 7 (corresponding to premise I3) is
given by

{eyr{eVverv...ver}

In particular, if £ = 0 (i.e., ¢ has no 7-successors), the associated verification
condition is

{e} 7 {¥}-

For example, the verification conditions associated with diagram D; (Fig. 6),
are:

I3for oy and by : {x=0Aat_lo1}lo{x=0A0at_{y1}

I3for oy and b1 : {x=0Aat_lo 1} la{x=0Aat_{y1}

I3 for 1 and mo: {z=0Aat_lo1}mo{(x =0Aat_tly1) V at_m.}
I3 for ¢1 and tick: {z =0Aat_ly1} tick{z =0Aat_ly.1}

I3 for o and €y :  {at_m1} o {at_m.}

I3 for 5 and ¢; :  {at_mq} 4 {at_m,}

I3 for ¢y and mo : {at_mq}mo {at_m;}

13 for @ and tick: {at_m,} tick{at_my}

Let Dp be an invariance diagram associated with (the CTs of) a program P.
Let ¢1,...,9m be the assertions labeling the nodes of Dp.

Claim 1 If the invariance diagram Dp is valid, then

P|=V<Pi=> D\/%‘
1=1 =1

If, in addition, © — \/ wi and p; — p for everyi=1,...,m, then
i=1

PE=p.
In case there is a subset N C {1,...,m} such that © — V i, we identify ;,

iEN
1 € N as initial nodes.

For example, all the verification conditions associated with diagram D, are valid
and the invariance diagram D; establishes

ANY-Y = (at_£o1 V at_mq) (1)



&t,&)

4 4 Mo

- J

Fig. 7. A more detailed diagram, using encapsulation conventions.

Using the encapsulation convetions, we can draw a more detailed invariance
diagram establishing (1), as shown in Fig. 7.
In the diagram of Fig. 7, the single assertion z = 0 A at_¥#y 1, has been broken
into the two sub-cases: x = 0 A at_£y and x = 0 A at_¥¢, explicitly displaying
the fact that transitions £y and £; cause the system to move between these two
sub-cases.

Example3. We use rule INV to prove that program ANY-Y[35 terminates
within 15 time units, as specified by the following invariance formula:

O(T <15V (at_ls A at_my))

This formula claims that every accessible state in which the program has not
terminated yet (i.e., at_f2 A at_m; does not hold), can only be observed when
the master clock T has not yet passed 15. It follows that any state observed later
than 7" = 15 must be a termination state.

The proof is presented by the invariance diagram in Fig. 8.
The assertions are indexed in descending order from 3 on top to ¢y at bottom
in order to keep compatibility with the chain diagrams introduced in Section 5.

Note that no edge in the diagram is labeled by the tick transition. This
implies that all verification conditions involving the tick transition are of the form
{pi} tick{p;} claiming that the tick transition preserves each of the assertions
appearing in the diagram.

As an example, consider the verification condition claiming that assertion
po: at_ly AT <5+41t; <10 is preserved by the tick transition.

at_li NT <5+t <10 A

P2
ASOAT =7 AT =T+AANt, =t +A A (at_by =t + ALBE) A ---

7

Pt;k
— at' HL AT <5+t <10

~~

©5



tl,tQaT Z 0

J

g03:at_ﬁo,l/\at_mo/\x=0/\t1§5/\t2:T§5

at_my,x =1

QDQZGt,Kl/\TS5+t1_

b

<p1:at_€0/\T§10+t1 S].E)

%

0o at_Ly N\ at_my

Fig. 8. Termination of ANY-Y within 15 time units.

It is not diflicult to see that this implication is state-valid.

Example4. As a second example, we present a mutual-exclusion algorithm,
due to M. Fischer, which functions properly only due to the timing constraints
associated with the statements. Similar proofs to the one we will present here
are given in [SBM92], [AL91], and [MMP92].

The algorithm is presented in Fig. 9 under the name of program MUTEX. By
assigning all statements in MUTEX the uniform time bounds [L, U], we obtain the
timed program MUTEX[ ;. Assuming that 2L > U, we prove that the mutual
exclusion property

O —(at_Lls A at_mg)

is valid for MUTEX(z, 1]



z: integer where z =0
[4y : loop forever do ] [ mo : loop forever do T
[ ¢ : noncritical T [m1: noncritical ]
4y : skip my : skip
¢3: while z #1 do ms : while z #2 do
ly :await £ =0 my :await z =0
bs:x:=1 H ms:x:i=2
£l : skip me : skip
U7 if £ =1 then my : if x = 2 then
{3 : critical msg : critical
4y : skip mg : skip
| Llwo:z:=0 1 | [mwo:z:=0 1]
- P - N

Fig. 9. Program MUTEX, implementing Fischer’s protocol.

Let us explain informally why mutual exclusion for program MUTEX is guar-
anteed and the role of the skip statements at ¢z and mg. Assume a violation
of mutual exclusion in which process P; entered its critical section (location £g)
first and, while P; is still there, process P» enters mg. When P; entered fg, x was
1. For P, to enter mg later, it was necessary for it to set x to 2 first, which can
only be done at ms. Since after P; set « to 1 at £5, P> cannot pass the test for
x = 0 at my, the only possibility is that P, kept waiting at ms while P; executed
l¢ and the test at £7. This must have taken P; at least 2L, since L is the lower
bound for execution of a statement. However, P, cannot wait at ms for as long
as 2L because 2L > U and no process can delay the execution of a statement for
more than U. It follows that the described scenario in which P, keeps waiting
at my until P, enters fg is impossible. The role of the skip statement at g is
therefore to introduce an additional delay of at least L time units.

The skip statements at f9 and mg are necessary to guarantee the response
properties of this algorithm, and we will discuss them in the next section. The
skip statements at £ and ms represent exits out of the noncritical sections (at
¢y and m, respectively) and intentions to enter the critical sections.

A formal proof that the assertion —(at_fs A at_mg) is an invariant of
program MUTEX is presented by the invariance diagram of Fig. 10.

All verification conditions associated with this diagram, have been verified
automatically (with no user intervention) by the sTep verifier [BBC195], using
the axiom 2L > U.

This concludes the proof of mutual exclusion for program MUTEX. 4



(0<t,t,<U )
€5 ms
x =0, at_ly 7, at_mg. 7
Yo mio
T =1 \L ~ - =9
at_l36.10, at_Mg_a6,7 at_Lo. 46,7, at_M36. 10
(at_m;, ) ms 65 @t_€5 )
( at_EG, tg 2 tl at_ms, tl Z tg | ]
lg me
at_tbr, ty 2t + L at_mg, t; >ty + L
I\ J _ J
_ y, _ Y,
I\ _J

Fig. 10. Mutual exclusion for program MUTEX.

4.4 Completeness of Rule INV

Rule 1NV is complete for verifying invariances of clocked transition systems. This
is stated by the following claim.

Claim 2 If formula [ p is valid over non-zeno CTS ®, then there exists an
assertion ¢ such that premises 11-13 of rule INV are state-valid.

Justification The basic idea of the proof is the construction of an assertion
acc, that holds in a state s iff s is P-accessible, i.e., appears in some run of &.
We then show that if [] p is #-valid, then the premises of rule INV are state-valid
(implying that they are also #-state valid) when taking acc, for ¥. Since we are



only proving relative completeness, it is enough to show validity of the premises,
assuming an oracle that provides proofs or otherwise verifies all generally valid
assertions.

For the construction of acc,, we refer the reader to [MP91] or Chapter 2 of
[MP95]. Assume that we have constructed an assertion acc, such that

s E ace, iff s is a P-accessible state.

We show that acc,, when substituted for ¢, validates the three premises of rule
INV.

I1. acc, —p
By our assumption that [] p is $-valid, it follows that each state appearing
in some computation satisfies p. As & is non-zeno, every accessible state
appears in some computation and, hence, every accessible state satisfies p.
Since acc, characterizes precisely the accessible states, the premise follows.

12. © — acc,
It is obvious that every state satisfying © is initial and is, therefore, &-
accessible. Consequently, such a state must satisfy acc,, which characterizes
all ¢-accessible states.

13. p-(U,U) A acc,(U) —  ace,(U), for each 7 € T and every values of U
and U. B
Let U and U be two lists of values, which can be viewed as values of the
system variables V', such that both p,(U,U) and acc,(U) are true. We will

show that acc, (U) is also true.

Let s and § be two arbitrary states such that s[V] = U and 3[V] = U. Since
acc, (U) = T, we have that s = acc,. By the meaning of acc,, it follows
that s is S-accessible. From p,(U,U) = T, it follows that (s, 3) = p(V, V")
and, therefore, that 5 is a 7-successor of s. Since s is accessible, it follows
that also 3 is accessible and, hence 5 | acc,, leading to acc, (U) = T.

This concludes the proof of completeness of rule INV.

The following example demonstrates that the assumption that @ is non-zeno
is essential to the completeness of the rule.

Example 5. Consider the cTs $3 which is presented graphically in Fig. 11
and textually in Fig. 12.

Clearly, cTS @3 is a possibly-zeno system because, once a run enters location
{1, time is bounded and cannot diverge. Thus, a run entering location ¢; cannot
be extended into a computation of 3. A result of the fact that no computation
of @3 ever enters location ¢, is that the invariance formula [] at_{y is ®3-valid.
However, examination of the arguments for the soundness of rule INV shows
that any assertion p, whose invariance is proven by rule INV, must hold on all
accessible states. The state (m: 1) is accessible for ¢TS &35 but does not satisfy
at_{y. Therefore, the ®3-validity of [] at_{y cannot be proven by rule INV. 4



Ly: t:=0 li: t<1

Fig.11. cTs &3.

V: {m:{0,1};t,T:real}
O:n=t=T=0
T: {701} with transition relation
T T=0AT =1At=0AT =T
InIn:mr=1—-t<1

Fig.12. ¢Ts &3 in textual form.

4.5 Verifying Waiting-for Formulas

The invariance formula [] ¢ states that ¢ holds continuously from the beginning
of the computation to infinity. In comparison, the waiting-for formula

p = qWr

also states the continuous holding of ¢ but only for an interval that is initiated by
an occurrence of p and may be terminated by an occurrence of r. Such formulas
are useful for expressing timing properties, where time is measured since an
occurrence of an event, rather than from the beginning of a computation.

Example6. Consider program cYycCLIC, presented in Fig. 13. This program

z,y: integer where z =y =0

fo : loop forever do
[él : while x =0 do

mo : loop forever do
H [ml cxi=1

by y:= 1 .
2y y+ meo :await x =0

l3:z:=0

- P - - P —

Fig. 13. Program CYCLIC.

can be viewed as a generalization of program ANY-Y, in which the basic interac-
tion between processes P, and P, is embedded within an endless loop.



Since program CYCLIC never terminates, a relevant time-related property is
that from any state in which we observe P; at ¢; and P, at my, P; will reach
location ¢3 within at most 15 time units.

This property can be stated by the following waiting-for formula:

at by ANat-m Az=0AT=a = ((T<a+15Wat /3.

This formulas uses a rigid variable a to record the time at the initial observation
state. It claims that from the time we observe a state satisfying at_ ¢, A at_mq A
z = 0, time will not progress by more than 15 units before we observe P; at /3.

To facilitate the expression of such properties, we introduce the abbreviation

T, = T —a.

With this abbreviation we can write the property of “reaching £3 within 15 time
units” as

at_ly AN at_mi Az=0AT, =0 = (T,<15Wat_{s.
The T, abbreviation allows us to view T, as a special timer, reset at the initial
point of observation.
A Waiting-for Rule

To establish the P-validity of a waiting-for formula, we may use rule WAIT,
presented in Fig. 14.

For assertions p, ¢, ¢, and r,
Ul. ¢ — ¢
U2. p - rVep
U3. p- Ao — 7 V¢ forevery € Tr

P E p=>qWr

Fig. 14. Rule WAIT (waiting-for) applied to CTS P.

Waiting Diagrams

Proofs by rule WAIT can be succinctly represented by the basic verification di-
agrams. We refer to basic verification diagrams which are used to represent
waiting-for proofs as waiting diagrams.



Verification Conditions Implied by a Waiting Diagram

Consider a nonterminal node labeled by assertion ¢. Let 7 € 77 be a transition
and let ¢1,...,9k, k > 0, be the successors of ¢ by edges labeled with 7 (pos-
sibly including ¢ itself). With each such node and transition, we associate the
following verification condition:

{etr{e Vv Vv v g}

Similar to invariance verification diagrams, if k = 0 (i.e., ¢ has no T-successors),
the associated verification condition is

{o} 7 {e}-

Valid Waiting Diagrams
The consequences of having a valid waiting diagram are stated in the following

claim:

Claim 3 If D is a P-valid waiting diagram with nodes g, ..., om, then

PEV o = (Vo)W

=0 j=1

If, in addition, g =7,
Ul: \/ ;i — q, and U2: p — V ©j,
j=1 7=0

then we can conclude:
PEp = ¢gWr.

In case there is a subset N C {1,...,m} such that p — \/ pi, we identify o;,
ieN

i € N as initial nodes.
Justification We observe first that the verification conditions associated with
a waiting diagram imply premise U3 of rule WAIT, when we take ¢ to be 1 V
-+ V pm and 7 to be .

If we further take p=¢o V -+ V om and g = 1 V -+ V o, we find that
premises Ul and U2 hold trivially. This yields the first part of the claim.

The second part of the claim considers different p and ¢ but explicitly requires
that premises Ul and U2 are P-valid. The conclusion follows by rule WAIT. 4

Example7. In Fig. 15, we present a waiting diagram that establishes the
property

at by ANat.mi Az=0AT,=0 = (T,<15Wat_ {3

for program CYCLIC[3 5. g4



(0<t,t,<5 T,>0 )
[at_ﬂl,g A\ at_m1 ANx=0A Ta§t2§5]
yma
(at_my, x =1 )
[ at_ly A Ta§5+t1§10]
4y
[at_fl AT, <10+t < 15]
21
g J
g J

' at_fg '

Fig. 15. A waiting diagram, establishing the formula
at_lh ANat_mi Az=0ATe=0 = (Toa<15)Wat_¥L3

5 Verifying Response Properties of Clocked Transition
Systems

In this section, we present methods for verifying response properties of clocked
transition systems. We begin with the clock-bounded chain rule, which is an
adaptation of the chain rule developed for reactive systems, to real-time systems.
This rule is used to prove response properties which require a bounded number of
(non-tick) steps for their achievement. Next, we present the clock-bounded well-
founded rule, which is the real time extension to the WELL rule used for reactive
systems. Similar to the WELL rule, the clock-bounded well-founded rule is used to
prove response properties which require an unbounded number of steps. To deal
with these cases, we must generalize the induction over a fixed finite subrange
of the integers into an explicit induction over an arbitrary well-founded relation.

The changes made to both the CHAIN and the WELL rules developed for
untimed systems, reflect the fact that progress in the real time systems is ensured
by the progress of time and not by fairness.

5.1 The Clock-Bounded Chain Rule

The basic rule for proving response properties of clocked transition systems is
the clock-bounded chain rule (rule CB-CHAIN) presented in Fig. 16. The rule uses
auxiliary assertions ¢1,...,pm and refers to assertion ¢ also as yg. With each
assertion ¢; we associate one of the clocks t; € C, to which we refer as the helpful
clock, and a real-valued upper bound b;. The intention is that while remaining in



states satisfying (;, the clock ¢; is bounded by b; and never reset. Since time in a
computation grows beyond any bound, this will imply that we cannot continually
stay at a ;-state for too long.

For assertions p, ¢, and po = q, p1,- .., ©m,
clocks t1,...,tm € C, and
real constants b1, ...,bn € R,

Cl. p — \/ ©;
=0
The following two premises hold for ¢ = 1,...,m
C2. pr A pi — (pi ANLi2t) V \/902-
i<z
for every 7 € T

C3. ©; — tiSb-;

p = g

Fig. 16. Rule ¢B-CHAIN (clock-bounded chain rule for response).

Premise C1 requires that every p-position satisfies one of g = ¢, ¥1,-- -, Vm-

Premise C2 requires that every 7-successor (for any 7 € 7r) of a ;-state s
is a ¢;-state for some j < ¢. In the case that the successor state satisfies ¢;, it
is required that the transition does not decrease the value of t;.

Premise C3 requires that assertion ¢, implies that ¢; is bounded by the
constant b;.

The following claim states the soundness of the rule:

Claim 4 Rule CB-CHAIN is sound for proving that a response formula is ®-valid.

Justification: Assume that the premises of the rule are ®-valid, and let o be
a computation of @. We will show that o satisfies the rule’s consequence

p = g

i.e., every p position in ¢ is followed by a g-position.

Assume that p holds at position k& and no later position ¢ > k satisfies q. By
C1 some ¢; must hold at position k. Let j; denote the minimal index such that
¢j, holds at k. Obviously jx > 0 by our assumption that ¢ never occurs beyond
position k.

By C2, state sx+1 must satisfy ¢; for some 7,0 < 5 < ji. Let jp4+1 denote the
minimal such index. Continuing in this manner we obtain that every position &



beyond k satisfies some ¢;;, where j; > 0 and
Jk 2 Jk+1 2 Jky2 = -0

Since we cannot have an infinite non-increasing sequence of natural numbers
which decreases infinitely many times, there must exist a position r > k such
that

Jr=Jr4t =Jrg2 =00
Denote the value of this eventually-stable assertion index by u = j,.

Consider the value of the clock ¢, at states s;, ¢+ > r. By C2, the value of
t, never decreases. Also, whenever a tick transition with increment A is taken,
t,, increases (as do all clocks) by A. It follows that the master clock 7' cannot
increase by more than b, — s,[t,] from its value at state s,. This contradicts
the fact that o is a computation in which the master clock increases beyond all
bounds.

We conclude that our assumption of the existence of a p-position not followed
by any ¢-position is false. Consequently, if the premises of the rule hold then every
p-position must be followed by a ¢-position, establishing the consequence of the
rule. 4

Note that the premises of rule CB-CHAIN ensure the stronger time-bounded
response property

PATa=0 = Ogh Ta< ) b
=1
Example8. We illustrate the use of rule CB-CHAIN to prove the termination
of program ANY-Y([3 5], which can be stated by the response formula

at_ by ANat_mog Ax=t1=t,=T=0 = < (at_lzx A at_mq).

To apply rule CB-CHAIN, we identify at_lg A at_mo Az =t =t =T =0 as
pand at_fs A at_m, as q. The auxiliary assertions, helpful clocks, and bounds
are presented in the following table:

wo: at_Ls N at_my - -
P1: at_fo A at_m1 Ax=1A tl S 5 t1: t1 b1: 5
pa: at_fl A at_m1 Ax=1A tl S 5 tg: t1 bg: 5
p3: at_fo,l A at_mo Ax=0A t1 S 5 A to S 5 t3: to b3: 5

We check the premises of rule CB-CHAIN for this selection of auxiliary assertions,
helpful clocks, and bounds.

e Premise C1 assumes the form
at_ﬁo A at_mg ANx =1t :tQITIO —

“v*

P
-V at_ﬁ(),l/\at_mol\m=0/\t1§5/\t2§5,

v

¥3

which is obviously state valid.



e Premise C2 has to be checked for each ¢« = 1,...,m and each 7 € 7. We
present only a few representative cases.
Premise C2 for 3 and transition mg assumes the form
m=mi A =1At=ts A-- A at_log Aty <5 A -+

J

~" ~~

Pmg ®3

Vo oat' by Aat_mi Az =1A1 <5

-~

#1
Vo oat' i ANat" my A =1 At <5

~"

)

which is obviously state valid.
Premise C2 for ¢» and the tick transition assumes the form

J

A >0 A pres(my,mo, x Atth1+AA at_ly1 —=t1 +A<5) A ---
N 1 s

Ptick
ANat_li ANat_cmi Az=1At <5 —

~~

P2
at' by A at"mi AT =1 A <5 At <t
N DNt

~~

M ta<th

which is obviously state valid.
e Premise C3 is trivially valid, since each ¢;, 7 =1,...,3 includes ¢t; < b; as a
conjunct.

This analysis indicates that all premises of rule CB-CHAIN are state valid. It
follows that the response formula

at_ Ly Nat_mog Ax=t; =t2=0 = O(at_Lly A at_my)

is valid over program ANY-Y[35. 4

5.2 Clock-Bounded Chain Diagrams

The main ingredients of a proof by rule CB-CHAIN can be conveniently and
effectively presented by a special type of verification diagrams that summarize
the auxiliary assertions with their helpful clocks and bounds, and display the
possible transitions between the assertions.

We define a clock bounded chain diagram (chain diagram for short) to be a
basic verification diagram satisfying:

e The terminal node is labeled by an assertion ¢g. All other nodes are labeled
by a pair of assertions: ¢; and 3;, for ¢+ = 1,...,m. The assertion §; has
the form ¢; < b;, where t; € C is a clock and b; is a real constant. We refer
to the conjunction ¢; A (3; as ¢;, and say that the node is labeled by the
(combined) assertion ¢;. For uniformity, we define ¢y = o.



e An edge can connect node ¢; to node ¢; only if ¢ > j. This imposes the
restriction that the graph of a chain diagram is weakly acyclic, i.e., the only
cycles in the graph consist of a node connected to itself.

Verification Conditions Implied by a Chain Diagram

Consider a nonterminal node labeled by assertion ¢: ¢ A 8 where the clock-
bound assertion is 3: ¢t < b. Let 7 € T be a transition and let ¢1,..., ¢k, £ >0,
be the successors of ¢ by edges labeled with 7 (possibly including ¢ itself). With
each such node and transition, we associate the following verification condition:

pr Ny = (A>T V@) V- Vg
In particular, if £ = 0 (i.e., ¢ has no 7-successors), the associated verification
condition is

pr AN — ¢ At

Valid Chain Diagrams

The consequences of having a valid clock-bounded chain diagram are stated in
the following claim:

Claim 5 If D is a P-valid chain diagram with nodes @, - - . ,om, then

P E (Ve)= Ow
Jj=0
If, in addition, o = q and

ci: p — \/ ¢
j=0

then we can conclude:
P E p= g

In case there is a subset N C {1,...,m} such that p — \/ i, we identify p;,
iEN
1 € N as initial nodes.

The claim follows from the observation that the verification conditions associ-
ated with a chain diagram precisely correspond to premise C2 of rule CB-CHAIN.
Premise C1 is trivially satisfied for the first part of the claim, where we take p to
be \/;":0 ;. It is explicitly provided in the second part of the claim. Premise C3
is trivially satisfied by having 8;: t; < b; as an explicit conjunct of ¢; = ¢; A B;.

Example9. In Fig. 17, we present a chain diagram for proving that
at_ by ANat_mog Ax=t1=t2=T=0 = < (at_la A at_my)

is valid over program ANY-Y[3 5.

Note the use of encapsulation in labeling the compound node by the common
clock bound g: t; < 5, which is factored out of nodes ¢ and 2. We also remove
the index from the 3 assertion labeling a node and write 3 instead of ;. 4



(. 7
t17t2:T 2 0 $
3 . at_£071/\at_m0/\$:0/\t1 S 5/\tg §5
Bty <5
my
( N
at_my,x=1,t1 <5, B: t; <5
¢2 . at_€1
4
¢1 : at,éo
\_ 60 )
o =g : at_ly N at_my

Fig. 17. Verifying termination of program ANY-Y(g3 5.

5.3 Winning a Race

We introduce an additional graph-structuring convention which leads to more
economic and comprehensible verification diagrams. Similar to the previously
introduced encapsulation conventions, this one is also inspired by the Statechart
language [Har87].

A conjunctive compound node is a compound node which contains two sets of
encapsulated nodes: {¢1,...,dm} and {¢1,...,¥,}. The two sets are separated
by a dashed line. Edges may connect nodes within each of the sets, and external
nodes to nodes in each of the sets. No edge may connect a ¢-node to a ¥-node.
We also allow a multi-source edge such as the edge connecting nodes ¢2 and 1
to the external node y.

In Fig. 18, we present a graph with a conjunctive compound node.

Any diagram containing conjunctive nodes can be expanded into an equiva-



T4

D

Fig. 18. A conjunctive compound node.

lent flat diagram, to which we refer as the expanded diagram, as follows:

For each i € {1,...,m} and j € {1,...,n}, the expanded diagram contains
a node, labeled by the conjunction ¢; A 1;.

For each 7-labeled edge connecting ¢, to ¢, there are T-labeled edges con-
necting expanded node ¢, A, to ¢p A for all j € {1,...,n}.

For each 7-labeled edge connecting 1. to 14, there are T-labeled edges con-
necting expanded node @; A ¥, to ¢; A g for alli € {1,...,m}.

For each 7-labeled edge connecting ¢, to external node Y, there are 7-labeled
edges connecting expanded node ¢, A9, to x for all j € {1,...,n}.

For each m-labeled edge connecting 1. to external node x, there are 7-labeled
edges connecting expanded node ¢; A 9. to x for all i € {1,...,m}.

For each 7-labeled multi-source edge connecting nodes ¢, and 1. to external
node x, there exists a 7-labeled edge connecting expanded node ¢, A Y. to
node .

In Fig. 19, we present the flat diagram equivalent to the diagram of Fig. 18.

XD i x

/
—
T3

Fig. 19. An expanded equivalent to the conjunctive diagram.



Analyzing Races between Processes

Conjunctive nodes are particularly helpful for proving that one process always
wins in a race against a competing process. Consider the trivial program RACE
presented in Fig. 20.

mo : skip

4y : skip my : skip

[él : skip] H mo : skip

129 ms : skip
ma

. - P —

Fig. 20. Program RACE.

As in the case of program MUTEX[L,u], We assign to all statements of program
RACE time bounds [L, U], stipulating that 2L > U. It is clear that when this
program is run, process P; will terminate before P» does. This is because Py
must terminate within 2U time units, while P, must take at least 4L > 2U time
units to terminate. How do we formally prove this property which can be stated
by the response formula

at_ﬁo ANat_mog At =ty = T=0 = <>(at_€2 A at_mo,,3) ?

In Fig. 21, we present a chain diagram which proves this property.

A central argument in the validation of this diagram is that transition msg
is disabled on all nodes within the conjunctive compound node. Transition mg
can be enabled only on an at_ms-state and only when ¢ > L. Combining the
assertion attached to the at_mgs-node with t; > L, we obtain T' > 4L > 2U.
However, all assertions on the left-hand side of the conjunctive node imply T <
2U . This shows that mg is disabled on all states covered by the conjunctive node,
and the only exit is via /5.

This establishes the property

at_fo ANat_myg ANt =ty = T=0 = Q(at_ﬁg A at_mo..g).

5.4 Proving Accessibility for Program MUTEX[f, 1)

As a more ambitious example, we prove for program MUTEX[z ¢ (Fig. 9) the
property of accessibility which can be stated (for process P;) by the response
formula

at_ls = <> at_Eg.

A similar formula states accessibility for process Ps.



( T
tl,tQ,TZO,ﬁZtlgU :

I

I

.

[ at_ﬁo/\thlSU ][

at_mg NT =t ]

A | o

(b A T<U 5 <0) i (ot m AT>t+1 )
I3 | m

i (at my AT >ty+2L)
l Mo

i (at mg AT >ty+3L)

: _J

( at_fly N at_mg. 3 )

Fig. 21. Chain diagram proving that P, wins the race.

From the invariance diagram of Fig. 10, we can infer the following five in-
variants, which we will use in the response proof:

Xo:
X1:
X2:
X3:
X4t

O(z € {0,1,2})

at,fo__2,4,5 = T 75 1

at_mo,,2,4,5 = T 75 2

at_ly = x=0V (at_mg.10 N T=2)
at,€6,7 Axz=1 = at_mg 7

The accessibility formula is proved in several steps, verifying separately the
following response formulas:

(CE
Pa:

P3:
Py
Ps:
Pg:

at_ly = <> at_{4
at_ by ANx=0 =
Q(at,ﬁg \% (at,ﬁ4’6,7 Aat_mg ANx=2 A1y = 0))
at,€4,6,7 ANat_mg ANxz=2ANt=0 =
O(at_Ly A at_mg A x=0 Aty =0)
(J,t_€4 A at_mg .10 N x =2 =
O(at_Lly N at_mg A x=0 Aty =0)
at_ly ANat_mog ANz=0A1t=0 =
O(at_leg A at_mo 4 Az =1)
at_lg AN at_mopa Az=1 = < at_ly

Tt is not difficult to see that response formulas 1;—1)g lead to the accessibility

property.



We proceed to prove each of the response formulas.

Proving v¢,: at_£, = < at_d,

Formula 1, states that, starting at ¢35, process P, is guaranteed to reach /4.
Statement /£y is unconditional and is guaranteed to terminate within U time
units. By X1, when we enter ¢3 from /5, x is different from 1, and will remain
so as long as we stay at f3 ({5 is the only statement that can set = to 1).
Consequently, within U time units, P; will proceed to #4.

The formal proof of %); is provided by the chain diagram of Fig. 22.

Fig. 22. Chain diagram for 11: at_£s = <> at_La.

Proving 1,

Response formula v, is given by
at_ly ANx=0 = <>(dt_€3 \% (at_€4,6,7 ANat_mg N =2 ANty = 0))

It states that, starting at location £, with x = 0, process P; will either reach the
critical section (at £g), or be overtaken by process P» just entering location mg
(and hence t; = 0), while setting x to 2. In the latter case, P; will be overtaken
at one of the locations ¢4, {5, or £7.

The formal proof of 15 is presented by the chain diagram of Fig. 23.

The diagram follows the progress of process P from ¢4 with z = 0. While P,
is at £4, P> may execute statement ms and set x to 2, which reaches the goal ¢g.
If this does not happen, P, proceeds to £5 and then to g, setting x to 1. Here,
we use invariant X4 to infer that when P; moves from ¢5 to /g, setting = to 1,
process P, can only be at locations my, ..., m7. From this point on, either P
will perform ms, leading again to ¢y, or P, will perform £7 moving to g, which
is also a goal state.

Proving 1,

Response formula 3 is given by

(I,t,£4,6,7 ANat_mgANz=2At =0 = <>(0,t,£4 ANat_mog Az =0A1ty = 0)



(Bt <U b
{ x=1, at_my 7
at_ly AN x=0 by at_Vs b at_Vlg b at_/lr
§ y,
ms ms Ly

¢01 &t_gg V (at_€4,6,7 VAN at_m6 ANxT=2A t2 = 0)

Fig. 23. Chain diagram for the formula
Yo at by Az=0 = O(at Ly V (at_Lagr A at_mg Az =2 Aty =0)).

The formula states that, once P; has been overtaken by P, it will return to
location ¢4 before P» exits its critical section and returns to my, setting x back
to 0. The fact that, being denied entry to £g, process P, must eventually return
to /3 and proceed to ¢4 is obvious. Less obvious is the fact that when P, performs
myg on its exit from the critical section, P; is already at £4. This results from
the number of statements that each process has to execute until it reaches ¢4
and myg, respectively, and from the assumption U < 2L which guarantees that
P, completes the execution of a single statement before P, can complete the
execution of two statements.

The worst case for P; is if it is overtaken at £5. To reach ¢4 it must execute 3
statements: £g, £7, and ¢3. It will take P; at most 3U to do so. To reach location
mg from its initial location at mg, P, has to execute at least 6 statements: mg,
mr, Mg, M3, Mg, and myg. It will take P, at least 6L to reach mg. Since 3U < 6L,
Py will get to £3 first.

The precise analysis of this race between P; and P, is presented by the chain
diagram of Fig. 24

Note that mq¢ is enabled only at states in which P is at £4. This is because
at all other Pj-locations, T, < 3U < 6L. For m1y to be enabled, T, must be at
least 6L.

Proving 1,
Response formula 1, is given by
at_ly ANat_mg 1o ANz=2 = (at_ly A at_mg A z=0A t; =0).

The formula states that, starting with P at £4, £ = 2, and P> somewhere within
{msg,...,m10}, we are guaranteed to reach a state in which P, is still at £, but



(tl,tQ,TaZO,.T:2 i e <U )
( @b AT, <t <U ][ at_mg A To=t )
*— ls i me
(at e AT, <U+t<2U ) (atomg AT >t + L)
lq 1 mq
(at_ts NT, <20+, <30)! (at_mg A T, > t, +2L)
*— l3 i ms
( at_{, )1 (at_mg AT, >t,+3L)
mio 1 ms
i [at_mg ATy >ty + 4L]
1 mg
i [at_mlo ATy >ty + 5L]
. } J

( at_ly N at_mg AN =0 A t,=0 )

Fig. 24. Chain diagram for the formula
Y3 at_Llagr ANat_mg Az=2Ata=0AT,=0 =
O(at—ls A at_mo Az =0 A t2 =0).

P, has just moved to mg (hence to = x = 0). This property relies on the progress
of P, through {ms,...,m19} to my while z = 2 and P, cannot change the value
of x, being stuck at £4. For a formal proof of this property, we can use again the
diagram of Fig. 24, where the initial nodes are within the conjunctive compound
node.

Proving 1,
Response formula 5 is given by

at_ Ly ANat_mg Ax=0At=0 = Olat_lsg A at_mg.a A z=1).

The formula considers another possible race between P; and P, starting
with P; at ¢4 and P, just arriving to mg. Formula 15 states that P; will reach



lg (with x = 1) before P, reaches ms. Note that from a state satisfying at_£g A
at_mg.4 N z =1 the entry of P; to its critical section is guaranteed, since P
cannot pass the test at my and interfere with P;’s progress.

Formula 5 is verified by the chain diagram of Fig. 25.

( 44y, T, >0, 2 =0 Bt <U )
[ at L AT, <t,<U ]i[ at_mo AT, =t ]
Ly l mo
(at & AT, <U+t gQU]i (atm AT, >t +1L )
2 m
- (at-my ATy >ty +2L)
: mo
i [at_mg A Ta2t2+3L]
1 ms
i [at_m4 A Ta2t2+4L]
N\ } J

( at_le N at_moa4 N z=1 )

Fig. 25. Chain diagram for the formula
Ps: at_laAat_moAz=0At2=0ATo=0 = O(at_lsAat_mo.aAz=1).

A simple informal argument explains why P; is sure to win this race. To
move from ¢4 to £g, P, has to execute 2 statements: £, and /5, which takes at
most 2U. In that time, P> cannot complete the execution of the 5 statements
mg—my necessary to reach ms, since 5L > 2U.

Proving 1
Response formula g is given by
¢6: at_ﬁﬁ ANat_mg s ANz =1 = <> at_ég.

This formula states that, once P; reached g while P, is still confined within the
range {my, ..., ma}, entry of P; to £g is guaranteed. The proof presented in the



diagram of Fig. 26 simply traces the progress of P; from /g to fg, while x keeps
its value of 1.

at_mo.4, =1, f: &, <U

Fig. 26. Chain diagram for the formula
PYe: at_Lle N at_mo 4 ANz=1 = <> at_/4g.

This concludes the proof of accessibility for program MUTEX[f, p.

5.5 Clock-Bounded Well-Founded Rule

Rule CB-CHAIN is adequate for proving response properties in which a ¢ state is
achieved in a number of significant steps which is a priori bounded. For example,
in verifying termination of program ANY-Y(3 5], there were 3 helpful steps leading
to termination. These are represented in the chain diagram of Fig. 17 by the
edges entering nodes ¢o—pyg-

In many cases, the number of helpful steps needed to reach the goal ¢ cannot
be bounded a priori. For these cases we need a stronger rule, based on well-
founded ordering.

Well-founded Domains

We define a well-founded domain (A, >) to consist of a set A and a well-founded
order relation = on A. A binary relation > is called an order if it is

e transitive: ¢ > b and b > ¢ imply a > ¢, and
e irreflexive: a = a for no a € A.

The relation > is called well-founded if there does not exist an infinitely de-
scending sequence ag,ay, ... of elements of A such that

ag > a1 > - .

A typical example of a well-founded domain is (N,>), where N are the nat-
ural numbers (including 0) and > is the greater-than relation. Clearly, > is
well-founded over the natural numbers, because there cannot exist an infinitely
descending sequence of natural numbers

ng > N1 > Ng > ....



For >, an arbitrary order relation on A, we define its reflezive extension > to
hold between a, a' € A if either a = a' or a = a'.

Lexicographic Tuples

Another frequently used well-founded domain is (Nk, >), where N* is the set of
k-tuples of natural numbers. The order > is defined by

(nl,...,nk) - (ml,...,mk) i m =M1, «.oy, Ni—1 =M1, N; > My
for some i, 1 <i<k.

For example, for k = 3
(7, 2, 1) = (7, 0, 45).

It is easy to show that the domain (N¥, ) is well-founded.

It is possible to make lexicographic comparisons between tuples of inte-
gers of different lengths. The convention is that the relation holding between
(a1,...,a;) and (by,...,b) for i < k is determined by lexicographically compar-
ing (a1,...,ai,0,...,0) to (b1,...,bi,bit1,...,br). That is, we pad the shorter
tuple by zeros on the right until it assumes the length of the longer tuple.

According to this definition, (0, 2) > 0, since (0, 2) > (0, 0). In a similar
way, 1 > (0, 2).

5.6 Rule ¢B-WELL

In Fig. 27, we present the clock-bounded well-founded response rule (rule CB-
WELL) for proving response properties of clocked transition systems. The rule
uses auxiliary assertions ¢,..., @, and refers to assertion ¢ also as @o. With
each assertion ¢;, i > 0, we associate one of the clocks t; € C, to which we refer as
the helpful clock, and an upper bound B;, which is a real-valued expression. Note
that allowing B; to be an expression, is a generalization over the rule CB-CHAIN
where the upper time bounds are constants. This generalization is necessary in
order to guarantee the completeness of the rule (claim 7).

Also required are a well-founded domain (A, >), and ranking functions é;: X' —

A, i =1,...,m, mapping states of the system to elements of A. The ranking
functions measure progress of the computation towards the goal g.

Premise W1 requires that every p-position satisfies one of g = ¢, 01, ., @m-

Premise W2 requires that every 7-successor (for any 7 € 71) of a ¢;-state s
is a p;-state for some j, with a rank §; not exceeding 4;. In the case that the
successor state satisfies @;, it is allowed that 8! = é; but is required that the
transition does not decrease the value of ¢; or increase the value of B;. In all
other cases it is required that 6} < b;, i.e., that the rank strictly decreases.

Premise W3 requires that assertion ¢; implies that ¢; is bounded by the
constant B;.

The following claim states the soundness of the rule:



For assertions p, ¢, and w0 = q,©1,..., Pm,
clocks t1,...,tm € C,
real expressions Bi,...,Bm € R,
a well-founded domain (A, >), and
ranking functions 61,...,6m,: X — A,

W1l p — \/ ©;
j=0
The following two premises hold for ¢ = 1,...,m

W2, pr A i — \/((,0; A= 68)V
j=0
(i A& =8 Nt; <ti A Bj < B;)
for every T € Tt

W3. ;i — t:;<B;

p = g

Fig. 27. Rule ¢B-WELL (clock-bounded well-founded rule for response).

Claim 6 Rule CB-WELL is sound for proving that a response formula is ®-valid.

Justification: Assume that the premises of the rule are ®-valid, and let o be
a computation of @. We will show that o satisfies the rule’s consequence

p=<q

Assume that p holds at position k£ and no later position ¢ > k satisfies q. By
W1 some ¢; must hold at position k. Let ux € A be the minimal rank of state
Sk, i.e. the minimal value of §;(sx) among all ; which hold at si. Let ji be the
smallest index such that ¢, holds at si and ux = 8, (sk)-

By W2, state sj+1 must satisfy ¢; for some j > 0, implying that sy41 has a
defined rank wugy1. Premise W2 requires that ug41 =< ug.

Proceeding in this manner we obtain that every position ¢ beyond & has a
rank wu;, such that

Uk & U1 = Ukq2 & "
Since A is well-founded, there must exist a position r > k such that
Ur = Ur41 = Ur42 = * "

Denote the value of this eventually-stable rank by 4 = u.., and let j,. > 0 be the
index of the assertion such that é;, (s») = u.



Consider the value of the clock ¢; at states s;, ¢ > r. Since the rank never
decreases beyond 7, the value of ¢; never decreases and the value of B;_ never
increases beyond that position. Also, whenever a tick transition with increment
A is taken, t;, increases (as do all clocks) by A. It follows that the master clock
T cannot increase by more than B;, (s,) — s.[t;,] from its value at state s,. This
contradicts the fact that o is a computation in which the master clock increases
beyond all bounds.

We conclude that our assumption of the existence of a p-position not followed
by any ¢-position is false. Consequently, if the premises of the rule hold then every
p-position must be followed by a g-position, establishing the consequence of the
rule. 4

Claim 7 Rule CB-WELL is complete for proving that a response formula is valid
over a non-zeno system P.

Justification (A sketch): The meaning of this claim is that if the response for-
mula p = <& ¢ is valid over the non-zeno system &, then there exist constructs
as required by rule CB-WELL, such that all premises of the rule are $-state valid.

An execution segment o is called g¢-free if no state in o satisfies ¢q. A state
s' is said to be a —g-follower of state s if there is a g-free $-execution segment
leading from s to s’. We follow the techniques of [MP91] and take for (a single)
¢ the assertion pending,, constructed in such a way that

s |= pending, iff s is a ~g-follower of a @-accessible p-state.

We define a binary relation 71 such that s 1 s’ if s satisfies pending,, s’ is a
—g-follower of s, and s'[T] > s[T] + 1. Obviously, 1 is well-founded, because an
infinite sequence s 1 s; I so 1 --- would lead to a computation violating
p = g

Based on a transcendentally inductive construction, we can define a ranking
function §: ¥ — Ord, mapping states into the ordinals, such that

Ol. If ¢ is a —g-follower of the pending,-state s, then §(s) > 6(s').
02. If s O §', where s is a pending,-state, then §(s) > 6(s').

Given a pending state s, let B(s) denote the supremum of all values s'[T"] where
s' is a —g-follower of s and §(s') = 8(s). Due to property O2, this supremum
exists and is bounded by s[T] + 1. It can now be shown that all premises of
rule CB-WELL hold for the choice of m = 1, ¢1 = pending,, t1 =T, By = B(s),
(A,>=) = (Ord,>), and 6; = 6 as defined above. 4

The following example illustrates an application of rule CB-WELL.

Example10. Consider program UP-DOWN presented in Fig. 28.

This program can be viewed as a generalization of program ANY-Y in which,
after terminating the while loop at ¢y, ¢;, process P; proceeds to perform a
second while loop at /s, £3, decrementing y until it reaches 0.



z,y: integer where z =y =0

£y : while z =0 do

b yi=y+1 L

£> : while y > 0 do H |:m0.$._1:|
by : y:=y—1

£4Z

N - P —

Fig. 28. Program UP-DOWN.

Assume, we assign the uniform time bounds [L,U] to all executable state-

ments of program UP-DOWN, where our only information about L and U is given
by

0<L<U<o.

We use rule CB-WELL to verify that program UP-DOWN terminates. This
property can be expressed by the response formula

at_ Ly ANat_mog Ax=y=t1=t2=T=0 = O(at_ly N at_my).
A ~ o ﬁy
P q

As the well-founded domain, we take (N?, ), i.e., the domain of lexicographic
pairs. As time bounds, we use B;: U for all4 = 1,...,5. The auxiliary assertions,
helpful clocks, and ranking functions are given by the following table:

©o: at_fly N at_my 6p: 0
pr:at L3 ANat_-m Az=1Ay>0At <U t1:t1 612 (1,2y)
wor at bo ANat_mi Az=1Ay>0At <U to:t; 6 (1,2y+1)
w3 at_ by ANat_m ANz=1ANy>0At, <U t3: t b3: 2

P4 at_éll\at_mlAazzll\yZO/\tlgU tq: 11 (5413

Y5 at_E(),l/\at_mo/\SL‘:O/\yZO/\hSU/\tQSU
t5:t2 (55:4

We consider two instances of premise W2: transition ¢2 taken from ¢, and
transition /3 taken from ¢;.



For the case of s, premise W2 assumes the form

y >0 A move(£y,{3)

\Y; Apres(V—m) AN at_mi Ax=1Ay>0At <U
y <0 A move(ls, ly) h pe g
ot
N

at' b3 A at'  mi AT =1 Ay S0AE <U A (L,2y+1) = (1,2y)

~ v

9:'1 52:6’1
.V V
at' £y A at"my A (1,29 +1) =0

-~

> e
The implication uses the abbreviation
move(&,ﬁj): T =4 A ﬂ'i :Kj.

Note that move(¥;,£;) implies at’ £; and at'_mi = at_m;. Since p,, implies
y' =y, the implication is obviously valid, in particular, due to

(1,29 + 1) = (1,2y) and (1,2y+1) = 0.
Premise W2 for ¢, and transition ¢3 assumes the form

move(£3,02) Ny =y —1 A pres(z,t1,ts,T) A

-~

Peg

at_ L3 ANat_m Axz=1Ay>0At; <U —

-~

1

VvV latilo Aat_m AT =1AY >0AH <U A (1,2y) = (1,29 + 1)

~ S

~~

2 5156}

Since p, implies y' =y — 1, it is easy to verify that y > 0 implies y' > 0 and
1,2y’ +1)=(1,2(y — 1)+ 1) = (1,2y — 1) < (1,2y).

This establishes that the response property
at_ by ANat_mog Ax=y=t1=to=T=0 = (at_Lly A at_my).

is valid over program UP-DOWN.

5.7 Ranked Diagrams

The main ingredients of a proof by rule CB-WELL can be conveniently and effec-
tively presented by a special type of verification diagrams that summarize the
auxiliary assertions, their helpful clocks and bounds and their ranking functions,
and display the possible transitions between the assertions.

We define a ranked diagram to be a basic verification diagram satisfying:



e The terminal node is labeled by an assertion ¢q. All other nodes are labeled
by a pair of assertions: ¢; and §;, for « = 1,...,m, and a ranking function
6;- The assertion §; has the form t; < B;, where t; € C is a clock and B; is
a real-valued expression. We refer to the conjunction ¢; A 3; as p;, and say
that the node is labeled by the (combined) assertion ;. For uniformity, we
define ¢0 = ¥q-

Verification Conditions Implied by a Ranked Diagram

Consider a nonterminal node labeled by assertion ¢: ¢ A B where the clock-
bound assertion is 8: ¢ < B and the ranking function is §. Let 7 € 77 be a
transition and let o1, ..., 9k, kK > 0, be the successors of ¢ by edges labeled with
7 (possibly including ¢ itself). With each such node and transition, we associate
the following verification condition:

pr AN — (P ANF=6ANt<t'<B'<B)V (¢ AN§=0b")V
(L ANO=81) V - V (¢ N> 6).

In particular, if £ = 0 (i.e., ¢ has no 7-successors), the associated verification
condition is

pr Ao — (P NE=6Nt<t'<B'<B)V (¢ A6>6).

Valid Ranked Diagrams

The consequences of having a valid ranked diagram are stated in the following
claim:

Claim 8 If D is a P-valid ranked diagram with nodes ¢q, ..., om, then
PEV ¢ = O
7=0
If, in addition, g = q and
Wi p - \/ ¢,
§=0

then we can conclude:
PEp = O
In case there is a subset N C {1,...,m} such that p — \/ pi, we identify ;,

ieN
1 € N as initial nodes.

Example 11. In Fig. 29, we present a ranked diagram which establishes that
the response property

at g ANat-mpAx=y=t1=t2=T=0 = (at_Lly A at_my).



(4, T>0, 0<t, <U )
[¢55: at_lo1 N at_mo Nz=0ANy>0, B:t,<U ©6: 4]
Mo
(at_my, x=1, y>0, Bty <U R
[ b4: at_ty, 6: 3 ]
4
[ o3: at_ly, 0: 2 ]
_ bo y
(at_my, z=1, y>0, Bt <U )
ha: at Ly, 6 (1,2y+1)
12 Ly
cat_ly Ay >0, o: (1,2y)]
\ y
k | y

(gbo: at_fy N at_mq, e 0)6/

Fig. 29. A ranked diagram, establishing the formula
at_lo N at_mog Az=y=t1=to=T=0 = <>(at_£4 A at_mq)

is valid over program UP-DOWN.
Observe that the 3 assertions for nodes ¢1-¢4 appear at the head of the com-
pound nodes containing these nodes, as part of the encapsulation conventions.

o

5.8 From Waiting-for to Response Properties

In many useful cases, we can infer response formulas from a waiting-for formula
of a particular form.

Rule W—R, presented in Fig. 30, supports the inference of a response formula
from a waiting-for formula of a special form. The rule refers to a rigid expression
B, which is an expression that does not change its value from one state to the
next.

Justification:  Assume that the waiting-for premise is P-valid. Consider a
P-computation o, and a p-position 7 > 0 in ¢. By the waiting-for formula, j



For assertions p, ¢, and 7, and rigid expression B,
p = (@ANT.<B)Wr

p => r

Fig. 30. Rule W—R (from waiting-for to response formulas).

initiates an interval, all of whose positions satisfy ¢ A T, < B, which either
extends to infinity or is terminated by an r-position. Since o is a computation,
T must grow beyond all values and cannot remain bounded by the constant
value of B at all positions. It follows that j must be followed by an r-position.

o

Example12.  Consider the SPLz program UP-DOWN[ 5, Which is program
UP-DOWN with time bounds [1,5] uniformly assigned to all executable statements.
We use rule W—R to verify that the response formula

at by ANat- moANz=y=T,=0 = < (at_ly A at_my AT, <50)

is valid over program UP-DOWNyy .
In Fig. 31, we present a waiting diagram which establishes the UP-DOWNy 5)-
validity of the waiting-for formula

at_log Nat_mog Az=y=T,=0 = (T, <500W (at_Ly N T, <50)

Note that the assertion describing the initial state does not specify initial
values for either ¢; or t5. To show that the waiting diagram is valid, we rely on
the following invariant:

O((at_ty — 0<t; <5) A (at_mg — 0<ty <5)).

This invariant can be separately established, using the methods of Section 4.

5.9 Are Rules OB-CHAIN and CB-WELL Really Necessary?

Rule W—R enables the derivation of a response property from a timed waiting-
for property, which can be established using rule wAIT. Rule wAIT (and its
equivalent formulation in terms of waiting diagrams) is, in principle, simpler
than either rule CB-CHAIN or rule CB-WELL, because it does not require the
identification of explicit time bounds or ranking functions as auxiliary constructs.

In view of this, a naturally rising question is why do we need the response-
specific rules CB-CHAIN and CB-WELL. Isn’t rule W—R adequate for establishing
all response properties of interest?

We provide two answers to this question. The first answer is that there are
some response properties that cannot be established through timed waiting-for
properties.



y>0,T,>0 0<t; <5 0<t,<5

(at_mo,xzo,Ta§t2§5 )
[at_ﬁo A(y=0V 2y+t1§Ta+1DJ
4
[ at_ly N2y+1t, <T, ]
\ y
I Mo
(at,ml,le h
[at_el Ay<2A Ta§5+t1§10]
4
[at_ﬁo Ay<3A Ta§1o+t1g1@
k £ )

at_my, x =1, y<3

N
F[at& AT, <45—10y+1; <50 — 10M
4

4y
[atlg A y>0/\Ta§50—10y+t1§55—10@

- J

( at ly A T, < 50 )%/

Fig. 31. A waiting diagram, establishing the formula
at_lo ANat_mo ANz=y=T,=0 = (To<50)W (at_£s A T, <50)

To support this point, consider again program UP-DOWN but with general
(uniform) time bounds, [L, U], such that 0 < L < U < oc. For all cases that
L > 0, we can essentially repeat the analysis done in Example 12, and establish
the waiting-for formula

at o Aat_moANz=y=T, =0 = (To<B)W (at ¥y AT, <B),

where

p-os2|Z |



Applying rule W—R to this formula, one can infer the response formula
at by ANat-mpANx=y=T,=0 = < (at_ly AT, < B),

guaranteeing termination within B time units.

One can see that as L gets closer to 0, the bound on termination time gets
larger. It is therefore not surprising that when L = 0, there is no bound on the
time it takes the program to terminate. Yet, all computations of this program
eventually lead to the termination state at_£4. Thus, termination of program
UP-DOWN in the case of L = 0 is a response property that cannot be verified
using rule W—R. On the other hand, in Example 10, we established termination
of UP-DOWN, using rule CB-WELL, in a proof that is valid for all L > 0. This
illustrates the case of a response property that cannot be proven by rule W—R,
but is provable by rule CB-WELL.

As the second answer justifying the introduction of rule CB-WELL, we pro-
pose to compare the verification diagram of Fig. 29 with that of Fig. 31, both
establishing termination of UP-DOWN for the time bounds [1, 5] (Fig. 29 actually
established it for general [L,U]). It is obvious that diagram 31 requires a much
more detailed analysis of the precise time interval which we can spend at each of
the diagram nodes. In comparison, the diagram of Fig. 29 said very little about
these time intervals. The only timing information included in this diagram was
that the time spent at each of the nodes is bounded by U. Thus, when we need
or are ready to conduct a very precise analysis of the time intervals spent at each
node, it makes sense to use waiting diagrams and rule W—R. If, on the other
hand, we are content with less quantitative analysis, and are only interested in
the qualitative fact that eventually ¢ will occur (which is the essence of the &
temporal operator), we may use rule CB-WELL or rule CB-CHAIN. These rules
may be conceptually more complicated than rule wWAIT, but their application
calls for a simpler analysis of the program.

A more careful analysis of the conditions under which the investment in rules
CB-CHAIN and CB-WELL is justified, requires further study and experimentation.

6 Proving that a cTs is Non-Zeno

It is by now a widely accepted notion that the only interesting real-time systems
are those which obey the non-zeno restriction. One of the reasons is that, since
we only consider time-divergent runs as computations, a possibly-zeno system
may contain statements that will never be accessed in a computation. In some
sense, these components are redundant to the description of the system and their
inclusion is superfluous and often confusing and misleading. Non-zeno systems,
on the other hand, contain no such redundancy, since every accessible state also
appears in some computation.

In view of the significance of the non-zeno restriction, it is important to be
able to verify that an arbitrary given CTS is non-zeno.

In many cases, there are simple sufficient conditions which guarantee that
the system is non-zeno. One of the most important cases is the following;:



Claim 9 Let P be an SPLy program in which the upper bound assigned to each
exzecutable statement is a positive constant. Then @, , the CTS corresponding to
P, is a non-zeno system.

Justification Let U,, > 0 be the minimal upper bound. Consider a finite run
T S0,...,Sk. We wish to show that r can be extended into a computation.

The recipe for extending r considers the last reached state s (= sx) and
decides to apply the next transition as follows:

o If the tick transition is enabled on s, take the tick transition with increment
A > 0, which is the maximal A < 1 satisfying s |= 2(A).

e If the tick transition is disabled on s, it must be blocked by one of the pro-
cesses, say P;, whose clock ¢; has reached the upper bound of some transition
7 of P; which is currently enabled. In this case, take this ripe transition 7.

It is not difficult to check that an accessible state in a clocked transition system
derived from a program with positive upper bounds always has at least one
extended transition enabled on it. Thus, the described recipe produces an infinite
run. This observation hinges on the revised transition relation we associated with
the await statement.

It only remains to check that the infinite run produced by this recipe is time-
divergent and, hence, is a computation. By considering the different possibilities,
we observe that two cases are possible.

In one case, we eventually reach a state s such that s|= 2(A4), for every
A > 0. In this case, once we reach this s, we continue to take tick steps with
A=1.

In the remaining case, for every reached state s;, there exists a limit A;
such that s; [= 2(A) for no A > A;. In this case, our construction must take
infinitely many untimed transitions, i.e., transitions 7 # tick. Note that each
such transition resets one of the clocks to 0. It follows that the construction
of the infinite run causes at least one of the clocks, say t¢;, to be reset to 0
infinitely many times. It is not difficult to see that between two consecutive
resets of clock t;, time must progress by at least U,,. It follows that time has
progressed infinitely many times by the amount U,, > 0 and, therefore, the run
is time-divergent. 4

6.1 A Rule for Establishing Non-Zenoness

While Claim 9 settles the question of non-zenoness for many useful cases, there
are additional cases which require different methods. The claim was established
for the simpler case that the upper bounds assigned to transitions were positive
constants. It can easily be generalized to state-dependent upper bounds which
are bounded from below by a positive constant. However, this still does not
cover all possible cases. For example, CTS &, presented in Fig. 32, is a non-zeno
system, even though, the upper bounds of the transition connecting £ to itself
have no lower bound.



y: integer where y =1
t1,T: real where t1 =T =0

Fig. 32. A non-zeno CTS ¢4 with upper bounds tending to 0.

For assertion ¢,

NL. @l
N2. ¢EAG(pANTa=0 — EF(T.2>1))

& is non-zeno

Fig. 33. Rule NONZ (@ is a non-zeno CTS).

The general strategy we propose for proving that a given ¢TS @ is non-zeno
is summarized in rule NONZ, presented in Fig. 33.

The rule uses an auxiliary assertion ¢. Premise N1 requires that ¢ is $-state
valid, and can be proven using rule ACC.

Premise N2 belongs to the realm of branching-time temporal logic, which
is different from the linear-time temporal framework we have been consistently
using in this paper. It has long been observed that the property of being non-
zeno cannot be formulated in linear-time TL and needs branching-time TL for
its precise formulation. In a recent paper ([Lam95]), Lamport makes this ob-
servation but suggests a method by which properties such as non-zenoness can
still be verified in a linear framework. We prefer to use the branching-time logic
CTL([EC82]) for formulating the required property, as in premise N2, and present
a single proof rule which is adequate to establish ¢TL formulas such as the
one presented in N2. A deductive system for verifying the main CTL properties
appeared in [BAMPS83]. A more comprehensive deductive system for CTL was
recently proposed in [FG96].

Premise N2 states that, from every ¢-state s, it is possible to trace a com-
putation segment in which time increases by at least 1 from its value at s. We
use the constant a to represent the global time at s.

Justification By premise N1, all #-reachable states satisfy the assertion . Let
s be an arbitrary reachable #-state. By N1, it satisfies ¢. By N2, we can construct



a computation segment from s to another state sy, such that s;[T7] > s[T] + 1.
Applying premise N2 to s1, we are guaranteed of a computations segment leading
from s; to some state sq, such that so[T] > s1[T] + 1.

Proceeding in this manner, we can construct a time-divergent run, starting
at s. It follows that any finite run, such as the one leading to s, can be extended
to a computation. We conclude that @ is non-zeno. 4

6.2 Verifying Possibility Formulas
A possibility formula is a CTL formula of the form
AG(p — EFgq),

for assertions p and ¢q. Without entering into the individual meaning of the CTL
temporal operators AG and EF, we say that the possibility formula AG(p —
EFq) is valid over cTs & (®-valid) if

For every accessible p-state s, there exists a run segment s=sy,..., sk
leading from s to a g-state s.

We write
& = AG(p — EFq)

to indicate that the possibility formula AG(p — EFgq) is $-valid.
In Fig. 34, we present rule G-POSS which is sound and complete for proving
the &-validity of a possibility formula.

For assertions p, ¢, and po = q, ¢1,-. ., ©m,
transitions 71,...,Tm € 77,
functions Next1,..., Next,: X — X,
a well-founded domain (A4, >), and
ranking functions &g, ...,8m: X — A,

Gl. p — \/ ©;
j=0
The following premise holds for : =1,...,m

G2. ¢; A V' =Nezt; — pr A \/(gag A 6i>6})

i=0

P AG(p — EFq)

Fig. 34. Rule G-POss (& validity of a possibility formula).



The rule requires finding auxiliary assertions ¢;, functions Next;: X — X,
and transitions 7;, ¢ = 1,...,m, a well-founded domain (A, >), and ranking
functions 6;: S — A. Each assertion ¢; is associated with the transition 7;
that is helpful at positions satisfying ¢;, with a function Next; that selects a
successor state, and with its own ranking function §;. We have presented the
successor-selection functions Nezt; as mapping states to states but, in fact, they
map s[V], i.e., the values of the system variables in state s, to s'[V], the values
of the system variables in a successor state s'.

Premise G1 requires that every p-position satisfies one of g, ..., Ym.-

Premise G2 considers a ¢;-state s and a state § such that 5[V] = s[V'] =
Next;, for some ¢ = 1,...,m. The premise requires that s is a 7;-successor of s
which satisfies ¢}, for some j = 0,...,m and has a rank lower than that of s.
Justification Let s be a p-state. We will show that there exists a run segment
$=81,...,8 which leads from s to a g-state. By premise G1, s = s; must satisfy
@, for some j = 0,...,m. Let j; be the minimal j such that s |= ;. If j1 =0,
we are done, since s; satisfies g = q.

Otherwise, j; > 0 and let u; = §;,(s1). Let so be any state such that s3[V] =
Neztj, (s1[V])- By premise G2, s is a 7, -successor of sy, satisfies ¢;, for some
J2 € {0,...,m}, and arank uy = §;,(s2) < uz. If jo = 0, we are done. Otherwise,
we take s3 to be some Next;,-selected successor of s, and so on.

This construction can terminate when we reach some k such that jr = 0. If
it does not terminate, we generate an infinite descending sequence

Up > U2 > ---.

This is impossible due to the well-foundedness of .A. We conclude that the con-
struction must terminate in a state s, satisfying ¢o =¢q.

Example13. We illustrate the application of rule G-P0Ss for proving that
the possibility formula

AG(at_Zo,l ANT, =0 — EF(Ta >1 )

P q

is valid over cTs &5, presented in Fig. 35.

Observe that transition 7, the only transition in @5, has two successors. One
satisfying at_ £y and the other satisfying at_/;.

To apply rule G-POSs, we take (N, >) (the domain of the natural numbers) as
the well-founded domain. The auxiliary assertions, helpful transitions, successor-
selection functions, and ranking functions are given by the following table:

wo: Ty >1 To: tick Nexto: («': 1, T': T+1) 6: 0
p1: at_y AT, >0 7: tick Nexty: (' : 1, T :T+1) 6;::1
pa: at_ by AT, >0 1o 7T Nexty: (n': 1, T': T) 6y: 2

This choice of constructs, corresponds to a strategy of constructing a run segment
in which time will progress by at least 1. According to this strategy, if we are
at £y, we choose to take transition 7 and choose a 7-successor state satisfying



T: real where t; =T =0

Fig. 35. A non-zeno CTS Ps.

at_¥¢,. If we are at ¢, we choose to take the tick transition with time increment
1.

It is not difficult to check that all premises of rule G-POSS are satisfied by
this choice of constructs.

It follows that the possibility formula

AG(at_tyy NT,=0 — EF(T,>1))

is #5-valid. 4

Systems with Deterministic Transitions

Rule G-POSS is very general and can be shown to be complete for proving possi-
bility properties of all clocked transition systems. However, there is a big family
of systems which can be handled by a rule which calls for identification of simpler
constructs.

A transition 7 of a €TS is called deterministic if all the 7-successors of an
accessible state assign the same values to the system variables. That is, if we
restrict our attention to the values of the system variables, each accessible state
has at most one 7-successor. We say that a cTS @ is transition-deterministic
(@ is a TD-CTs for short) if all of its (untimed) transitions are deterministic.
All the systems we have presented in this paper, excluding &5, are transition-
deterministic.

Consider a TD-CTS é. Assume that we wish to construct the successor-
selection function Next; corresponding to assertion ¢;, where 7; # tick. Since
7; is deterministic, Next; is uniquely determined, and its explicit specification is
redundant. The situation is different with the tick transition, which may have
(uncountably) many successors, each corresponding to a different value of the
time increment A. However, once we specify the value of A, the successor of
a tick transition is also uniquely determined up to differences in non-system
variables.

Thus, instead of specifying the values of all system variables in the successor
state, it is sufficient to specify the time increment A; associated with the suc-



cessor. For uniformity, we specify values of A; also for untimed transitions, but
then we ensure that A; = 0.

This leads to rule poss (Fig. 36) which is adequate for proving possibility
properties of every TD-CTS. Rule POSS has more premises than rule G-POSS but
it requires the identification of simpler constructs, and the premises are easier
to verify.

For assertions p, ¢, and oo = q, p1,--.,Pm,
transitions 71, ..., Tm € I,
time increments Aq,..., A, >0,
a well-founded domain (A, >), and
ranking functions 8o, ...,0m: X — A,

PL. p — \/(p]-
j=0

The following premises hold for i =1,...,m

P2. pr, AT =T+ A; AN ¢; —

i

(5 N 6s = 65)

<

0

J
P3. If 7; = tick then
P3t. ¢, — 2(4))
Otherwise
P3n. ¢; — A;=0 A En(m)

&= AG(p — EFq)

Fig. 36. Rule Poss (@ validity of a possibility formula).

Note that rule POSS splits premise G2 of rule G-POSS into two premises.
Premise P2 guarantees that the (unique) successor of a ¢;-state corresponding
to the identification of the helpful transition 7; and the time increment A, (if it
exists), satisfies some ¢; with a lower rank. Premise P3 guarantees that each ¢;-
state does have a successor corresponding to 7; and A;. The premise is split into
the case of the tick transition (sub-premise P3t) and the case of all other untimed
transitions (sub-premise P3n). Sub-premise P3t requires that ¢; implies 2(A;),
the enabling condition of transition tick, with the specified A;. Sub-premise P3n
requires that A; = 0 and that ; implies the enableness of ;.

Example14. We illustrate the use of rule P0OSs for proving that the possibil-



ity formula

1
AGlat by AN1<y=uA0<t <— AT, =0 — EF(T,>1))
\/y ———
N ~ - q
P

is valid over CTS @4, where u is an auxiliary rigid variable recording the value
of y at the state described by at_fly A 1<y A 0< t; < % ANT,=0.
Note that c¢Ts @4 has a single untimed transition, to which we refer as 7.
As the well-founded domain, we take (N?, ), the domain of lexicographic
pairs. The auxiliary assertions, helpful transitions, time increments, and ranking
functions are given by the following table:

wo: To>1 190 190 Ao: O bo: O

o1 at_€0A1§u§y§2u+1At1=OA%STG<1
1. tick Aq: ﬁ 61: (2u+1-—y|,2)

Pt at,EOA1§u§y§2u+1/\t1:ﬁ/\ e < T, <1
To: Too Ao 0 ba: (2u+1-—y|,1)

3t at,€0A1§u§y§2u+1/\0<t1<ﬁ/\OSTG<1
T3:  tick As: % —t1 631 2u+2

The idea behind this selection is the following. Starting in a state at which
y=u>land 0 <t < ﬁ (described by assertion 3), we first step time with
an increment ﬁ — t1, this will get us to a state in which #; = ﬁ (described

by 2). From this point on, we alternate between taking untimed transition 79

which increments y by 1 but preserves time, and taking transition tick, which
increments time by ﬁ but preserves the value of y. We repeat this couple of

steps at most u+ 1 times, letting ¢ increase from u to 2u+ 1. Since the time step
in each round is decreasing, the total time increase is not less than u + 1 times
the last time increment which is \/ﬁ Thus the total time increase is not less

than

u+1 > 1
V2u+1 = 7
where the inequality holds for every u > 1.
This informal argument can be formalized by checking that all premises of
rule POSs are state valid for the specified selection of the auxiliary assertions,

helpful transitions, time increments, and well-founded ranking,.
This establishes that the possibility formula

1
AG(at,éo/\lSy:ul\OStlgﬁ/\Ta:O — EF(T, > 1))

is valid over CcTS ®4. 4



6.3 Possibility Diagrams

Proofs according to rule POSS can be succinctly represented by special type
of verification diagram. A possibility diagram is a basic verification diagram,
satisfying the following constraints:

e The terminal node is labeled by an assertion denoted ¢y. All other nodes
are labeled by an assertion and a ranking function §.

e Every non-terminal node must have an edge departing from them.

e Edges are labeled by the name of either an untimed transition in the program,
as in basic verification diagrams, or by a label of the form tick(A).

o All edges departing from the same node must have the same label.

Verification Conditions Implied by a Possibility Diagram

Consider a nonterminal node labeled by assertion ¢ and ranking function §. Let
©1,---,Pk, k > 0, be the successors of ¢ by edges departing from ¢ (possibly
including ¢ itself). With each such node, we associate the following verification
condition:

e If the label of all edges departing from ¢ is tick(A), then we require the
following verification conditions to hold:

P2. puck NT'=T+AN@ — (PyANE=681)V -V (g ANE=6)
P3t. ¢ — 0(4)

o If the label of all edges departing from ¢ is 7 # tick, then we require the
following verification conditions to hold:

P2. pr ANT'=T ANy — (i ANE=6) AN -~ A (o), ANE=6})
P3n. ¢ — En(1)

Valid Possibility Diagrams

The consequences of having a valid possibility diagram are stated in the following
claim:

Claim 10 If D is a P-valid possibility diagram with nodes @q, . .., pm, then

m

PEAG(\ ¢; — EFy)

=0

If, in addition, ¢o = q, and
m
p — V 21
j=0

then we can conclude:

PEAG(p — EFqg).



In case there is a subset N C {1,...,m} such that p — \/ pi, we identify p;,
iEN
i € N as initial nodes.

Example15. In Fig. 37, we present a possibility diagram that establishes the
possibility property

1
AG(at_Eol\lSy:u/\OStlgﬁ/\Ta:0 — EF(T, >1))

for system ®4. 4

*

(at b, 1<b<y<2+1,4>0 0<T, <1 )
[ g03:0<t1<ﬁ 6: 2b+ 2 }
tz’ck(ﬁ —t1)
[(pg: tlzﬁ /\TGZ\/% 6 (|[26+1—y|,1)
T00
[gpls =0 A Tazi’/%—:i 6: (\26—|—1—y\,2)}
q tick(ﬁ) tick(ﬁ) ]

(goo: T, > 1 0: 0)

Fig. 37. A possibility diagram, establishing the formula

AG(at_EO/\lgy:u/\OStlgﬁ AT, =0 — EF(T,>1))

6.4 Proving that ¢, is Non-Zeno

We conclude this discussion by applying rule NONZ to show that ¢TS @4 is non-
Zeno.
As the assertion ¢ required by rule NONZ, we take
1
p: at_lyg N y>1 AN 0<t; < —

<



It is not difficult to show by rule AccC that ¢ is @4-state valid. This establishes
premise N1 of rule NONZ.
For premise N2 of NONZ, we have to verify the possibility formula

1

AG(at by Ny>1A0<t <— AT, =0 — EF(T,>1)). (2)
VY

Example 14 establishes the possibility formula
1

AG(at Ly ANy >1 AOStlgﬁ ANy=uAT,=0 — EF(T,>1)),

to which we may apply existential quantification over the rigid variable u to
obtain

AG(EIu:(at_ﬁg/\yZlAOStlSL/\y:u/\Tazo) —

vy (3)
EF (T, > 1)),

using well-established simplification rules for rigid quantification (see, for exam-
ple [MP93b]).

Since the left-hand sides of the implications in (2) and (3) can be shown to
be equivalent, it follows that the formula (2) is $4-valid.

We conclude that ¢TS @4 is non-zeno.

7 Hybrid Systems

In this section we consider the case of hybrid systems. Similar to our treatment
of real-time systems, we present first a computational model for hybrid systems
that can be viewed as an extension of the ¢TS model. Then we present rule INV-H
for proving invariance properties of hybrid systems, and illustrate its use.

7.1 Computation Model: Phase Transition System

Hybrid systems are modeled as phase transition systems (PTS). The PTS model
was originally presented in [MMP92] and [MP93c]. The PTS model presented here
is an extension of the CTS model. A closely related model for hybrid systems is
presented in [ACH'95].

A phase transition system (PTs) ® = (V,0,T, A, II) consists of:

o V = {uy,...,un} : A finite set of system wvariables. The set V.= D U is
partitioned into D the set of discrete variables and I the set of integrators.
Integrators always have the type real. The discrete variables can be of any
type. We introduce a special integrator T' € I representing the master clock.

e O : The initial condition. A satisfiable assertion characterizing the initial
states. It is required that

® — T=0.



T : A finite set of transitions, defined as in the CTS model.
A : A finite set of activities. Each activity a € A is represented by an activity
relation:

pa — I(t)=F*(V°,1)

where p, is a predicate over D called the activation condition of a. Activity
« is said to be active in state s if its activation condition p, holds on s. If
Pq is true, it may be omitted.

Let I = {x1,...,2m = T} be the integrators of the system. The vector
equality I(t) = F*(V?,t) is an abbreviation for the following set of individual
equalities:

z;(t) = F*(V°,t), foreachi=1,...,m,
which define the evolution of the integrators throughout a phase of contin-
uous change according to the activity . The argument VO represents the
initial values of all the system variables at the beginning of the phase.
For every a € A it is required that

F2(V° 0)=2? foreveryi=1,...,m

Fe(VOt) = Fa(VO,t) =T° + t.
That is, F*(V°,0) agrees with the initial value of z;, and the effect of evo-
lution of length ¢ on the master clock (integrator x,,) is to add ¢ to T'.
It is required that the activation conditions associated with the different
activities be exhaustive and exclusive, i.e., exactly one of them holds on any
state.
IT : The time-progress condition, defined as in the CTS model.

The enabling condition of a transition 7 can always be written as § A k, where
6 is the largest sub-formula that does not depend on integrators. We call x the
integrator component of the enabling condition, and denote it by Eny(7).

are

In descriptions of concrete hybrid systems, the evolution functions F'*(V°,¢)

often presented by sets of ordinary differential equations of the form %; =

g3(V) for j = 1,...,m. In such cases, the evolution functions F*(V°,t) can
be obtained as solutions of the differential equations. It is straightforward to
extend the model to also cover non-deterministic evolutions. In such cases, we
may represent the evolution functions as solutions of differential inclusions.

Example16. Consider the hybrid system &; presented in figure 38.
This system can be modeled by the following PTS:

v
o

T
A

II

=1:{z,T}
: z=1ANT=0
: {r} where p, ;e =-1A' =1 AT =T
: {a} with activity relation (omitting the o subscript and superscript)
true — x =2° —t
~~ ——
P F(z0,t)
z> -1

The behavior of this system is (informally) presented in Fig. 39. 4



« r=-1/z:=1

Fig. 38. A hybrid system ;.
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Fig. 39. Behavior of PTS &1.

Extended Transitions

Let & : <V,@,T J A IT ) be a phase transition system. We define the set of ex-
tended transitions Ty associated with @ as follows:

Ta =T U7T3, where Tg = {7, |a € A}.
For each a € A, the transition relation of 7, is given by

D'=D A py ANI'=F*(V,A)
Pr.: A >0 A
Vt € [0,A). II(D, F*(V,t))

The transition relation p,, characterizes possible values of the system vari-
ables at the beginning and end of an a-phase, where V' = (D, I) denotes the



values at the beginning of the phase and V' = (D', I') denotes their values at
the end of the phase. The formula assumes a positive time increment A which
will be the length of the phase. It then states that the values of the discrete
variables are preserved (D' = D), the activation condition p, currently holds,
the values of the integrators at the end of the phase are given by F*(V, A), and
the time-progress condition IT holds for all intermediate time points within the
phase, i.e., forallt, 0 <t < A.

Runs and Computations

The runs and computations of a phase transition system & : <V, e, T, A Il > are
defined as in the cTS model.

Non-Zeno Systems

As in the case of the ¢TS model, we restrict our attention to non-zeno PTS’s.
These are systems for which any prefix of a run can be extended to a computa-
tion.

System Description by Hybrid Statecharts

Hybrid systems can be conveniently described by an extension of statecharts
[Har87] called hybrid statecharts. The main extension is

e States may be labeled by (unconditional) differential equations. The impli-
cation is that the activity associated with the differential equation is active
precisely when the state it labels is active.

We illustrate this form of description by the example of Cat and Mouse taken
from [MMP92]. At time T' = 0, a mouse starts running from a certain position
on the floor in a straight line towards a hole in the wall, which is at a distance
X from the initial position. The mouse runs at a constant velocity v,,. After a
delay of A time units, a cat is released at the same initial position and chases
the mouse at velocity v. along the same path. Will the cat catch the mouse, or
will the mouse find sanctuary while the cat crashes against the wall?

The statechart in Fig. 40 describes the possible scenarios. This statechart
(and the underlying phase transition system) uses the integrators z,, and z.,
measuring the distance of the mouse and the cat, respectively, from the wall.
The waiting time of the cat before it starts running is measured by the master
clock T. The statechart refers to the constants Xg, v,,,v., and A.

A behavior of the system starts with states M.restand C.rest active, variables
T and z. set to the initial value X, and the master clock T set to 0. The mouse
proceeds immediately to the state of running, in which its variable z,, changes
continuously according to the equation &,, = —v,,. The cat waits for a delay of
A before entering its running state, using the master clock 7' to measure this
delay. There are two possible termination scenarios. If the event z,,, = 0 happens
first, the mouse reaches sanctuary and moves to state safe, where it waits for



Initially zc = m = Xo, T =0

C@\
rest: T< A |<—@

T=A

TUun \

/

Te =T =0 Xo>xe =2m >0

Mouse-Wins Cat- Wins

Fig. 40. Specification of Cat and Mouse.

the cat to reach the wall. As soon as this happens, detectable by the condition
T, = T, = 0 becoming true, the system moves to state Mouse- Wins. The other
possibility is that the event X > z. = x,, > 0 occurs first, which means that the
cat overtook the mouse before the mouse reached sanctuary. In this case they
both stop running and the system moves to state Cat-Wins. The compound
conditions z, = z,, = 0 and X¢ > z. = z,, > 0 stand for the conjunctions
Te =Tm AZm =0and Xy > 2. Az = 2m ATy > 0, respectively.

The statechart representation of the Cat and Mouse illustrates the typical
interleaving between continuous activities and discrete state changes which, in



this example, only involve changes of control.

The Underlying Phase Transition System

Following the graphical representation, we identify the phase transition system
underlying the picture of Fig. 40. We refer to states in the diagram that do not
enclose other states as basic states.

o System Variables: V = DUI, where D: {m,,, 7.} and I: {z., T, T}. Variables
7m and 7. are control variables whose values are the basic states of the mouse
and cat subsyst which are currently active.

o Initial Condition: Given by

O: mTm=Murest N w.=C.rest N o0 =2m=Xo N T =0.

o Transitions: Listed together with the transition relations associated with
them.
M .rest-run : w, = M.rest A 7r;n = M.run
C.rest-run :m. = C.rest N T=A A 7r’C = C.run
M .run-safe : wp = M.run A T, =0 A 7r'm = M .safe
M .win : 7, € Active N T =Ty, =0 A 7r'm = 7r'C = Mouse-Wins
C.win : ., € Active N Xog > e =2y >0 A 7"; = 7r:n = Cat- Wins,
where the set Active stands for the set of basic states
Active:  {M.rest, M.run, M.safe, C.rest, C.run}.

o Activities: It is possible to group all the activities into a single activity,
given by:

@ Ty =20 —(at_ M.run)-vmt Az, = 20 —(at_ C.run)-v.(t—A) AT = T+t

In this representation, we used arithmetization of control expressions by
which at_M.run equals 1 whenever m,, = M. and equals 0 at all other

instances. A less compact representation lists four activities corresponding

to the four cases of: cat and mouse both resting, cat rests and mouse runs,
cat runs and mouse is safe, cat and mouse both running.
e Time Progress Condition: Given by

7. Tm # M.rest A (7. = C.rest - T < A) A
"\N(mm=Mrun — x, >0) A (.= Corun — Z, > Tny,)

7.2 Verifying Invariance Properties over PTS

Invariance properties of hybrid systems can be verified by rule INV-H, presented

in Fig. 41.

Rule INV-H is sound and (relatively) complete for proving all invariance prop-
erties of non-zeno PTS’s.

Note that rule INV-H is identical to rule INV, except that we use 7y as the set

of extended transitions. Consequently, we can adopt the notations of invariance

diagrams for the concise representation of invariance proofs over PTS’s.



For assertions ¢ and p,

1. ¢ - p
2. © - ¢
I3. pr Ao — ¢ foreveryT €Ty

o= p

Fig. 41. Rule INV-H (invariance) applied to PTS &.

Verifying a Property of the Cat and Mouse System
Consider the property that, under the assumptions

X X
Xo, Ve, Um, A>0, 20 ap 20 (4)

m /UC

all computations of the Cat and Mouse system satisfy
I](:I:C::vm - x.=Xo V mmzo).

This invariant guarantees that the cat can never win.

In Fig. 42, we present a verification diagram for this invariance property. In
this diagram we use control assertions indicating that certain basic states are
contained in 7, and 7. For example, C.run stands for 7w, = Cat.run. We also
use t,, for 5(7?’ the time it takes the mouse to run the distance Xj.

It is not difficult to verify that the diagram is valid, including the preservation
of all assertions under the single activity-induced transition 7,.
The part that requires some attention is showing that the ¥5 conjunct

JICIX(]—UC-(T—A) > Tm=Xo—vm T

is maintained until transition M .run-safe becomes enabled, that is, as long as x,,
is nonnegative. Obviously, z,,, > 0 implies T' < t,,,. To show that the conjunct is
maintained, it is sufficient to show v, - (T'— A) < vy, - T which is equivalent to

Vm A

s -2 5

p T (5)
From inequality (4), we can obtain

Um Um

—>1-A-—=

Ve XO

X
which, using the definition of ¢,,, = —0, gives
Um



|

[ wo: M.rest AN Crest N x.=x, =X ANT =0 ]

M .rest-run

M.orun AN Crest NO<T <A
Y1 A
Te=Xo N T =Xog— V- T

M .run-safe

M.run AN Corun N A< T <t,

@9 : N
.’L'C:X()—’UC'(T—A)>.’17m:X()—’Um'T

C.rest-run

M .run-safe

w3: (M.safe Vv M.win) A T, =0 }

Fig. 42. A hybrid invariance proof diagram.

A A
Since T < ty,, we have 1 — . >1- T establishing (5).

It remains to show that

M.rest AN C.rest N 0 =Zm =Xog N y=0AT =0 —

~"

)
M.rest A C.rest N o=y =Xog AN y=T=0 (7)
Py
‘POV---V<P3—><mC=xm—>mc:X0me:0). (8)

Implication (7) is obviously valid. To check implication (8), we observe that both
¥ and ¢ imply z. = Xg, ¥2 implies 2. > =, (using the assumption A > 0),



and ¢35 implies z,, = 0.
This shows that under assumption (4), property

O@e=2m — z.=XoV T, =0)

is valid for the Cat and Mouse system.

Similar to the clocked transition systems, it is possible to formulate appro-
priate proof rules for the verification of waiting-for and response properties over
phase transition systems. Note that all the rules that rely on the uniform progress
of clocks, must refer to either the master clock 7', or other variables which
progress at a constant rate at all times.

Checking Non-Zenoness of Hybrid Systems

Since all hybrid systems contain the master clock 7" among their integrators, we
can apply all the techniques presented in Section 6 for establishing that a given
PTS is Non-Zeno.

8 Conclusions

In this paper we have presented the real-time model of clocked transition systems
(cTs). This model can be viewed as an extension of the timed automata model
[AD94]. In addition to algorithmic verification of finite-state systems, the cTS
model can also support deductive verification. We presented verification rules
for invariance properties which are identical to the invariance verification rules
of fair transition systems [MP95]. For response properties, we presented rules
similar to the CHAIN and W-RESP rules of fair transition systems [MP91]. The
main differences between the timed and the untimed versions of these rules is that
the timed version does not use the concept of a helpful transition but replaces
it with the concept of a helpful clock, whose boundedness and the fact that it is
not reset while its associated assertion holds, implies that we can stay in states
that satisfy this assertion only for a bounded time, and must move elsewhere.

We proceeded with the presentation of an approach for verifying that an
arbitrary CTS satisfies the non-zeno restriction. We use branching-time TL (CTL)
to formulate the non-zeno property, and give a single proof rule to establish the
CTL formula.

We concluded with an extension of the ¢TS model to hybrid systems, and
presentation of a rule for verifying safety properties of such systems.

As previously mentioned, the model of Clocked Transition Systems and its
verification rules have been successfully implemented in the sTep system [BBC+95].
Many of the examples presented in this paper have been verified within sTep.
Implementation of the Hybrid Systems extension is under way.
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