Parameterized Verification with Automatically
Computed Inductive Assertions*

T. Arons!, A. Pnueli!, S. Ruah!, J. Xu?, and L. Zuck?

! Weizmann Institute of Science, Rehovot, Israel
{tamarah,amir,sitvanit}@wisdom.weizmann.ac.il,
2 New York University, New York, zuck@cs.nyu.edu

Abstract. The paper presents a method, called the method of verifi-
cation by invisible invariants, for the automatic verification of a large
class of parameterized systems. The method is based on the automatic
calculation of candidate inductive assertions and checking for their induc-
tiveness, using symbolic model-checking techniques for both tasks. First,
we show how to use model-checking techniques over finite (and small)
instances of the parameterized system in order to derive candidates for
invariant assertions. Next, we show that the premises of the standard de-
ductive INV rule for proving invariance properties can be automatically
resolved by finite-state (BDD-based) methods with no need for interactive
theorem proving. Combining the automatic computation of invariants
with the automatic resolution of the VCs (verification conditions) yields
a (necessarily) incomplete but fully automatic sound method for verify-
ing large classes of parameterized systems. The generated invariants can
be transferred to the VC-validation phase without ever been examined
by the user, which explains why we refer to them as “invisible”. The ef-
ficacy of the method is demonstrated by automatic verification of diverse
parameterized systems in a fully automatic and efficient manner.

1 Introduction

The problem of uniform verification of parameterized systems is one of the
most challenging problems in verification today. Given a parameterized system
S(N) : P[1]||---||P[N] and a property p, uniform verification attempts to verify
S(N) | p for every N > 1. Model checking is an excellent tool for debugging
parameterized systems because, if the system fails to satisfy p, this failure can
be observed for a specific (and usually small) value of N. However, once all
the observable bugs have been removed, there remains the question whether the
system is correct for all N > 1.

One method which can always be applied to verify parameterized systems
is deductive verification. To verify that a parameterized system satisfies the in-
variance property []p, we may use rule INV presented in Fig. 1 [MP95a]. The
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system to be verified is assumed to a transition system, with an assertion @ de-
scribing the initial states, and a state transition relation p relating the values of
(unprimed) variables in a state to the (primed) values of the variables in its suc-
cessor. Premise I1 claims that the initial state of the system satisfies ¢. Premise

1. — ¢
12.0Ap — ¢
3.0 = p

Op

Fig. 1. The invariance Rule INV.

12 claims that ¢ remains invariant under p. An assertion ¢ satisfying premises
I1 and 12 is called inductive. Excluding the rare cases in which the property p
is already inductive, the deductive verifier has to perform the following tasks:
1. Divine (invent) the auxiliary assertion ¢.
2. Establish the validity of premises 11-I3.

Performing interactive first-order verification of implications such as the premises
of rule INV for any non-trivial system is never an easy task. Neither is it a
one-time task, since the process of developing the auxiliary invariants requires
iterative verification trials, where failed efforts lead to correction of the previous
candidate assertion into a new candidate.

In this paper we show that, for a wide class of parameterized systems, both
of these tasks can be automated and performed directly by an appropriately
enhanced model checker. The proposed method, called verification by invisible
invariants, is based on the following idea: We start by computing the set of all
reachable states of S(IV) for a sufficiently large N. We then project this set of
states on one of the processes, say P[1]. Under the assumption that the system is
sufficiently symmetric, we conclude that whatever is true of P[1] will be true of
all other processes. Thus, we abstract the characterization of all reachable states
of process P[1], denoted (1), into a generic ¥(j) and propose the assertion
@ =Vj:19(j) as a candidate for the inductive assertion which can be used within
rule INV. To check that the candidate assertion ¢ is inductive and also implies
the property p, we establish a small-model property which enables checking the
premises of rule INV over S(Ny) for a specific Ny determined by the size of the
local state space of a process in the system. The two tasks of calculating the
candidate assertion ¢ and checking that it satisfies the premises of rule INV are
performed automatically with no user interaction. This leads to the fact that
the user never sees, or has to understand, the automatically produced inductive
assertion. This explains the name of verification by invisible invariants.

The method of invisible invariants was first presented in [PRZ01], where
it was used to verify a non-trivial cache protocol proposed by Steve German
[Ger00]. The presentation in [PRZ01] allowed the method to be used only for a
very restricted class of systems. The main limitations were that the only pred-
icates allowed in this class were equality comparisons between parameterized
types, and the only arrays were of type [1..N] — bool. In this paper, we extend
the applicability of the method in several dimensions as follows:



o Allowing inequality comparisons of the form u < v between parameterized
types and operations such as v + 1 and u @ 1 (incrementation modulo N).

e Allowing several parameterized types and arrays that map one parameterized
type to another.

These extensions significantly broaden the scope of applicability of the method,
allowing us to deal with diverse examples such as various cache protocols, a
3-stage pipeline, Szymanski’s algorithm for mutual exclusion, a token-ring algo-
rithm, a restricted form of the Bakery algorithm, and an N-process version of
Peterson’s algorithm for mutual exclusion, all in a fully automatic and efficient
manner.

Related Work. The problem of uniform verification of parameterized systems
is, in general, undecidable [AK86]. There are two possible remedies to this situ-
ation: either we should look for restricted families of parameterized systems for
which the problem becomes decidable, or devise methods which are sound but,
necessarily incomplete, and hope that the system of interest will yield to one of
these methods.

Among the representatives of the first approach we can count the work of Ger-
man and Sistla [GS92] which assumes a parameterized system where processes
communicate synchronously, and shows how to verify single-index properties.
Similarly, Emerson and Namjoshi provided a decision procedure for proving a
restricted set of properties on ring algortihms [EN95], and proved a PSPACE
complete algorithm for verification of synchronously communicating processes
[EN96]. Many of these methods fail when we move to asynchronous systems
where processes communicate by shared variables. Perhaps the most advanced
of this approach is the paper [EK00] which considers a general parameterized
system allowing several different classes of processes. However, this work provides
separate algorithms for the cases that the guards are either all disjunctive or all
conjunctive. A protocol such as the cache example we consider in [PRZ01] which
contains some disjunctive and some conjunctive guards, cannot be handled by
the methods of [EK00].

The sound but incomplete methods include methods based on explicit in-
duction ([EN95]) network invariants, which can be viewed as implicit induction
([KM95], [WL89], [HLR92], [LHRI7]), methods that can be viewed as abstraction
and approximation of network invariants ([BCG86], [SG89], [CGJ95], [KP00]),
and other methods that can be viewed as based on abstraction ([ID96]). The
papers in [CR99a,CR99b,CRO0] use structural induction based on the notion of
a network invariant but significantly enhance its range of applicability by using
a generalization of the data-independence approach which provides a powerful
abstraction capability, allowing it to handle network with parameterized topolo-
gies. Most of these methods require the user to provide auxiliary constructs, such
as a network invariant or an abstraction mapping. Other attempts to verify pa-
rameterized protocols such as Burn’s protocol [JL98] and Szymanski’s algorithm
[GZ98,MAB™"94] relied on abstraction functions or lemmas provided by the user.
The work in [LS97] deals with the verification of safety properties of parameter-



ized networks by abstracting the behavior of the system. PVS ([SOR93]) is used
to discharge the generated VCs.

Among the automatic incomplete approaches, we should mention the meth-
ods relying on “regular model-checking” [KMM*97, ABJN99,JN00,PS00], where
a class of systems which include our bounded-data systems as a special case is
analyzed representing linear configurations of processes as a word in a regular
language. Unfortunately, many of the systems analyzed by this method cause
the analysis procedure to diverge and special acceleration procedures have to be
applied which, again, requires user ingenuity and intervention.

The works in [ES96,ES97,CEFJ96,GS97] study symmetry reduction in order
to deal with state explosion. The work in [ID96] detects symmetries by inspection
of the system description. Closer in spirit to our work is the work of McMillan
on compositional model-checking (e.g. [McM98b]), which combines automatic
abstraction with finite-instantiation due to symmetry.

2 The Systems We Consider

Let type, denote the set of boolean and fixed (unparameterized) finite-range
basic types which, for simplicity, we often denote as bool. Let typey,...,type,,
be a set of basic parameterized types, where each type, includes integers in the
range [1..IV;] for some N; € N*. The systems we study include variables that are
either type; variables, for some i € {0,...,m}, or arrays of the type type; —
type; for ¢ > 0,5 > 0. For a system that includes types typey,...,type;, we
refer to Ny,..., Ny as the system’s parameters. Systems are distinguished by
their signatures, which determine the types of variables allowed, as well as the
assertions allowed in the transition relation and the initial condition. Whenever
the signature of a system includes the type type; — type;, we assume by default
that it also includes the types type; and type;.

Atomic formulae may compare two expressions of the same type, where the
only allowed expressions are a variable y or an array reference z[y]. Thus, if y and
¥ are type; variables, then y < ¥ is an atomic formula, and so are z[y] < z[y],
z < 2[y], and z[y] < z for an array z: type, — type; and z: type;.

Formulae, used in the transition relation and the initial condition, are ob-
tained from the atomic formulae by closing them under negation, disjunction,
and existential quantifiers, for appropriately typed quantifiers.

A bounded-data discrete system (BDS) S = (V, 0, p) consists of

o V—-A set of system wariables, as described above. A state of the system S
provides a type-consistent interpretation of the system variables V. For a
state s and a system variable v € V, we denote by s[v] the value assigned to
v by the state s. Let X' denote the set of states over V.

e O(V)-The initial condition: A formula characterizing the initial states.

e p(V,V')-The transition relation: A formula, relating the values V of the
variables in state s € X to the values V' in an S-successor state s' € X.

For all the systems we consider here, we assume that the transition relation can
be written as
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where R(ﬁ, t) is a well-typed quantifier-free formula. It follows that every BDS
is associated with Hy,...,Hg and Ty,...,Tk.

Note that © and p are restricted to “formulae” defined in the previous section.
Since in this paper we only consider the verification of invariance properties, we
omitted from the definition of a BDS the components that relate to fairness.
When we will work on the extension of these methods to liveness, we will add
the relevant fairness components.

A computation of the BDS S = (V,0,p) is an infinite sequence of states
o : S, 81,82, ..., satisfying the requirements:

— Initiality — so is initial, i.e., so = ©.

— Consecution — For each £ = 0,1, ..., the state sgy1 is a S-successor of sy.
That is, {s¢, se+1) F p(V, V') where, for each v € V, we interpret v as s;[v]
and v’ as sg41[v]-

Mainly, we consider systems with signature (type, — typeg,type; — type,).
This signature admits arrays which are subscripted by type;-elements and range
over either type, or type,. We name the variables in such a system as follows:
X1,...,Tq are typey variables, y1, ..., ys are type; variables, 21, ..., 2z, are arrays
of type type; — typeg , u1, ..., uq are type, variables, and wy, ..., w,. are arrays
of type type; — type, .

We keep these naming convention for systems with simpler signatures. Thus,
a system with no type, variables will have only -, y-, or z-variables. We assume
that the description of each system contains a z-variable m that includes the
location of each process.

3 The Method of Invisible Invariants

Our goal is to provide an automated procedure to generate proofs according to
INvV. While in general the problem is undecidable [AK86], we offer a heuristic
that had proven successful in many cases for the systems we study, where the
strengthening assertions are of the form Viy,...,7, : ¢(D where 41,...,%, are all
mutually distinct typed variables, and (i) is a quantifier-free formula. We elabo-
rate the method for the case of systems with signature (type; — type,, type; —

type,) as defined in Section 2. Thus, we are seeking an assertion of the type

Vi%,...,i}l,i%,...,ii : (it,i?) where for if,...,ifl are all mutually distinct

type, variables for £ = 1,2, and ib(ﬁ, i_é) is a quantifier-free formula. In the next
sections we obtain (small) bounds for the parameters of this family of systems,
such that it suffices to prove the premises of INV on systems whose parameters
are bounded by those bounds. This offers a decision procedure for the premises
of rule INV, which greatly simplifies the process of deductive verification. Yet,
it still leaves open the task of inventing the strengthening assertion ¢, which



may become quite complex for all but the simplest systems. In this section we
propose a heuristic for an algorithmic construction of an inductive assertion for
a given BDS. In particular, we provide an algorithm to construct an inductive
assertion of the form we are seeking for a two-parameter systems S(N?, NJ),
where N? and N9 are the bounds computed for the system.

1. Let reach be the assertion characterizing all the reachable states of system
S(NP, N3). Since S(N?, NY) is finite-state, reach can be computed by stan-
dard model-checking techniques.

2. Let 9, 1, be the assertion obtained from reach by projecting away all the
references to type; values other than 1,...,7I;, and type, values other than
Lo,

3. Let 9(i',42) be the assertion obtained from 1y, 1, by abstraction, which
involves the following transformations: For every j = 1,...,I; and and k =
1,..., Iy, replace any reference to z.[j] by a reference to z.[i}], any reference
to wy[j] = k (resp. wy[j] # k) by a reference to w,[i5] = 4} (resp. w[i}] # i}),
any sub-formula of the form g, = 7, j < I; by the formula y, = i}, any sub-
formula of the form y, = v for v > I; by the formula /\51:1 Yr F z'}, any
sub-formula of the form u, = k, k < I, by the formula u, = 7%, and any
sub-formula of the form u, = v for v > I5 by the formula /\f:1 U # 12.
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4. Let ¢ := /\19}<...<i}15N9,15i§<...<z‘§251vg P(it,?).

5. Check that ¢ is inductive over S(NY, NJ).
6. Check that ¢ — pis valid.

If tests (5) and (6) both yield a positive result, then the property p has been
verified. The procedure described here is a generalization of a similar procedure
in [PRZ01].

4 Obtaining the Bounds

In this section we obtain (small) bounds for the parameters of various systems
according to their signatures, and show that it suffices to prove the premises of
INV on systems whose parameters are within these bounds. We first present our
main claim, which establishes the bounds for the most general system.
Consider a BDS S(N, Ny) with signature (type; — bool type; — type,)
to which we wish to apply proof rule INV with the assertions ¢ and p having each
the form Vz},...,z’}l,ﬁ,...,ii : w(ﬁ,ﬁ)’ where every i} (resp. i7) is a type;

(resp. type,) variable, and w(ﬁ,i—é) is a quantifier free formula. The transition
relation of the system is described by equation (1) with k = 2.

Consider a state s of the system S(Ny, Na). The size of s is (N1, N2). We say
that (N1, N2) is smaller than (N7, N3), and denote it by (Ny, Na) < (Ny, N3) if
N1 S N{ and N2 S NQI

Lemma 1. The premises of rule INV are valid over S(Ny1, N2) for all (N1, N3) >
(2,2) iff they are valid over S(N1, N2) for all (N1, Na) < (N, NY) where N{ =
b+Ii+Hy and N =d+ I, + Hy +e(b+ I, + Hy).



Proof. The most complex verification condition in rule INV is premise (I12) which

can be written as: (V] : (7)) A (3hVE: R(k,)) — Vi : ¢'(i) To prove the claim,
it suffices to show that if the formula

(V7 :9(7) A (Vi R(h,D)) A ~'(D) 2
is satisfiable over a state of size (N1, N2) = (2,2), it is also satisfiable over a
state of size (a1, as) < (N?, NJ).

Let s be a state of size (N1, N2) = (2,2) which satisfies assertion (2). Let
Valy C [1..Nq] be the set of (pairwise) distinct values the state s assigns to the
variables V., = {hf,.. '7h}11=i%7 . ,i}l,yl, ..+, yp}- Let a; = | Valy|; obviously,
a1 < Hy + 5 +b=N{ and oy < Np. Similarly, let Vala C [1..N2] be the set of
(pairwise) distinct values the state s assigns to the variables

Vazug = {h%,...,hiz,i%,...,ii,ul,...,ud}U {wg[k] l=1,...)e, k€ Vall}
Let ap = | Valz|; obviously, az < Hy+ I +d+e(Hy + 1 +b) = NS and as < Ns.
For every £ = 1,2, assume the distinct type, values are sorted v{ < v§ <
- < vk,. Let IT, be a permutation on [1..Ng] such that for every j =1,..., 0,
H[l(vf) = 7. The two permutations, II;, and I, help construct a new state
where the range of values assigned to the variables in Valug (resp. Vazug) is reduced
from [1..Nq] (resp. [1..N3]) to [1..a1] (resp. [1..az]).

Consider now a state § of size (a1, as), where: Z, = z, for every r € [l..q],
Ur = IIT (y,) for every r € [1.B], Z.[h] = 2 [IT,(k)] for every r € [l..c] and
k€ [l..aq), @, = I, (u,) for every r € [1..d], and @,[k] = IT, *(w, [T, (k)]) for
every r € [1..e] and k € [1..a1].

It is easy to establish, by induction on the structure of the quantifier-free
formulae ¢ and R, that the evaluation of formula (2) over § yields the same
truth values as the evaluation of formula (2) over s. Consequently, 3 is a state
of size (a1, az) that satisfies formula (2). |

The Class (type; — bool)  This is the class of systems which have boolean
and other finite-domain parameterized arrays. The algorithms belonging to this
class are MUX-SEM (mutual exclusion by semaphores), a 3-stages pipeline [BD94],
[McM98a], Steve German’s cache [Ger00,PRZ01], and the Illinois’ Cache Algo-
rithm [PP84,Del00], all studied in [PRZ01]. In addition, it includes Szymanski’s
mutual exclusion algorithm [Szy88] and token ring algorithms.

This class extends the class of systems considered in [PRZ01], which only
allowed comparison for equality between two ¥, variables, by allowing tests for
inequalities. Since there are no type, variables in the system, an immediate
consequence of Lemma, 1 is:

Corollary 1. Let S(N) be a parameterized system of signature (type; — bool)
to which we wish to apply proof rule INV with the assertions ¢ and p having each
the form Vi1, ..., i, : ¥(i1,...,i,). Then, the premises of rule INV are valid over
S(N) for all N > 1 iff they are valid over S(N) for all N, 1 < N < Ny, where
No=b+1+H.

In Fig. 2, we present a mutual exclusion algorithm due to B. Szymanski [Szy8§],
which uses inequality comparisons between process indices. In the system, b =0



in N : integer where N > 1

local zw, zs : array [1..N] of boolean where zw = zs = 0
[loop forever do

r£o : NonCritical

{1 : await Vj: —zs[j]

Ly 1 (zwld], zs[?]) := (1,1)

€3 : If 35 : at_£1,2[7]

N
|| P[] = then zs[i] := 0; go-to £4
i1 else zwli] := 0; go-to {3

L4 : await 35 : zs[j] A —zw[j] then (zw[i], zs[i]) := (0,1)
L5 : await Vj : —zw(j]

L : await Vj: j < 1:-zs[j] A —zw[j]

£7 : Critical

Leg : zs[i] := 0

Fig. 2. Parameterized mutual exclusion Algorithm SZYMANSKI

and H = 2. To apply this claim for system SZYMANSKI, where the property
to be verified is mutual exclusion, which can be specified by p : Vi # j :
=(at_Ll7[i] A at_{l7]j]), we set I =2, which led to a cutoff value of Ny = 4.

Transition Relations with “+1” or“®1” Constrains: Some of the pa-
rameterized systems which we wish to verify have atomic sub-formulae of the
forms ho = hy + 1 or hy = hy 1 (which stands for hy = (hy mod N) + 1) within
their transition relations. We resolve this difficulty by observing that

3hy,hy i hy =hi +1 A Vi: R(hy, ha,t) <
Jhi,haihy <hy A (VE:t<hi V hy <t) A Vi:R(hi,hs,1)

Jhihe  ho =hi ®1 A VE: R(hy, ha,?) © Elhl,hg:((h1<h2 AVEt<h Vv

ha <)V (ha <hi A Vt:ho <t <hi)) AV R(ha,ho, 1)

In the first translation, we ensure that ho = h; + 1 by requiring that h; be
smaller than hs and that, for every other index ¢, either ¢ is smaller or equal to
hi or it is greater or equal to ho. In the second translation, expected to capture
the constraint hs = hy @1, we repeat the characterization of ho = h; +1 but also
allow the option that hy = NV and he = 1. This is ensured by he < hy A Vt: he <
t < hy. Since (Vi : P(t) V Vt:Q(t)) & Vi1, t2 : (P(t1) V Q(t2)), the formulae
above can be easily expressed in the form required for transition relation. Thus,
the cutoff value established in Corollary 1 is still valid for both these cases.

in N : integer where N > 1
local token : [1..N]
N loop forever do N loop forever do
|| Cli |'£0 : NonCritical -| I | T3] [mo : when at_£o[i] A ]
im1 £1 : await 1 = token i1 token = 1
IJZg : Critical J [ token := 1P 1 J

Fig. 3. Parameterized mutual exclusion Algorithm TOKEN-RING

In Fig. 3, we present a program which coordinates mutual exclusion by passing
a token around a ring. The signature of the system is (type; — bool). The



transition relation for this program includes the atomic formula hy = h; & 1.
The program consists of N client processes C[1], ..., C[N] which can enter their
critical section only when they have the token. Process C[i] has the token when
the token variable token equals i. In addition, there are N transmission processes
such that process T'[i] is responsible for moving the token from client C'[¢] to client
C[i ® 1] whenever process C[i] is in its non-critical section. For this program we
have the parameters b = 1 (a single [1..N]-variable: token), and H = 2. According
to Corollary 1, to establish an inductive assertion of the form Viq,is : 9¥(i1,42)
for program TOKEN-RING, it suffices to take a cutoff value of Ny = 5.

The Class (type; — bool, type; — type,) In Fig. 4, we present a program
which implements a restricted version of the Bakery Algorithm by Lamport.

in N1, N3 : integer where N1 > 1,Ny > 1
local w :array [1..Ni] of [1..N2] where w = N;
z :array [1..Ni] of boolean where z = 0
[ loop forever do
£p : NonCritical
Ny No
|| Cl4) = £y : \/ when Vj : (=z[5] V u > w[j]) do (z[z], w[z]) := (1, w)
i=1 u=1
Lo : await Vj : (—z[j] V w[i] < w[j])
£3 : Critical
Ly 2[i]:=0
ll
Ny [loop forever do
, N
|| R[i] =: % [when z[i] A Vi:(-z[j] V wlj]<u V w[j] > w[i]) do
i=1 mo : Vl [1] := u
L u=

Fig. 4. Parameterized mutual exclusion Algorithm BAKERY

In the standard Bakery algorithm the variables w[i] are unbounded natural
numbers. Here we bound them by N5. To make sure that they do not get stuck at
N, and prevent any new values to be drawn at statement £1, we have the reducing
process R[i] which attempts to identify a gap just below the current value of wfi].
Such a gap is a positive natural number u smaller than w[i] and which is not
currently occupied by any w[j] for an active C[j], and such that all active w]j]
are either below u or above w[i]. Client C[j] is considered active if z[j] = 1. On
identifying such a gap w, process R[i] reduces w[i] to u. The disjunction Vgil
occurring at statements ¢; and mg denotes a non-deterministic choice over all
possible values of u in the range [1..N3], provided the chosen value of u satisfies
the condition appearing in the enclosed when statement.

The property of mutual exclusion, it can be written as p : Vi # j : ~(at_{3[i] A
at_{3[j]). Since both ¢ and j are of type type;, this leads to a choice of I; = 2
and I» = 0. From the program we can conclude that b =0,d = 0, and e = 1
(corresponding to the single [1..N;] — [1..N3] array w). The transition relation
can be written in the form 3i,u : V : R, leading to H; = 1 (the auxiliary variable



1) and Hy = 1 (the auxiliary variable u : types). Using these numbers, we obtain
a cutoff value pair (N, NJ) = (3,4).

Arbitrary Stratified Systems Lemma 1 can be generalized to systems with
arbitrary array types, as long as the type structure is stratified, i.e., ¢ < j for
each type type, — type;. Consider a stratified BDS with k parameterized types
typey, ..., type,. Let b; be the number of type, vairables in the system, and
let e;; be the number of type; — type; arrays in the system.

Corollary 2. Let S be a k-parameter BDS with k > 1 stratified types to which

we wish to apply proof rule INV with the assertions ¢ and p having each the form
\7’1},...,i}l,...,z”f,...,i’fk : (7). Then, the premises of rule INV are valid over

S(Ni,...,Ni) for all Ny, ..., Ny > 1 iff they are valid over S(NY, ..., N}) where
NO = by+Hy+14, and for everyi = 2,...,k, N® = (bi+Hi+L)+>."_} (eji-N?).

j=1 J

5 Systems with Unstratified Array Structure

in N :integer where N > 1
type Pr_id : [1..N]
Level : [0..N]
local y :array Pr_id of Level where y =0
s :array Level of Pr_id
loop forever do
£o : NonCritical
&1z (yld], s[1]) := (1,%)
£3 : while y[i] < N do
By [e3 s await s[y[i]] #i v Vj#i:yl] < y[i]}
4= (y[d], slyle] + 1)) == (y[d] + 1,9)
£5 : Critical
L : y[i] :==0

2

3

Fig. 5. Parameterized mutual exclusion Algorithm PETERSON

There are many interesting systems for which the restriction of stratification
does not apply. For example, consider program PETERSON presented in Fig. 5,
which implements a mutual exclusion algorithm due to Peterson. Obviously, this
system has an unstratified array structure.

When the system has an unstratified array structure, we lose the capability of
reducing any counter-model which violates (V] : 9(7)) A (3AVE: R(h, 1)) — Vi :
¥'(7) to a model of size not exceeding Ny. But this does not imply that we cannot
resolve this verification condition algorithmically. The first step in any deductive
proof of a formula such as the above formula is that of skolemization which
removes all existential quantifications on the left-hand side and all universal
quantifications on the right-hand side of the implication, leading to

(V7 :9() A (VE:R(ED) - ¢ (3)
In subsequent steps, the deductive proof instantiates the remaining universal
quantifications for f and t by concrete terms. Most often these concrete terms
are taken from the (now) free variables of (3), namely, & and i. Inspired by
this standard process pursued in deductive verification, we suggest to replace
Formula (3) by



(A ¢G) A CNA RRD) - @), (4)
je{r3} te{h,q}

which is obtained by replacing the universal quantification over j and £ by a
conjunction in which each conjunct is obtained by instantiating the relevant
varlables (7 or i) by a subset (allowing replication) of the free variables h and
i. The conjunction should be taken over all such possible instantiations. The
resulting quantifier-free formula is not equivalent to the original formula (3)
but the validity of (4) implies the validity of (3). For a quantifier-free formula
such as (4), we have again the property of model reduction, which we utilize for
formulating the appropriate decision procedure for unstratified systems.

Consider an unstratified system S(IN) with b variables of type [1..N] and e
arrays of type [1..N] — [L1..N]. As before, let H denote the number of existen-
tially quantified variables in the definition of p and let I denote the number of
universally quantified variables in the definition of ¢. Furthermore, assume that
the transition relation or candidate assertion do not contain nested arrays refer-
ences. For example, we will replace the formula s[y[i]] # @ by y[i] = h A s[h] # 1,
where h is a fresh auxiliary variable. Let INV" denote a version of rule INV in
which all premises have been skolemized first and then, the remaining univer-
sal quantifications replaced by conjunctions over all instantiations by the free
variables in each formula.
Claim. Let S(N) be a parameterized system as described above. Then if S(Ng)
satisfies the premises of rule INV applied to property p for Ng = (e+1)(b+I+H),
we can conclude that p is an invariant of S(N) for every N > 1.
For strongly typed systems, such as PETERSON, where comparisons and assign-
ments are only allowed between elements of the same type, we can provide more
precise bounds. Assume that the system has two types and that each of the
bounds can be split into two components. Then the bound on Ny can be refined
into N() = max(b1 +Il +H1 +€21(b2 +I2 +H2), bg +I2 +H2 +€12(b1 +I1 +H1)),
where es; and ejo denote the number of type,; — type, and type, — type;-
arrays. For the case of PETERSON, we have by = by, =0, [y =1, =2, H =1,
Hy; =2, and ej5 = ey; = 1, which leads to Ny = 7.

6 The Proof of the Pudding

According to a common saying “the proof of the pudding is in the eating”. In this
section, we present the experimental results obtained by applying the method of
invisible invariants to various systems. Table 1 summarizes these results.

The second column of the table specifies the number of processes used in
the verification process. In some cases, we took a value higher than the required
minimum. The 7; column specifies the time (in seconds) it took to compute the
reachable states. Column 75 specifies the time it took to compute the candidate
inductive assertion. Finally, column 73 specifies the time it took to check the
premises of rule INV.

The systems on the left are each a single-type system which only employs
equality comparison in their transition relations and candidate assertions. SZY-
MANSKI employs inequalities, and TOKEN-RING needs the relation he = h; ®1 in



its transition relation. BAKERY is a stratified two-type system employing inequal-
ity comparisons, and PETERSON is an unstratified two-type system. To obtain
inductiveness in the Illinois’ cache protocol we had to add an auxiliary variable
called last_dirty which records the index of the last process which made its cache
entry dirty.

System No| 1 T2 T3 System No | N T2 T3

MUX-SEM 5 01 .01 .01 SZYMANSKI 4 |<.01] .06 .06
S. German’s Cache| 4 |10.21{10.72(133.04 TOKEN-RING| 5 |<.01{<.01|< .01
Illinois’s Cache 4 | 1.47 .04 .58 BAKERY 5 41| .16 .25
3-stages Pipeline | 6 {20.66| .27| 29.59 PETERSON |(6,7)| 79| 1211 240

Table 1. Summary of experimental results.

7 Conclusion and Future Work

The paper studies the problem of uniform verification of parameterized systems.
We have introduced the method of verification by invisible invariants—a heuristic
that has proven successful for fully automatic verification of safety properties for
many parameterized systems.

We are currently working on extending the method so that it also encom-
passes liveness properties. To prove liveness properties, one has to come up with
a well-founded domain and a ranking function from states into the well-founded
domain. The ranking function has to be such that no state leads into a higher
ranked state, and, because of fairness, every state eventually must lead into a
lower ranked state. Thus, we need to extend the method of invisible invariants to
generate well founded domains and ranking, as well as to have the counter-part
of Lemma 1 to produce cutoff values for the case of liveness properties.
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