Symbolic Model Checking with
Rich Assertional Languages !

Y. Kesten?, O. Maler®, M. Marcus®, A. Pnueli®?, E. Shahar®

& Department of Communication Systems Engineering, Ben-Gurion University,
Beer-Sheva, Israel.

b Verimag, Centre Equation, 2, av. de Vignate, 38610 Giéres, France.

¢ Department of Computer Science, Weizmann Institute of Science, Rehovot,
Israel.

Abstract

The paper shows that, by an appropriate choice of a rich assertional language, it is
possible to extend the utility of symbolic model checking beyond the realm of BDD-
represented finite-state systems into the domain of infinite-state systems, leading to
a powerful technique for uniform verification of unbounded (parameterized) process
networks.

The main contributions of the paper are a formulation of a general framework
for symbolic model checking of infinite-state systems, a demonstration that many
individual examples of uniformly verified parameterized designs that appear in the
literature are special cases of our general approach, verifying the correctness of the
Futurebus+ design for all single-bus configurations, and extending the technique to
tree architectures.

Keywords: Symbolic model checking; Parametric systems; Tree automata; Regular
expressions

1 Introduction

The problem of uniform verification of parameterized systems is one of the
most thoroughly researched problems in computer-aided verification. The prob-
lem seems particularly elusive in the case of systems that consist of regularly
connected finite-state processes (a process network). Such a system can be

! This research was supported in part by a gift from Intel, and an Infrastructure
grant from the Israeli Ministry of Science and the Arts.
2 Corresponding author. E-mail: amir@wisdom.weizmann.ac.il

Preprint submitted to Elsevier Science 31 October 1998

model checked for any given configuration, but this does not provide a con-
clusive evidence for the question of uniform verification, i.e., showing that the
system is correct for all possible configurations.

In fact, we have had a recent experience with the Futurebus+ system, which
has been model checked for many configurations in [CGH*93] and pronounced
correct. Using the TLv system [PS96], we were able to analyze additional (and
larger) configurations and detected a bug that escaped the previous verifi-
cation efforts. Having corrected the bug, all of the configurations we have
been able to check, verified correctly. However, the question of whether the
Futurebus+ protocol in its last version contains another lurking bug, which
makes its appearance only in a configuration much larger than anyone was
able to check individually, still remains unresolved. One of our main motiva-
tions in the research reported in this paper is to develop a method by which
uniform verification of parameterized designs such as the Futurebus+ can be
algorithmically performed.

Many methods have been proposed for the uniform verification of parameter-
ized systems. These include explicit induction ([EN95], [SG92]) network invari-
ants, which can be viewed as implicit induction ([KM89], [WL89|, [HLR92|,
[LHRI7]), methods that can be viewed as abstraction and approximation of
network invariants ([BCG86|, [SG89], [CGJ95]), and other methods that can
be viewed as based on abstraction ([ID96], [EN96]).

In this methodologically simplistic paper, we go back to basics and claim that,
with an appropriate choice of an expressive but decidable assertional language,
the good old paradigm of symbolic model checking is adequate for uniform
verification of parameterized systems. The paper demonstrates this claim by
studying in detail symbolic model checking with the assertional languages of
regular sets and tree regular sets. For the case of regular sets of strings, we show
that many of the examples previously verified using specialized representations
or additional theories, such as the examples considered in [CGJ95], [ID96], and
[EN96], can be solved by this single and simple approach. The use of regular
assertional tree languages is new (except for a brief mention in [HJJ*96]) and
its application to a uniform verification of the Futurebus+ system will be a
very convincing evidence to the power of the approach advocated here.

One of the inspirations to the work reported here was [CGJ95] (and its pre-
decessor [SG89]), where regular languages was the main instrument used at
the end. However, it was felt that, with some restrictions, the same verifi-
cation capabilities can be obtained without the elaborate theory developed
in [CGJ95]. In particular, in some contexts it may be possible to unify the
network grammar used in [CGJ95] to define the network topology and struc-
ture and the regular language used for representing the dynamic behavior of
individual processes. In our approach, we use a single regular language to de-

scribe both the topology and the local states of the member processes. There is
of course a price to pay which, in our case, is that we cannot handle as general
network topologies as are considered in [CGJ95|, and must restrict ourselves to
either array or tree topologies. The general principle is still applicable to other
topologies but requires the development of a different assertional language for
each family of topologies.

By adopting the idea that a set of possible configurations of an unbounded ar-
ray of processes can be represented as a set of strings over the process alphabet,
we can go further and view the transitions of the system as rewrite rules ap-
plied to these strings. Hence the model-checking problem for networks can be
reduced to the problem of calculating predecessors of a language via a rewrit-
ing system consisting of a finite set of length-preserving rules®. In [BM96], a
technique for calculating the reachable states of an alternating push-down pro-
cess (i.e. an automaton with one unbounded variable, a push-down stack) was
presented and used in order to model-check such a process against u-calculus
formulae. This technique (inspired by the construction given in [BO93|, pages
91-93) is based on representing a regular set L of stack configurations by an
automaton A and then calculating the set of predecessors of L via a rewrite
rule by modifying A. In the case of push-down processes the algorithm is
guaranteed to converge, but experience shows that it converges in many other
cases.

In this paper we generalize this idea in few directions. First, by using a finitary
version of the logic wsls we extend the technique to treat a more general
class of rewrite rules. We transfer the concept from theory to practice by
implementing it into a working system and applying it successfully to several
examples including all single bus versions of the Futurebus+. Secondly, we
treat processes arranged in a tree architecture. To this end we define sets of
process configurations as regular tree languages, and employ bottom-up tree
automata to represent them.

The implementation owes much to the MONA system and its underlying prin-
ciples [HJJ*96]. Similar to MONA, we adopt an ws1s-derived language for the
user interface with the system, which is then translated into finite automata
represented with BDD-labeled edges. However, unlike some of the applications
to verification reported in [HJJ*96] and [BK95|, which are essentially deduc-
tive in nature, we use similar tools for symbolic model checking. We have also
implemented a similar tool for trees.

3If we ignore process creation and annihilation.

2 Symbolic Model Checking

In Fig. 1 we present the well-known symbolic model checking procedure for
showing that the invariance property [Jg (AG g in CTL) is satisfied by sys-
tem P, where g is an assertion (state formula). This procedure was already
formulated in the early 80’s (see [QS82], [EC82], [CES86]), however, it be-
came practical and widely usable only with implementations based on ordered
binary decision diagrams (OBDDs) [Bry86], such as [BCM*92] and [McM93].
Procedure syMB-MC attempts to compute an assertion characterizing all the
states from which a —g-state can be reached by a finite number of P-steps. If
the search loop terminates at iteration 7, then ¢; provides such an assertion.
By checking that none of the “bad” states characterized by ¢; are allowed
as initial states of P, we verify that there is no —g-state reachable from a
P-initial state, and therefore that g is an invariant of system P.

Procedure SYMB-MC(g: assertion);
assertion: ¢g, 01, ... ;
Let ¢g:= g ;
For 1 =0,1,... repeat
Let @i = ¢; V pred ,(¢;) ;
until p; 11 = ¢; ;
Check that ¢; A tnit, =F
end procedure

Fig. 1. A procedure for symbolic model checking.

The procedure uses the assertion init, as a characterization of all the P-initial
states, and the predicate transformer pred ,. For an assertion ¢, pred ,(¢) is
an assertion characterizing all states that have a (-state as a P-successor.

Asrecommended by the rich-language symbolic model checking (RSMC) method-
ology expounded in this paper, in order to verify that assertion g is an invariant
of the (possibly infinite-state) system P, one chooses an assertional language
L and uses it to apply the SYMB-MC procedure. To be applicable, the language
L should satisfy the following minimal requirements:

— The property g and the assertion init, should be expressible in L.

— The language £ should be effectively closed under the boolean operations of
negation and disjunction, and possess an algorithm for deciding equivalence
of two assertions.

— There should exist an algorithm for constructing the predicate transformer
pred - L — L for system P.

We refer to a language satisfying these three requirements as a language
adequate for symbolic model checking. Note that identifying an adequate as-
sertional language only guarantees that procedure SYMB-MC is applicable. It

is still only a heuristic which, when terminating, provides either proof of cor-
rectness or a counter example, but may fail to terminate. In fact, due to the
theoretical results of [AK86|, the invariance checking problem for parameter-
ized systems is in general undecidable, and the best we can hope for in the
general case is a heuristic.

In the remaining sections, we will consider several useful adequate assertional
languages and illustrate their application to parameterized systems of interest.

3 The Logic Fsls

We use the logic Fsls, (finitary second-order theory of one successor) as a
specification language for sets of global states of parameterized systems. This
logic is derived from the weak second order logic of one successor [Tho90] and
also resembles the language M2L used in MONA [HJJ*96]. It is well know that
this logic has the expressive power of regular expressions, as well as finite
automata which are the representation underlying our implementation. Fol-
lowing is a brief definition of the logic.

Syntax
We assume a signature = : {¥,...,%X;} consisting of a finite set of finite
alphabets. The vocabulary consists of position variables p1, ps, ... and, for each

Y; € Z, a set of ¥;-array variables X;,Y;, Z;,

Position (First-order) terms:
= The constant 0.
= Any position variable p;.
= ¢+ 1, where ¢ is a position term.
— Letter terms:
s Every a € Y; is a Y;-term.
» If X is a ¥;-array variable and ¢ is a position term, then X|t] is a 3;-term.
— Atomic Formulas:
» 11 ~ ty, where ¢; and ¢, are position terms and ~ € {=, <}.
= r =y, where z and y are X;-terms for some ¥; € =.
Formulas:
= An atomic formula is a formula.
= Let ¢ and ¢ be formulas. Then —p, ¢ V1, dp - ¢, X - ¢ are formulas,
where p is a position variable and X is an array variable.

Semantics

Let ¢ be an Fsls formula. A model for v is given by M = (N, v, .A), where
N > 0 is a positive integer, v assigns to each position variable p a natural
number v(p) € [0..N—1|, and A assigns to each ¥;-array variable X a ¥;-word
A(X) € BV of size N.

Given a model M = (N, v, A), we inductively define the interpretation I,,
induced by M as follows:

— I, interprets every position term t into a natural number I,,(t) € [0..N—1],
as follows:
= The constant symbol 0 is interpreted as the natural number 0.
» For a position variable p, I (p) = v(p).
« [(t+1)=1,(t)+ 1 modulo N
— A Y; term is interpreted into a X;-letter, as follows:

= The constant symbol a € ¥; is interpreted into the Y;-letter a.

» If A(X)=uap,...,an-1 and I,,(t) = j € [0..N—1], then I, (X[t]) = a;.
— Formulas are interpreted into boolean values ({0,1}), as follows:

» For position terms ¢; and ty, I,,(t; ~ t3) evaluates to 1 if the relation
~ € {=, <} holds between I, (t;) and I, ().

» For ¥; terms z and y, I,,(z = y) evaluates to 1 if I,,(z) equals I,,(y).

m 0, VY, o AN, @ — Y, — 1 — where ¢ and 1 are formulas, are inter-
preted in the standard way, after the formulas ¢ and v are interpreted.

» Jp- ¢ — is true if there exists a model M’ = (N, 1/, A), such that v and
v’ differ at most in the interpretation of the position variable p, and such
that I ,(p) = 1.

» 3X - ¢ — is true if there exists a model M’ = (N, v, A’), such that A and
A’ differ at most in the interpretation of the array variable X, and such
that I ,(¢) = 1.

4 The Logic Fsls is Adequate

In this section we demonstrate the use of Fs1ls as an adequate assertional
language. As a running example, we will use program MUX of Fig. 2 which
implements mutual exclusion by synchronous communication.

The body of the program is a variable-size parallel composition of processes
P[0],...,P[M — 1]. Each process P[i] has two local state variables: a local
boolean variable has whose initial value is T for 2 = 0 and F for all other pro-
cesses, and a control variable 7 ranging over the set of locations { N, T, C'} (the
noncritical section, the trying section, and the critical section, respectively).

in M :integer where M > 1
local o : array [0..M —1] of channel of boolean

local has: boolean initially has = (i = 0)

i>when has N 1 < M—1 do
[a[i] &7

Mol has :=F

i!o Pl : if =has A i > 0 then
ali — 1] = has

await has

Fig. 2. Parameterized Program MUX.

Process P|[i] sends the boolean value T on channel «i] to its right neighbor (if
i < M — 1) and reads into variable has a boolean value from its left neighbor
on channel afi — 1] (if 7 > 0). As seen in the program, process P[i] can enter
its critical section only if P[i].has = T.

Our verification goal is to establish that, at any point in the execution, at
most one process resides in its critical section.

A local state of process P[i] is a valuation of the local state variables. For
example, (m : C, has : T) is a local state in which P[i] is in its critical section
while its variable has has the value T. We abbreviate (7 : C, has : T) to (C, T),
listing just the values assigned to the variables.

A global state (also called a configuration) of system MUX is a sequence of
local states. For example, the configuration (N, T) (N, F) (N, F) represents
the initial global state of system MuXx for the case of M = 3. Namely, there
are 3 processes, all in their non-critical locations, such that P[0].has = T and
P[1].has = P[2].has = F.

To specify the global state of system MUX in FS1S, we define two alpha-
bets, 3; : {N,T,C}, representing possible valuations of the variable 7 and
Yy : {F, T} representing the domain of variable has. We use the ¥;-array vari-
able II to store the values of m, and the Y,-array variable H to store the
values of the local variable has, for all processes. The size of both arrays is
determined by the number of processes in the verified system. For example,

the global valuation

Il : [N,N,N]
H: [T, F, F|

represents the initial global state of system MUX for the case of M = 3.

Examining procedure sYMB-MC, we identify two assertions and one predicate
transformer which need to be syntactically characterized. We will consider
each of these in turn.

4.1 Ezpressing the Initial Condition initp and the Desired Invariant g

In the following examples, for an array variable X defined over a boolean
alphabet, we use the shorthand notations X[i] for X[i{] = T and —X[i] for
X[i] = F.

The initial condition for program MUX can be expressed by the Fs1s formula

Next, we consider the desired property g. For the case of program MUX, the
required property is that of mutual exclusion requiring that at most one pro-
cess resides in its critical section at any given instance. This property can be
expressed by the Fsls formula

g: —di,j-i#j Al =C AI[j]=C

4.2 Ezpressing the pred, Transformer

To express the pred, transformer, we first attempt to describe the change
in configurations as a result of a single program step. Consider our running
example, program MUX. The (parameterized) fair transition system [MP91]
corresponding to program MUX has two kinds of transitions. There are tran-
sitions that affect only a single process and represent internal movements and
variable changes within this process. The other kind of transition involves two
contiguous processes, i.e., P[i] and P[i+ 1| for some 0 <3 < M—2. This tran-
sition corresponds to the synchronous communication in which process P[i
sends the boolean value T, which process P[i + 1] receives and stores into has.

Transitions are specified by an assertion p(V, V'), relating a global-state s
to its successor s’ by referring to both unprimed and primed versions of the
configuration variables. An unprimed version of a configuration variable refers

to its value in s, while a primed version of the same variable refers to its value
: !
in s'.

We can express both types of transitions by the following Fs1s formulas:
il =N A"l =T

ps(V,V): Fi- | V[=C ATI'[i] =N A pres_;(IT) A pres(H)
VI =T AII'[i| =C A HJij

and
1+1#0
puv, vy i | W= N ST o (11) A pres g0 ()

AN H[i] AN-H[i+1]
AN-H'li] AN H'[i+1]

where, for every array variable X,
pres(X): Vj- X[j] = X[j]
presi(X): Vj-j#i— X[j] = X'[j]
pr@s;éi,iJrl(X): Vi-(j#iNj#i+1) — X[j] = X'[j]

The formula p, represents a transition of a single process, while p. represents
a joint communication transition of two contiguous processes.

The Fs1s formula representing all transitions is thus
paox(V, V) ps(V, V)V pe(V, V)

Let C(V') be an Fsls formula representing a set of configurations of program
MUX. The pred,,, transformer can be expressed by:

predMUX(C): v’ PMUX(V: VI) A C(VI)

This formula represents the set of all configurations from which a configuration
in C(V') can be reached in a single pyux step.

Applying SYMB-MC 1o MUX

Following is a demonstration of the application of SYMB-MC on the parameter-
ized program MUX, specified in Fs1s. We start the iteration with the negation
of the property we want to verify:

po = g = Fi,j-i#j A =C A[j]=C

Next, we apply pred,,,x to ¢o, as follows

Y1 =0 V Jv’. pMUX(‘/) VI) A QQO(VI)
=@ V di,j-i#j AN =T AN H[i] N[j]=C

We continue iterating, until the result of the iteration converges, as follows:

_ o i) = N A H[j| ALL[j] = C
W—wlVﬂ””¢9A(vnm:TAHmAndzTAﬂm>

p3=2 V 3,5 i#j Al =N A H[i) A [j] =T AHj
pa=@3 V F,j-i#j NIl =N A H[i] Alj]=N A H[j

The iteration sequence converges at o5 (@5 = @4) with the final value
g5 Fij-i#i A (HE VI =C) A (H[j] VT[] =C)
Finally, we check the intersection with the initial condition
s N ityyx =F

Since the intersection is false, a configuration satisfying —g can not be reached
from an initial configuration. We can thus conclude that g is an invariant of
program MUX.

Claim 1 If P is a system with an encoding of its global state into FS1S, and
both the global transition relation of P and the goal assertion g can be repre-
sented in FS1s, then procedure SYMB-MC can be applied to the verification of
P = g, using FS1S as the assertional language.

Claim 1 does not guarantee that the application of SYMB-MC will terminate.

In the following, we present some additional examples of parameterized sys-
tems which can be handled by the approach presented in this section. In
particular, we show that the case of a process ring can be treated with Fsls,
and that the approach can handle both synchronous and asynchronous com-
munication.

5 Additional Examples
Processor Ring

Example MUX considered processes arranged in an array, where tokens could
only move from left to right. Once the rightmost process obtains the token, it

10

cannot deliver it to any other process. This, of course, is a degenerate version
of the real protocol, in which the processes are arranged in a ring.

The transition relation for the ring configuration is
pRING(Va VI) : /)s(V, VI) \% pC-RING(Va Vl)a

where

M =NAT[i+1]=T
porme(Vo V') Fi- | A HJi A —H[i + 1] A pres(IT) A\ pres_; ;1 (H)
AN-H'T) ANH[i+1]

The execution of procedure SYMB-MC converges, and the specification g is
found to be an invariant of program PROC-RING.

Asynchronous Communication

In the previous examples, the communication between processes was syn-
chronous. In the following, we transform the ring configuration with syn-
chronous communication to a similar program based on asynchronous com-
munication. We modify the channel declaration in Fig. 2 as follows

local a: array [0..M — 1] of channel [1..1] of boolean.

According to the conventions of [MP91], this declaration identifies a[0..M —1]
as an array of asynchronous channels with a buffering capacity 1. We refer to
the so modified program as ASYNC-RING.

The initial condition for ASYNC-RING:
initASYNC—RING: ZnZtMUX /\ VZ . _|O{|:/L'j|
The transition relation p,syncring:

ps(V, V') A pres(a)

. il =N A H[F] A =H'[i] A —afi] A o[i]
Vi (/\ pres(Il) A pres_;(H) N pres;(a))

i+ 1] =T AN =H[i+1] AN H'[i +1]
V3 | Aafi] A —di] A pres(TT)
A pres#H(H) A pres#(a)

This transition relation consists of three disjuncts. The first disjunct represents
all local transitions of a single process. The next two disjuncts represent an
asynchronous token passing, which is performed in two separate transitions.

11

For program ASYNC-RING, the execution of procedure SYMB-MC converges,
and the specification g is found to be an invariant.

A Protocol with Request Messages

The protocol presented in Fig. 2 satisfies the safety property of mutual exclu-
sion, but does not satisfy the liveness property of accessibility. Namely, it does
not guarantee that any process wishing to enter its critical section will even-
tually do so. To see that accessibility is not guaranteed, consider a 3-process
configuration of the following form:

(N, T) (N, F) (T, F)

In this configuration P[0] has the token, P[2] is interested in entering its
critical section, but P[1] is not. Since the token can only be transferred from
a process in state (N, T) to a process in state (T, F), P[2] will not be able to
obtain the token until P[1] moves to state (7', F).

This situation can be remedied by allowing processes to receive the token from
their left neighbor even when they are indifferent, i.e. executing at the non-
critical location N. Such a version of the protocol may, however, be considered
highly inefficient, since it enforces (due to fairness) continuous movement of
the token between indifferent processes, even when no process is interested in
entering its critical section.

An efficient solution which ensures accessibility, uses an additional local boolean
variable req, which is true for all processes having some right neighbor who is

interested in entering its critical section. In addition to the ¢ token which moves

from left to right, the improved protocol introduces an r token which moves

from right to left, representing requests for the ¢ token. In Fig. 3, we present

program MUX-REQ which implements the management of request tokens.

Every process of program MUX-REQ consists of three sub-processes running
in parallel and communicating by the shared variables has and req. The first
subprocess performs the main functions of switching between the non-critical
and the critical sections. The second sub-process is ever ready to receive a
token from channel ¢[i — 1] and store it in variables has. The third sub-process
is responsible for communicating the request tokens along channels r[i] and
r[i — 1]. If variable req is currently false, the sub-process is ready to receive
a new request from its right neighbor. If req is currently true, the process
propagates the request token to its left neighbor.

For the Fs1s representation, we use the additional array variable R to represent
the value of the variable req in all processes. The initial condition for program

12

in

M-1

Il Pl =

M :integer where M > 1

local t,r : array [0..M—1] of channel of boolean

local has : boolean initially has = (i = 0)
req : boolean initially req = F

when has A req do
i> lt[z’] <7
(has, req) := (F, F)
i> ri—1] < T

await has

[1oop forever do
tli — 1] = has

[loop forever do
if req then r[i — 1] <= T
else r[i] = req

Fig. 3. Program MUX-REQ with request tokens.

MUX-REQ is given by the Fsls formula

Nt \ux-rEQ

Vi-] = N A (H[i] <i=0) A Rli| =

The transition relation for program MUX-REQ is given by the disjunction:

PMUX-REQ-

where p, is the idling transition, p, describes changes in the control location
of sub-process 1, while p; describes transitions related to communications on
channel ¢ and p, describes transitions related to communications on channel

T.

pjvpﬁvptvpra

Transition relation p, is given by:

Pe: di -

pres;(IT) A pres(H) A pres(R)
i =N AII'l =T

A vH[] T ANI'[i)=C A Hi
i =C ANII'[i]=N

13

Transition relation p; is given by:

. 3. (pres(IT) A pres; ;. (H) A pres(R))
" AH[i| A Rl A H'li] A =R A Hi+1]

Transition relation p, is given by:

T (pres(Il) A pres(H) A pres#(R) >
Pr: A-R[i] A (M[i+1]=T Vv R[i+1]) A R[]

Applying procedure SYMB-MC to program MUX-REQ and the mutual-exclusion
specification

g ~3i,j-i#j Al =C A =C,

the procedure converges. This proves that the specification g is an invariant
of program REQ.

6 Tree Languages

In this section, we extend the method of regular expressions over strings to deal
with regular tree languages (see [TW68], [GS84], [Don70]). This will enable
us to handle process networks organized in a tree topology.

Since process trees may have different out-degrees for different nodes, we have
to deal with varying arity. We use the logic Fsxs (finitary second-order theory
of N successors), a generalization of wWs2s, as a specification language for
regular sets of trees. For the implementation, expressions in FS%S are translated
into BTA (bottom-up tree automata), generalized to deal with varying arity. *

We define a tree structure S to be a finite subset of N* (i.e. a finite set of
sequences of natural numbers) satisfying:

— S contains the empty sequence A.

— If S contains the sequence (a1, ..., ax), then it also contains the (possi-
bly empty) sequence (s, ...,ax_1) and the sequences (o, ..., ar_1,7), for
every 7, 0 < r < .

We refer to the elements of S as the nodes of the tree structure S. Obviously, S
represents a node a by specifying the path from the root to a. Thus,a = A € S
represents the root, and (1,0) € S represents the node which is the first child

1 An extension of tree automata to arbitrary arity was made in [KG96] but in a
top-down infinite context.

14

of the second child of the root. A node o € S is a leaf, if it is not a prefix of
any other member of S.

Let ¥ be an arbitrary alphabet, i.e. a finite set of symbols. A ¥-tree T: (S, \)
consists of a tree structure S and a labeling function \: S — X, mapping each
node of the tree to a ¥ symbol. We will often refer to nodes in the tree as
n € T and to their labels as A\(n).

7 The Logic Fs*s

Following is a brief definition of the logic.

Syntaz
We assume a signature = : {¥1,..., X} consisting of a finite set of finite
alphabets. The vocabulary consists of position variables py,ps, ... and, for each

Y; € =, a set of X;-tree variables X;,Y;, Z;,

Position (First-order) terms:
= The constant A.
= Any position variable p;.
— Letter terms:
s Every a € ¥; is a Y;-term.
» If X is a Y;-tree variable and ¢ is a position term, then X [¢] is a 3;-term.
— Atomic Formulas:
» {1 ~ ty, where ¢; and ¢, are position terms and ~ € {=, <, <}.
s £ =y, where z and y are ¥;-terms for some ¥; € =.
Formulas:
= An atomic formula is a formula.
= Let ¢ and ¢ be formulas. Then —p, ¢ V¢, dp - ¢, X - ¢ are formulas,
where p is a position variable and X is a tree variable.

Semantics

Let ¢ be an Fsxs formula. A model for 9 is given by M = (S, v, A), where S
is a tree structure, v assigns to each position variable p a sequence of natural
numbers v(p) € S, and A assigns to each Y;-tree variable X a 3;-tree with
tree structure S.

15

Given a model M = (S,v, A), we inductively define the interpretation I,,
induced by M as follows:

— I,, interprets every position term t into a sequence of natural numbers
I,(t) €S, as follows:
= The constant symbol A is interpreted as the empty sequence.
» For a position variable p, I,,(p) = v(p).
— A Y;-term is interpreted into a ¥;-letter, as follows:
= The constant symbol a € ¥; is interpreted into the Y;-letter a.
w If A(X)=(S,A), I,(t)=a€ S and A(«) =a then I (X]t]) = a.
— Formulas are interpreted into boolean values ({0,1}), as follows:
= For position terms ¢; and %5,
I, (t; =ty) evaluates to 1 if I,,(¢t;) = I,,(t2).
I, (t; <ty) evaluates to 1 if I,,(¢1) is a prefix of I,,(ts).
I,,(t; < ty) evaluates to 1if I, (¢;) is smaller than I,, (¢2) by lexicographic
ordering.
» For ¥;-terms = and y, I,,(z = y) evaluates to 1 if I,,(x) equals I,,(y).
s 0,0 VU, 0 AN, > P, — 1) — where ¢ and ¢ are formulas, are
interpreted in the natural way, after the formulas ¢ and 1 are interpreted.
» Jp- ¢ — is true iff there exists a model M’ = (S, 7/, A), such that v and
v’ differ at most in the interpretation of the position variable p, and such
that I, (p) = 1.
» 3X - ¢ — is true iff there exists a model M’ = (S, v, A, such that A and
A’ differ at most in the interpretation of the tree variable X, and such
that I ,(¢) = 1.

The following Fs*s formulas are used as shortcut notations:

son(x,y) cx<yA-dz-x<zAz<y
brothers(x,y) : Az - son(z,x) A son(z,y)
elder-brother(z,y) : brothers(z,y) Az < yA

-3z - brothers(z,2) Ax < 2Nz <y
leaf (x) cody -z <y

where son(z,y) iff y is the son of x in S, brothers(z,y) iff both z and y are
sons of the same node in S, elder-brother(z,y) iff x and y are brothers and z

is the rightmost brother to the left of y. Finally leaf (z) iff z represents a leaf
node in S.

7.1 Bottom-Up Tree Automata

A (variable-arity) bottom-up tree automaton (BTA) is a tuple B: (X, Q, A, F)
where >, @ and F' C @ are the standard finite alphabet, set of states, and set

16

of accepting states, while
A:Q*x ¥ — 29

is a regular transition function, i.e. for every a € ¥ and Q C Q, the set of
words {w € Q* | A(w,a) = Q} is regular. In our presentations of BTAs, we
write A as a finite number of entries of the form A(FE;,Y;) = Q;, where E; is
a regular expression over @), ¥; C ¥, and @; C () indicating that for ¢ € @,
w € Q*, and a € X, ¢ € A(w,a) iff ¢ € A(F;,a) for some FE; such that

The way a BTA operates when applied to a X-tree T is that it proceeds from
the leaves towards the root, annotating the tree nodes with automaton states.
A single annotation step can be applied to the tree node n € T only when
all of its children have been already annotated. Assume that the children of
n have been annotated with ¢q,...,q;. Then, n can be annotated by ¢q € @ if
q € A(g1-qr, A(n)). Thus, the annotation at n depends on the annotation
of the children of n and on the >-letter labeling node n. Note that in the case
of unary trees (strings) this definition specializes to the familiar automaton
where A(w,a) is always used with either w = A (in the case of the initial
state) or with w = ¢ for some g € Q.

More formally, a run of the BTA B over the tree T = (S,) is a mapping
r: S +— @ satisfying:

For each n € S with children ny, ..., ng, r(n) € A(r(ny) - --r(ng), A(n)).
A BTA is said to be deterministic if |A(w, a)| = 1, for every w € @* and a € X.

Example: Let us define a BTA B which recognizes all variable-arity trees,
labeled by ¥ = {a, b}, with the requirement that precisely one node is labeled
by b. For the components of B, we choose as follows:

Y :{a,b}

Q {9, 7, e}

A : Defined as follows:
Algg,a) = {a0}
Algg, b) = Algsq195,a) = {a1}
A(Q*nQ* Q" {a,b}) = A(Q*pQ*,{a,b}) = A(gq1q5,b) = {2}

F :{q}

The BTA B is obviously deterministic. Given an {a, b}-tree T, automaton B
will annotate by ¢q all the nodes n such that the subtree rooted at n is only
labeled by a. Nodes heading a subtree such that precisely one node in the
subtree is labeled by b will be annotated by ¢;. All other nodes are annotated
by ¢o. The tree T is accepted by B iff its root is annotated by ¢;.

17

The transition function A determines the annotation of a node n, based on
the annotation of its children and the X-character labeling 7. According to the
table, n will be annotated by gq if all its children are annotated by ¢y and n’s
label is a. This also takes care of the a-labeled leaves, since the empty word
belongs to the language ¢;. Node n will be annotated by ¢, if either all children
are annotated by ¢y and n is labeled by b, or all children are annotated by
qo except for one child which is annotated by ¢; and n is labeled by a. In all
other cases, n will be annotated by g which implies that at least two b’s have
been detected in the tree, and the tree should be rejected.

A tree T is said to be accepted by the BTA B if there exists a run r of B over
T such that 7(A) € F. We denote by L(B) the set of trees accepted by B.
The BTAs B; and B, are said to be equivalent if L(B;) = L(By). By applying
the standard subset construction, we can establish the following claim:

Claim 2

(i) Every BTA is equivalent to a deterministic BTA.
(i) The class of tree languages recognizable by a BTA is closed under the
boolean operations of complementation and union.

7.2 Translation from FSxS to BTA

The translation from FsSxS to BTA proceeds in two steps. In the first step,
a Fs*S formula is reduced to a simpler form, in which only a limited set of
atomic formulas are allowed, as follows:

— Eliminate A position terms which are not of the form x = A, by rewriting
as follows: in each such atomic formula, replace all position terms A with a
new position variable z and add the condition z = A .

For example, rewrite

Tz <A as dz-zxz<zAz=A

— Atomic formulas of the form X[z] = Y[y|, where X, Y have the same alpha-
bet X, are rewritten as:

V (X[z] =0 AY[y] = 0)

ocEY

The result is a formula with atomic formulas restricted to the following types:
r=y,z<y, =<y z=A Xz]=0.

The atomic formulas in the simplified expression are then translated to BTA.
In the following examples, translations of these atomic formulas are presented.

18

We use the following conventions. ¢, € () is the rejecting state, i.e. if any tree
node is annotated with ¢, then the tree will be rejected. The state g, € @ is
the accepting state. For all following BTA’s, F' = {q,}.

—r=y

¥ {xy, 27, Ty, 7}

Q@ : {9, a0}

A : Defined as follows:
Algp, 77) = {a0}
A(gp, vy) = A(q59095,Z9) = {aa}
A(Q"Q" Q" Y) = A(Q" Q% 7y) = {e}
A(Q* ¢, Q*,X) = A(Q*,zy) = A(Q*, 29) = {¢-}

— T <y

:{zy, 27, Ty, 77}

: {40, 91,40, ¢ }

: Defined as follows:
Algs, 77) = {a0}
A(gy,Ty) = {a}
Algy 195, 27) = {a}
A(ggqqg, 27) = {¢a}
A(q§qaq8,77) = {¢a}
Otherwise the value of A is g,

oM

- <Yy

:{zy, 27, Ty, 77}

{40, 41, 425 4a> Gr }

: Defined as follows:
Algs, 77) = {a0}
Agp, 27) = {a}
A(gy,Ty) = {@}
A(g§q1450295, TY) = A(gpq195, 77) = {4a}
A(q§9a98,77) = {49a}
Otherwise the value of A is g,

oM

19

- X[zl =0
where X is a ¥;-tree variable,

Q : {9, q}

A : Defined as follows:
A(g, 5iT) = {a0}
A(gp,07) = {4a}
A(¢5qaqs, 2iT) = {a.}

Otherwise the value of A is g,

Finally, formulas translated by performing operations on the BTAs resulting
from the atomic formulas ([GS84],[Don70],[TW68]).

7.8 Configurations of a Process Tree as a Tree Language

As a running example for a system organized as a process tree, consider pro-
gram PERCOLATE of Fig. 4.

in S : tree structure
local val : {0,1,u} where leaf (a) < val € {0,1}]

M :={m|a-m € S}
|| Pla] : repeat
acs if Vm € M : Pla- m].val # u
then val := \/,,car Pla - m|.val
until val # u

Fig. 4. Process tree program PERCOLATE.

Program PERCOLATE consists of a tree of processes, each having its local
variable val, which ranges over the set of values {0,1,u}. The value u is in-
terpreted as “undefined yet”, which implies that it will eventually change to
either 0 or 1. Initially, all the leaf processes have val € {0,1} and all other
processes have val = u. The purpose of program PERCOLATE is to percolate
to the root a value 1 if at least one of the leaves has value 1, and a value of
0, if all leaves have value 0. If P[a].val is not yet defined but all its children’s
values are defined then Pa] sets its value to the disjunction of the values of
its children. The configuration of program PERCOLATE in FSxS is represented
by a Ypgroorare-tree variable P over the alphabet Ypproorars: {0, 1, u}.

20

The initial condition of program PERCOLATE is:
iNitpercot © VT - leaf (z) < (Plz] =1V Plz] =0)
The transition relation of program PERCOLATE is:

Vy-z#y— Pyl = Ply
A (3z - (son(z,z) A P[z| = u)) — P'[z] = P|x]

dx -
(Vz - (son(x,z) — P|z] # u))
A ((P'lz] =1« Jz - (son(x, z)AP[z]-l))/\P'[x]#u))

The property to be verified can be specified by the following assertion:

g: Yy- Plyl#uv — (P[y]=1<—>5|x-ny/\leaf(x)/\P[x]zl).

This Fs*s formula states that for any node « in the process tree, if a.val # u
then a.val equals the disjunction of all val values at the leaves of its subtree.

The execution of the symbolic model checking algorithm does not converge. To
reach convergence we construct a meta-transition for PERCOLATE, as described
in [WB94|. While in the original transition relation processes update their val
variable one at a time, the meta-transition allows all processes to update their
val variable simultaneously. As a result, the set of reachable states explored
during a single iteration step of SYMB-MC is increased.

Using the meta-transition the execution of SYMB-MC converges and the asser-
tion g is found to be an invariant of program PERCOLATE.

8 The Status of the Implementation

We have constructed two implementations of systems which use the SMv input
language extended with a limited subset of either FS1S or FS*S. The internal
representations of the two systems are that of finite automata (FSA) and BTAs
respectively.

The systems accept as inputs the representations of init,, g and the transition
relation 7,, and either confirms that g is a P-invariant, or produces a counter-
example, which is a P-computation reaching a —g-configuration, or fails to
terminate.

With the implementation for string languages we have verified the examples
presented in this paper. In addition, we verified two of the four safety spec-
ifications of the Futurebus+ cache coherency prototcol which were verified
n [CGH'93] and [PS96]. These were checked for the single-bus version of
the Futurebus+ protocol and were found to be correct. The running time

21

for the simple examples was from seconds, to no more than a minute. For
the Futurebus+ the more lengthy verification took less than two hours on a
Silicon Graphics Challenge computer.

The representation of automata in the FS1s implementation uses OBDD-encoded
assertions over the local state variables instead of explicit enumeration of the
local states, which allow a transition from one automaton state to another. Our
transition function has the type §: @ x local_assertions — 29, where a local
assertion is an assertion over the local state variables. In this implementation,
we followed many of the ideas suggested in [BK95] and [HJJ*96].

The Fsxs implementation can handle simple examples as PERCOLATE.

9 Conclusions and Future Research

The paper extended the method of symbolic model checking to deal with sys-
tems with infinitely many states. The notion of adequate assertional language
is general enough to accommodate many additional decidable theories that can
match particular types of parameterized systems. So far, the generalization of
the symbolic model checking method was illustrated only for the safety prop-
erty of state invariance. An interesting and currently investigated question is
how to extend the method to apply to other types of temporal properties, in
particular, liveness properties.

Another promising line of research is how to handle the case that the iteration
does not converge. Other studies of infinite-state systems have used some
notion of widening which tries to extrapolate an infinite sequence to its limit.
Some version of such an extrapolation may prove useful to handle our cases
of divergent assertion sequences.

References

[AK86] K. R. Apt and D. Kozen. Limits for automatic program verification of
finite-state concurrent systems. Information Processing Letters, 22(6),
1986.

[BCG86] M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about
networks with many finite state processes. In Proc. 5th ACM Symp.
Princ. of Dist. Comp., pages 240248, 1986.

22

[BCM*92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang.
Symbolic model checking: 10?° states and beyond. Information and
Computation, 98(2):142-170, 1992.

[BK95] D.A. Basin and N. Klarlund. Hardware verification using 2nd-order
logic. In P. Wolper, editor, Proc. 7" Intl. Conference on Computer
Aided Verification (CAV’95), volume 939 of Lect. Notes in Comp. Sci.,
pages 31-41. Springer-Verlag, 1995.

[BM96] A. Bouajjani and O. Maler. Reachability analysis of push-down
automata. In Workshop on Infinite-state Systems, Pisa, 1996.

[BO93] R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag,
Berlin, 1993.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(12):1035-1044,
1986.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications. ACM
Trans. Prog. Lang. Sys., 8:244-263, 1986.

[CGH'93] EMM. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L.
McMillan, and L.A. Ness. Verification of the futurebus+ cache coherence
protocol. In L. Claesen, editor, Proceedings of the Eleventh International

Symposium on Computer Hardware Description Languages and their
Applications. North-Holland, April 1993.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks
using abstraction and regular languages. In 6th International Conference
on Concurrency Theory (CONCUR’95), pages 395-407, Philadelphia,
PA, August 1995.

[Don70] J. Doner. Tree acceptors and some of their applications. J. Comp.
Systems Sci., 4:406-451, 1970.

[EC82] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comp. Prog., 2:241-266, 1982.

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc.
22th ACM Conf. on Principles of Programming Languages, POPL’95,
San Francisco, 1995.

[EN96] E.A. Emerson and K.S. Namjoshi. Automatic verification of
parameterized synchronous systems. In R. Alur and T. Henzinger,

editors, Proc. 8" Intl. Conference on Computer Aided Verification
(CAV’96), Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree automata. Akadémiai Kiadé
(Publishing House of the Hungarian Academy of Sciences), Budapest,
1984.

23

[HJJ*96] J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in

practice. In Tools and Algorithms for the Construction and Analysis of
Systems, First International Workshop, TACAS ’95, LNCS 1019, 1996.

[HLR92| N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular
networks of processes by modular model checking. Acta Informatica,
29(6/7):523-543, 1992.

[ID96] C.N. Ip and D. Dill. Verifying systems with replicated components in
Murp. In R. Alur and T. Henzinger, editors, Proc. 8" Intl. Conference
on Computer Aided Verification (CAV’96), Lect. Notes in Comp. Sci.
Springer-Verlag, 1996.

[KG96] O. Kupferman and O. Grumberg. Branching time temporal logic and
amorphous tree automata. Information and Computation, 125(1):62-69,
1996.

[KM89] R.P. Kurshan and K. McMillan. A structural induction theorem
for processes. In P. Rudnicki, editor, Proceedings of the 8th Annual
Symposium on Principles of Distributed Computing, pages 239248,
Edmonton, AB, Canada, August 1989. ACM Press.

[LHR97] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of
parameterized linear networks of processes. In 24th ACM Symposium on
Principles of Programming Languages, POPL’97, Paris, 1997.

[McM93] K.L McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, New York, 1991.

[PS96] A. Pnueli and E. Shahar. A platform for combining deductive with
algorithmic verification. In R. Alur and T. Henzinger, editors, Proc. 8t
Intl. Conference on Computer Aided Verification (CAV’96), Lect. Notes
in Comp. Sci., pages 184-195. Springer-Verlag, 1996.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In M. Dezani-Ciancaglini and M. Montanari, editors,
International Symposium on Programming, volume 137 of Lect. Notes in
Comp. Sci., pages 337-351. Springer-Verlag, 1982.

[SG89] Z. Shtadler and O. Grumberg. Network grammars, communication
behaviors and automatic verification. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of Lect. Notes
in Comp. Sci., pages 151-165. Springer-Verlag, 1989.

[SG92] A.P. Sistla and S.M. German. Reasoning about systems with many
processes. J. ACM, 39:675-735, 1992.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of theoretical
computer science, pages 165-191, 1990.

24

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order logic. Math.
Systems Theory, 2:57-81, 1968.

[WB94] P. Wolper and B. Boigelot. Symbolic verification with periodic sets. In
D. Dill, editor, Proc. 6"* Intl. Conference on Computer Aided Verification
(CAV’94), volume 818 of Lect. Notes in Comp. Sci., pages 55-67.
Springer-Verlag, 1994.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of
processes with network invariants. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, volume 407 of Lect. Notes
in Comp. Sci., pages 68-80. Springer-Verlag, 1989.

25

