Validation of Optimizing Compilers*

L. Zuck?, A. Pnueli’*2, and R. Leviathan'

1 Weizmann Institute of Science, Rehovot, Israel, amir@wisdom.weizmann.ac.il,
2 New York University, New York, zuck@cs.nyu.edu

Abstract. There is a growing awareness, both in industry and academia, of the crucial role of formally
proving the correctness of safety-critical components of systems. Most formal verification methods verify the
correctness of a high-level representation of the system against a given specification. However, if one wishes
to infer from such a verification the correctness of the code which runs on the actual target architecture, it
is essential to prove that the high-level representation is correctly implemented at the lower level. That is,
it is essential to verify the the correctness of the translation from the high-level source-code representation
to the object code, a translation which is typically performed by a compiler (or a code generator in case
the source is a specification rather than a programming language).

Formally verifying a full-fledged optimizing compiler, as one would verify any other large program, is not
feasible due to its size, ongoing evolution and modification, and, possibly, proprietary considerations. The
translation wvalidation method used in this paper is a novel approach that offers an alternative to the
verification of translators in general and compilers in particular. According to the translation validation
approach, rather than verifying the compiler itself, one constructs a validation tool which, after every run
of the compiler, formally confirms that the target code produced on that run is a correct translation of the
source program.

The paper presents a methodology for translation validation of optimizing compilers. We distinguish be-
tween structure preserving optimizations, for which we establish simulation relation between source and
target based on computational induction, and structure modifying optimizations, for which we develop
specialized “meta-rules”. We present some examples that illustrate the use of the methodology, including
a “real-life” validation of an EPIC compiler which uncovered a bug in the compiler.

* This research was supported in part by the Minerva Center for Verification of Reactive Systems, a gift from Intel, a
grant from the German - Israel Foundation for Scientific Research and Development, and ONR grant N00014-99-1-0131.

1 Introduction

There is a growing awareness, both in industry and academia, of the crucial role of formally proving the
correctness of safety-critical portions of systems. Most verification methods deal with the high-level specification
of the system. However, if one is to prove that the high-level specification is correctly implemented at the lower
level, one needs to verify the compiler which performs the translations. Verifying the correctness of modern
optimizing compilers is challenging due to the complexity and reconfigurability of the target architectures and
the sophisticated analysis and optimization algorithms used in the compilers.

Formally verifying a full-fledged optimizing compiler, as one would verify any other large program, is not
feasible, due to its size, evolution over time, and, possibly, proprietary considerations. Translation validation
is a novel approach that offers an alternative to the verification of translators in general and of compilers
in particular. According to the translation validation approach, rather than verifying the compiler itself, one
constructs a wvalidating tool which, after every run of the compiler, formally confirms that the target code
produced is a correct translation of the source program.

The introduction of new classes of microprocessor architectures, such as the EPIC class exemplified by
the Intel IA-64 architecture, places an even heavier responsibility on optimizing compilers. This is due to the
expectation that static compile-time dependence analysis and instruction scheduling could lead to instruction-
level parallelism that could compete favorably with other architectures, such as those of the Pentium family,
where dependences are determined and instructions are reordered at run time by the hardware. As a result,
a new family of sophisticated optimizations are currently being developed and incorporated into compilers
targeted at arhchitectures as the Trimaran and the SGI Pro-64 compilers.

Prior work ([PSS98a]) developed a tool for translation validation, CVT, which managed to automatically
verify translations involving about 10,000 lines of source code in about 10 minutes. The success of this tool
critically depended on some simplifying assumptions which restricted the source and target to programs with a
single external loop and assumed a very limited set of optimizations.

Other approaches [Nec00,RM00] considered translation validation of less restricted languages allowing, for
example, nested loops. They also considered a more extensive set of optimizations. However, the methods
proposed there were restricted to structure preserving optimizations, and could not directly deal with more
aggressive optimizations such as loop distribution and loop tiling which are used in more advanced optimizing
compilers.

Our ultimate goal is to develop a methodology for the translation validation of advanced optimizing com-
pilers, with an emphasis on EPIC-targeted compilers, and the aggressive optimizations characteristic to such
compilers. Our methods will handle an extensive set of optimizations and can be used to implement fully auto-
matic certifiers for a wide range of compilers, ensuring an extremely high level of confidence in the compiler in
areas, such as safety-critical systems and compilation into silicon, where correctness is of paramount concern.

In this paper we develop the theory of a correct translation. This theory provides a precise definition of the
notion of a target program being a correct translation of a source program, and the methods by which such a
relation can be formally established. We distinguish between structure preserving optimizations which admit a
clear mapping of control points in the target program to corresponding control points in the source program.
Most high-level optimizations belong to this class. For such transformation, we apply the well known method of
simulation which relates the execution between two target control points to the corresponding source execution.
A more challenging class of optimizations does not guarantee such correspondence and, for this class, we have
developed specialized approaches to which we refer as meta-rules. Typical optimizations belonging to this class
are loop distribution and fusion, loop tiling, and loop interchange.

One of the side-products we anticipate from this work is the formulation of a validation-oriented instru-
mentation, which will instruct the writer of future compilers how to incorporate into the optimization modules
appropriate additional outputs which will make validation straightforward. This will lead to a theory of con-
struction of self-certifying compilers.

1.1 Related Work

The work here is an extension of the work in [PSS98a], and we intend to use the tools developed there in
our implementation of the validating tool studied here. The work in [Nec00] covers some important aspects

of our work. For one, it extends the source programs considered from a single-loop program to C programs
with arbitrarily nested loop structure. An additional important feature is that the method requires no compiler
instrumentation at all, and applies various heuristics to recover and identify the optimizations performed and
the associated refinement mappings. The main limitation apparent in [Nec00] is that, as is implied by the
single proof method described in the report, it can only be applied to structure-preserving optimizations. Since
structure-modifying optimizations, such as the ones associated with aggressive loop optimizations are a major
component of optimizations for modern architectures, we make this a central element of our work.

Another related work is [RMO00] which proposes a comparable approach to translation validation, where an
important contribution is the ability to handle pointers in the source program. However, the method proposed
there assumes full instrumentation of the compiler, which is not assumed here or in [Nec00].

More weakly related are the works reported in [Nec97] and [NL98], which do not purport to establish full
correctness of a translation but are only interested in certain “safety” properties. However, the techniques of
program analysis described there are very relevant to the automatic generation of refinement mappings and
auxiliary invariants.

1.2 General Strategy for Translation Validation of Optimizing Compilers

The compiler receives a source program written in some high-level language. It translates the source code into an
Intermediate Representation (IR) or intermediate code. The compiler then applies a series of optimizations to
the program, starting with classical architecture-independent optimizations, and then architecture-dependent
ones, such as register allocation and instruction scheduling. Typically, these optimizations are performed in
several passes (up to 15 in some compilers), where each pass applies a certain type of optimization. Translation
validation provides a proof for the correctness of each such optimization pass, where a successful validation
results in a proof-script confirmation, and an unsuccessful validation results in a counterexample.

The general approach to establishing a correct correspondence between target and source is based on refine-
ment and is proved by simulation. According to this approach, we establish a refinement mapping indicating
how the relevant source variables correspond to an appropriate target variables or expressions. The proof is then
broken into a set of verification conditions (also called proof obligations), each of which claiming that a segment
of target execution corresponds to a segment of source execution. In some of the cases, the proof obligations
are not valid by themselves, and then it is necessary to introduce auxiliary invariants which provably hold at
selected points in the program. The proof obligations are the shown to be valid under the assumption of the
auxiliary invariants.

In general terms, our strategy is to first give common semantics to the source and target languages using
the formalism of Transition Systems (TS’s). The notion of a target code T being a correct implementation of
a source code S is that of refinement, stating that every computation of T' corresponds to some computation
of S with matching values of the corresponding variables. In Figure 1 we present the process of refinement as
completion of a mapping diagram.

If only minor optimizations, or no optimizations at all (a debugging mode supported by most compilers), are
performed, the proof that the target code refines the source program is reduced to the proof of the validity of
a set of automatically generated verification conditions (proof obligations) which are implications in first order
logic. For this simpler case all that is required is to establish the validity of the set of these verification conditions.
Under the (realistic) assumption that only restricted optimization is applied to arithmetic expressions, the proof
obligations are in a restricted form of first order logic, called equational formulae, using uninterpreted functions
to represent all arithmetical operations. Recent work ([PRSS99]) has shown the feasibility of building a tool for
checking the validity of such formulae. This tool is based upon finding small domain instantiations of equational
formulae and then using BDD based representation to check for validity.

When the optimization switches are turned on, it is no longer sufficient to use the verification conditions
which can be generated automatically. The validating tool will need additional information which specifies which
optimizing transformations have been applied in the current translation. This additional information can either
be provided by the compiler or inferred by a set of heuristics and analysis techniques we plan to develop. A major
component of our research is the identification of a modest and self-contained instrumentation for optimizing
compilers that will provide this essential information in the form of program annotation. This annotation will

Syntax Semantics

Semantic Mappi
S: Source oe P Sem(S)

Trimaran
Compiler

Verification

R =

1 Semantic Mappin
T: Target e (Sem(T)

Fig. 1. Refinement Completes the Picture

be processed by the validation tool to form invariant assertions at selected control points. The verification
conditions will then be augmented by being allowed to use these invariants as assumptions but also by the need
to establish that these assertions are indeed invariants.

2 Transition Systems

In order to present the formal semantics of source and intermediate code we introduce transition systems TS’s, a
variant of the transition systems of [PSS98b]. A Transition System S = (V, 0, O, p) is a state machine consisting
of V a set of state variables, O C V a set of observable variables, © an initial condition characterizing the initial
states of the system, and p a transition relation, relating a state to its possible successors. The variables are
typed, and a state of a TS is a type-consistent interpretation of the variables. For a state s and a variable x € V,
we denote by s[x] the value that s assigns to z. The transition relation refers to both unprimed and primed
versions of the variables, where the primed versions refer to the values of the variables in the successor states,
while unprimed versions of variables refer to their value in the pre-transition state. Thus, e.g., the transition
relation may include “y’ =y + 1” to denote that the value of the variable y in the successor state is greater by
one than its value in the old (pre-transition) state.

The observable variables are the variables we care about. When comparing two systems, we will require that
the observable variables in the two systems match. Typically, we require that the output file of a program, i.e.
the list of values printed through its execution, be identified as an observable variables. If desired, we can also
include among the observables the history of external procedure calls for a selected set of procedures.

A computation of a TS is a maximal finite or infinite sequence of states, o : sq, s1,... , starting with a state
that satisfies the initial condition, i.e., so = ©, and every two consecutive states are related by the transitions
relation, i.e. {s;,s;11) = p for every i, 0 <i+1 < |o|!.

Example 1 Consider the source program FACT&DUP in the left of Figure 2 which computes in s the factorial
of n =4, and in j the product 2 x n = 8. On the right, we have the IR of the program, where the while loop
is transformed into explicit tests and increments.
Here LO is the initial block, L2 is the terminal block, and each label maps to a basic block.

We next translate the program in Figure 2 into a TS. The set of state variables is V' = {4, s, j,n}, where
7 is a control variable (program counter) which points to the next statement to be executed. The range of 7 is

Y|o|, the length of o, is the number of states in . When o is infinite, its length is w.

LO: s=1; i=1; n=4; if !(i<=n) goto L2
L1: s=s*i; j=2*n; i=i+1; if (i<=n) goto L1
L2:

i=1; s=1; n=4;
while (i<=n) {s = s#¥i; i=i+1; j=2*n}

Fig. 2. Program FACT&DUP and its IR

{L0,L1,L2}. The other variables, i, s, j and n, are all integers. The initial condition, given by ©: 7 = L0, states
that the program starts at location LO. As observables, we take O = {s, j}.
The transition relation p can be presented as the disjunction of four disjuncts

p = por V po2 V pi1 V piz,

where p;; describes all possible moves from Li to Lj.
In the following table we present the four disjuncts of the transition relations of program FACT&DUP:

por|(m=L0) A (s=1) A (' =1) A (0 =4) A (’=37) A (I <n') A (' =L1)

po2|(m=L0) A (s&=1) A (=1) A (n=4) AN (G =35 AN @GEF>n) N (7 =L2)

prn|(m=L1) A (=sxi) A (W =n) A (" <n') A(['=i+1) A (j7=2xn) A (7' =L1)

pr2|(m=L1) A (' =sxi) A (W =n) A [@>n) A([@"=i+1) A (j7=2xn) A (7 =1L2)
The only computation of the program is:

Lo, —, — —, —) 2% (L1,1,1,—,4) 25 (L1,2,1,8,4) 2% (L1,3,2,8,4) 25 (L1,4,6,8,4)

2(11,5,24,8,4) 2% (12,5,24,8,4)

where each state is described by the values it assigns to (m,1, s, j,n).

Let P, = (V,,0,,04,p,) and P, = (V,,0,,60,,p,) be two TS’s, to which we refer as the source and target
TS’s, respectively. Such two systems are called comparable if there exists a 1-1 correspondence between the
observables of P, and those of P,.. To simplify the notation, we denote by X € O, and « € O, the corresponding
observables in the two systems. We say that P, is a correct translation (refinement) of P, if for every finite
(i.e., terminating) P,-computation JT:og, . 70;, there exists a finite P,-computation 05:05, ce, O’;, such
that s, [2] = si[X] for every z € V.

3 Translation Validation for Structure-Preserving Transformations

In Figure 3 we introduce VALIDATE —the main proof rule used by the validator to establish that target codes
are translations of their source codes for the case of transformations that preserve the structure of the program.
VALIDATE is an elaboration of the computational induction approach ([F1o67]) that offers a proof methodology
to validate that one program refines another by establishing control mapping from target to source locations,
data abstraction mapping from target to source variables, and proving that they are preserved with each step
of the target program.

The assertions ; in step (2) are program annotations that are expected to be provided by the compiler. Thus,
; is used as a hypothesis at the antecedent of the implication Cj;. In return, the validator also has to establish
that ¢; holds after the transition. Thus, we do not trust the annotation provided by the instrumented compiler
but, as part of the verification effort, we confirm that the proposed assertions are indeed inductive and hold
whenever visited. Since the assertion mention only target variables, their validity should depend solely on the
target code.

In most cases, the existential quantification in verification condition (4) can be eliminated. This is based
on the observations that the implication p — 32’ : (2/ = E) A ¢ is validity-equivalent to the implication
pA (¢ =FE)—q.

In [PZP00] we proved a theorem stating that the proof rule VALIDATE is sound.

1. Establish a control abstraction k: Dom(pc) — Dom(m) mapping basic blocks into a correspond-
ing value of the source control variable w. The control abstraction should map the initial and
terminal blocks into the initial and terminal locations of the source programs.

For each basic block B(i), form an invariant ¢, that may refer only to concrete (target) variables.
3. Establish a data abstraction

N

a:(pr—=vi=Ei) A -+ A (pn — vn=Ep)

assigning to some source state variables v; € Vi — {n} an expression F; over the target state
variables, conditional on the (target) boolean expression p;. Note, that o may contain more
than one clause for the same variable.

4. For each basic block B(i) and B(j) such that B(j) is a successor of B(i) in the IR-graph, form
the verification condition

y A A

T , s
Cij: i Na A py = Vs PG

5. Establish the validity of all the generated verification conditions.

Fig. 3. VALIDATE —A procedure to validate translations

3.1 Validating the Verification Conditions

Following the generation of the verification conditions whose validity implies that the target T' is a correct
translation of the source program S, it only remains to check that these implications are indeed valid. The
approach promoted here will make sense only if this validation (as well as the preceding steps of the conditions’
generation) can be done in a fully automatic manner with no user intervention.

Pars of the validation task can be performed using CVT tool developed for the Sacres project [PRSS99] (see
[PZP00] for an overview.) For other parts, we need some arithmetical capabilities for which we used the STeP
system ([MABT94].) We are currently exploring other packages that can provide similar capabilities.

3.2 Example of Application of VALIDATE

Consider the program FACT&DUP of Figure 2 after a series of optimizations: constant propagation and folding
within a basic block, constant propagation between basic blocks, dead code elimination, and loop invariant
code motion. The resulting code is in Figure 4; the underlined instructions there are assignments to auxiliary
(boolean) variables that are added by the validator.

LO: jrey = 0;i=1; s =1; j =8;
Ll: jrq = 1; s = sxi; i = i+1; if (i<=4) goto L1
L2:

Fig. 4. Annotated Program After Loop Invariant Code Motion

To validate the program, we use the trivial control mapping, an invariant assertion ¢; = {j = 8} at L1, and
the following data abstraction:

a: (N=4) AN (IT=39) AN (S=5) N (Jret Apc =L1 — J =)

where in both ¢; and «, we use capital letters to denote the source versions of the variables n, ¢, s and j.
Armed with ¢; and «, the verification conditions are straightforward to construct and prove.

4 Validating Structure-Modifying (Loop) Optimizations

Since the simulation proof method assumes that the source and target have similar structures, rule VALIDATE
cannot be used to validate many of the loop optimizations. Therefore, we propose an alternate methodology for
validating loop optimizations, that consists of a set of “meta-rules”, each dealing with a set of loop optimizations.
The soundness of the meta-rules is established separately. Usually, structure-modifying optimizations are applied
to small localized sections of the source program, while the rest of the program is only optimized by structure-
preserving transformations. Therefore, the general validation of a translation will combine these two techniques.

The first meta-rule covers a wide range of optimizations. In fact, it covers all optimizations in which the
loop body itself is not altered (except for substitution of indices.) The obvious cases that are not covered by
this meta-rule are loop distribution and fusion, that are covered by a different meta-rule.

4.1 Loop Body Preserving Optimizations

This meta rule covers all cases where the only changes the optimizations imposes on the loop body are those
caused by substitution of control variables. Thus, it covers all unimodular loop transformations, as well as tiling
and combinations of the above.

A loop transformation has the general form of Figure 5.

For (il,...,ikl) S P1 by <1 do Bl(i1,...,ik1) For (j17---7jk2) € P2 by <2 do B2(j1,..‘,jk2)
Ls: Source Loop Lr:Target Loop

Fig. 5. A General Loop Transformation

In this representation, we assume that each of the loop bodies, B1 and B2, have some occurrences of the variable
i= (i1,...,1k,) and j = (j1,---,Jk,) respectively; these variables are not modified in either B1 or B2. We use
the notation B(k) to indicate an instance of block B where the loop control variables 7 have the value k upon
entrance to B.

Our first meta rule, that applies to transformation as in Figure 5, is in Figure 6.

For some ki x kg transformation matriz T and vector b= (by, ..., bx,),

1L PL=T P +b;

2. For every] € P, B2(j j) ~B1(T -] + b)

3. For every _71,_72 € P» such that j; <2 j2 € P2 and T -]2 =<1 T-]1,
B1(T - ji +b);BL(T - jo + b) ~ B1(T-jz+b);B1(T - j1 +b)

For i € P, by <1 do Bi(i) &~ For j € P, by <2 do B2(J)

Fig. 6. Meta Proof Rule for Transformation of Figure 5

Condition (1) of the rule states that there is a transformation such that (the polyhedron) P; is the result
of applying the transformation to Py, thus, the two loops are defined over the same vectors. Condition (2) of
the rule states the loop body of each iteration of the source is obtained by the loop body of the transformed
iteration of the target, thus, the loop body of two corresponding iterations is the same. Condition (3) guarantees
that any two iterations that are executed in different order in the source and target loops do not depend on one
another.

Below are some examples of application of the rule. Unless otherwise stated, we assume that in each of the
transformations b = 0

A Simple Loop Interchange. The source and target loops are described in figure 7.

J2<jg1 N 2 <1t —
B(’il,iz);B

(j1,J2) = B(j1,j2);

B(i1,142)

Here, P, = {(i1,12) :

for i1=1 to n do
for i2=1 to m do
B(i1,i2)
endfor
endfor

Fig. 7. A Loop Interchange Example

1<i; <n,1<iy <m}, P ={(j1,j2):

Q

for ji=1 to m do
for j2=1 to n do
B(j2,j1)
endfor
endfor

1 <41 <m,1 < jy <n}, < is lexicographic

ordering over (i1,i2) and <5 is lexicographic ordering over (ji, j2).The transformation matrix is

()

To verify the correctness of the transformation, note that for every (j,7) € Pa, T - (4, (1,7
(1) and (2) of the rule are obvious. For condition (3), we have to verify that B(i1,72);B(j1,j2) ~ B(j

for every for every (i1,42) (j1,72) € P2 such that jo < j; and ig > 5.

For example (taken from [Muc97]), let the loop body be "a[i, j] := 1—
validity of the transformation then follows since the transition relation corresponding to B(i1,42);B(j1,J2) is

a/[il,ig] = b[Zl] +0.5 A a’[il + 1,i2] = b[Zl]

N V(i 3) & {(i1,i2), (J1, J2), (i1 + 1,42), (41 + 1, 52) }-a’[4, j] = ali, j]

which is equivalent to the transition relation corresponding to B(j1, jo);

then {(41,71), (41 + 1,71)} are pairwise disjoint from {(is, j2), (i1 + 1,41)}.)
The equivalence between the two code fragments computed at the last step can be established by computing
their respective transition relations and submitting then to the decision procedure underlying CVT.

A Simple Loop Skewing. The source and target loops are described in figure 8.

Here, P1 = {(il,il)

for i1=1 to n do
for i2=1 to m do
B(i1,i2)
endfor
endfor

bl[i] + 0.5;a[i + 1, j] :=Db[i

i) =

j). Conditions
1,J2); B(i1, i2)

—05 A a/[jl,jz] = b[jl] +0.5 A Cl/[jl + 1,j2] = b[]1] —0.5

B(i1,i2) when jo < j1 and is > i1 (since

for ji1=1 to n do

Q

endfor
endfor

for j2=j1+1 to i+m do
B(j1,j2-j1)

Fig. 8. A Loop Skewing Example

01 SZI Sn;1§l2 Sm}aPQZ{(jlaj2)

<9 are lexicographical. The transformation matrix is

= ()

To verify the correctness of the transformation, note that for every (ji,7j2) € P2, T - (j1,j2) =
For condition (1) of the rule, we have that T - Py = {(j1,j2 —j1) :
i1,i2 < n} = P;. As for condition (3), note that it is trivially true since (ji,j3) <

(47, 73) <=

:1<j1 <n,j1 <jo2 <i+m}, and both <; and

(J1,J2 — J1)-

1<ji<n,j1 <jo<ji+m}={(i1,i2): 1 <

(1,43 = 41) =

0.5”. The

for j1=1 by c to n do
for j2 =1 by d to m do
for il=1 to n do for j3=j1 to min (jl+c-1, n) do
for i2=1 to n do for j4 = j2 to min (j2+d-1, m) do
B(i1,i2) — B(j3,j4)
endfor endfor
endfor endfor
endfor
endfor

Fig. 9. A Loop Tiling Example

A depth-2 Loop Tiling. Consider the source and target loop in Figure 9.
Here, Py = {(i1,i2) : 1 < iy < n,< iy <m}, Py = {(j1,j2,05,44) : 1 = L +cafor 0 <o < [2E] jp =

1+dBfor0< 8 < LmT_lj,jl < js <min(j; +¢—1,n),jo < jy <min(j2 +d —1,m)}, and both <; and <5 are
lexicographical. The transformation matrix is

0010
T= (0 00 1>
To verify the correctness of the transformation, note that for every (j1, j2, 73, ja) € P2, T-(j1,J2, J3,ja) = (43, 4)-
Condition (1) of the rule is trivially met. Similarly for condition (2). As for condition (3), note that the set of

pairs of P»-vectors that are ordered by <3, and after applying T to them are ordered by >, are the pairs in
the set

{((G1s 25 335 3a) (G152 53, 54)) = (1, G2 G35 3a)s (J1, 92, 93, 94) € P2 A J1 =341 A Ja>ja A j3 <js} (1)

Taking a concrete example (from [Muc97]), assume that m = n, ¢ = d = 2, and the loop body is “a[j3] :=
al[j3+j4l+1”. To verify condition (3), we need to validate B(js, j4); B(J3,j4) = B(Js3,74); B(js, ja) for every pair
(js, ja), (J3, 1) such that {((j1, 2, ja,a)s (J1,J2, 3, J4)} is in the set of Equation 1. That is, the equivalence of
the transition relation has to be verified for every

{((j3,44), (i3,72)) : 1 <jg<m A iz=0mod 2 A j3=js+1 A 1<js<n A js>js+ (js mod 2)}
The transition relation for B(js, j4); B(j3, j4) when js > js (and, therefore, j3 # js + j4) is
d'[js] = aljs + ja) + 1 A d[j3] = aljs + ja] A Vk # js, jz.a'[k] = alk]

When j; > j4 (and j3 # js+j4) the transition relation for B(Jjs, j4); B(j3, j4) is exactly the same. Hence, condition
(3) of the rule is met for this example.

4.2 Automatic Validation
Validating the proof rule in Figure 5 involves three steps:

1. Generating Py, P>, T, and b and proving that P, =T P, +b: The polyhedra P; and P, can be automatically
obtained from the syntactic form of the iterations at hand; the transformation matrix T and the vector
b can be obtained by proper instrumentation from the compiler; it is also conceivable that they can be
obtained by simple heuristic method, especially when only a single transformation is applied at a time. The
equivalence of P, and T - P, + b can be checked by any suitable mathematic package, e.g., Mathematica
[Wol99].

2. Checking that By (T - j 4 b) ~ Bsy(j) for every j € P: Often, once T and b are known, this amounts to
merely checking that By (T-j+b) = By(j). When the loops bodies are significantly altered, the equivalence
may be established by CVT-like tools.

3. Validating that any two iterations whose relative order in the source and the destination are different do
not depend on one another: The first step is to find the “potentially offensive” pairs of iterations. This can
be done by using the same mathematical package used in step (1). For each of these pairs (sets of them
may be represented symbolically), the equivalence of the two bodies can be established using the decision
procedure underlying CVT.

4.3 Loop Distribution and Fusion

Another set of loop transformations alters the loop body itself and is therefore not covered by the rule above.
For an example of such a transformation, consider loop distribution and fusion consider the programs Pfus and
P in Figure 10.

- for i €P by < B1(i);
for i € P by < .

B1(1);...Bk(1); " .
for i € P by < Bk(i);
Fused Pfus

Distributed Py,

Fig. 10. Distribution/Fusion

When considering loop distribution, the source is Pfus and the target is Pg;. Loop distribution is consid-
ered legal if it does not result in breaking any cycles in the dependence graph of the original loops [Muc97].
Alternatively, loop distribution is legal if executing all the B1’s before all the B2’s is equivalent to executing the
B1’s and B2’s in an interleaved fashion. When considering loop fusion the source is Pg; and the target is Pfus~
Obviously, fusing Py, into Pps is legal only when distributing P, into Py is legal.

Let Py, and Py be as in Figure 10. Figure 11 presents a rule for validating loop distribution and fusion
for the case that k = 2. Proving that the equivalence appearing in the premise may require invocation of some

— -,

For every ,j € P,i<j — B2(i);B1(j) ~ B1(j);B2(7).
Pfus ~ Pgis

Fig. 11. Proof Rule for Loop Distribution and Fusion

other proof rules (VALIDATE, e.g.).
Consider the following example.
B1(i): X[il=X[i-11+X[i] B2(i): Y[i]l=X[i]+1

To prove that we can apply distribution/fusion for these loop bodies, according to our proof rule we have to
establish the validity of:

io <o — ((X'ljol = X[jo = 1 + XTjol) A (¥k # 5. X'[k] = X[k]) A
(V'lio] = X'[io] +1) A (vk #£i0.Y'[]] = Vi) ~
(Y'lio) = X[io] +1) N (Vk £ Y'[k] =Y[k]) A
(X'Tjo] = XTjo — 1]+ XTjol) A (¥h # jo.X'[k] = X[k)))
which is true since X'[jo] = X [Jo]-
Assume, however, that B1(i) is replaced with B3(¢): X[1-1]=X[i-1]+X[i]. We then no longer have the
equivalence between the programs, since B3(jio); B2(ip) implies that X'[jo] = X[jo] only when jo > io + 1, and

thus the value of Y[jg] resulting from the execution of B3(jy) before B2(ip) may differ from the resulting from
the execution of B3(jg) after B2(ip).
The soundness of the meta proof rule of Figure 11 was established using PVS ([SOR93].

5 A Note on Loop Unrolling

The IR of Loop unrolling is represented in figure 12 (where we assume n > ¢ > 1.) There are several strategies

Li: i=1
- L2: B(i); B(i+1); ...; B(i+c-1);
L1: i=1 i=i+c; if (i+c-1 <= n) goto L2
L2: B(i); i=i+1; if (i<= to L2 . o’
L5: ()5 1=1 if (i<wm) goto - L3: if (i > n) goto L5
) L4: B(i); i=i+1; if (i<=n) goto L4
L5:

Fig. 12. Loop Unrolling

for dealing with loop unrolling. One is to design a meta-rule that deals with it directly. Another is to consider
loop unrolling as a special case of tiling an n x 1 array with tiles of size ¢, and then unrolling the innermost loop.
A third approach, which we sketch here, it to consider loop unrolling as a structure-preserving transformation
and apply VALIDATE to it.

We first “split” the target block L2 into ¢ sub-blocks as follows:

L2.1: B(i);
L2.2: B(i+1);

L2.c-1: B(i+c-2);
L2.c: B(i+c-1); i=i+c; if (i+c-1 <= n) goto L2

We then define auxiliary assertions:

po=t=1modec AN 1<i<n

pp=n—c+1<i1<n
For the control mapping we take 1 — 1, 2.5 — 2 for every j = 1,...,¢, 4 — 2, and 5 — 5. For the data
abstraction we take:

(N=n) A ((pc=1Vpc=21Vpc=4Vpc=5)—1=1i)A

(pc=22—-T=i+1) A ... AN(pc=2c—1T=i+c—1)

where, as before, we use capital letters to denote the source versions of the variables.
The verification conditions are now straightforward to construct and verify.

In the Appendix we give an example of a compilation of the Trimaran compiler that involves loop unrolling,
and verify it using VALIDATE.

10

Acknowledgment We gratefully acknowledge the help of Ben Goldberg who provided us with examples
and explanations of modern optimizations techniques for architecture targeted compilation. Paritosh Pandya
helped formulate perliminary versions of rule VALIDATE. Jessie Xu verified some of the meta rules, using Pvs,
and Henny Sipma added automatic generation of verification conditions to STeP.

References

[Flo67] R.W. Floyd. Assigning meanings to programs. Proc. Symposia in Applied Mathematics, 19:19-32, 1967.

[MAB'94] Z. Manna, A. Anuchitanukul, N. Bjgrner, A. Browne, E. Chang, M. Colén, L. De Alfaro, H. Devarajan,
H. Sipma, and T.E. Uribe. STeP: The Stanford Temporal Prover. Technical Report STAN-CS-TR-94-1518,
Dept. of Comp. Sci., Stanford University, Stanford, California, 1994.

[Muc97] S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann, 1997.

[Nec97] G.C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. Princ. of Prog. Lang., pages 106-119, 1997.

[Nec00] G. Necula. Translation validation of an optimizing compiler. In Proceedings of the ACM SIGPLAN Conference
on Principles of Programming Languages Design and Implementation (PLDI) 2000, pages 83-95, 2000.

[NL9g| G.C. Necula and P. Lee. The design and implementation of a certifying compilers. In Proceedings of the ACM
SIGPLAN Conference on Principles of Programming Languages Design and Implementation (PLDI) 1998,
pages 333-344, 1998.

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small-domains instantia-
tions. In In N. Halbwachs and D. Peled, editors, Proc. 115% Intl. Conference on Computer Aided Verification
(CAV’99), volume 1633 of Lect. Notes in Comp. Sci., Springer- Verlag, pages 455-469, 1999.

[PSS98a] A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)- automatic verification of a
compilation process. Software Tools for Technology Transfer, 2(2):192-201, 1998.

[PSS98b] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In In B. Steffen, editor, Proc. 4™ Intl.
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98), volume 1384
of Lect. Notes in Comp. Sci., Springer-Verlag, pages 151-166, 1998.

[PZP00] A. Pnueli, L. Zuck, and P. Pandya. Translation validation of optimizing compilers by computational induction.
Technical report, Courant Institute of Mathematical Sciences, New York University, 2000.

[RMO0] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of the Run-Time Result
Verification Workshop, Trento, July 2000.

[SOR93] N. Shankar, S. Owre, and J.M. Rushby. The PVS proof checker: A reference manual (draft). Technical report,
Comp. Sci.,Laboratory, SRI International, Menlo Park, CA, 1993.

[Wol99] S. Wolfram. The Mathematica Book. Cambridge University Press, 1999.

A Translation Validation of Machine-Specific Optimizations

In this section we present an example of translation validation of low-level code produced by back end of the
Trimaran compiler. The verification conditions were obtained manually and verified using STeP ([MAB*94].)
The original C program and its Trimaran IR translation (in a more readable form) are given in Figure 13. The
program gets as an input an array a[0..99] of (4-byte) integers and a memory address M whose value is to be
added to every array element.

In this example, Trimaran translates the intermediate code to machine code, assigns the r registers to store
intermediate values of the program, the ¢r branch registers to store addresses of branch locations, and the p
predicate registers to store results of conditionals. It also performs loop inversion to change the “while” to a
“repeat”, loop unrolling, strength reduction, and dead code elimination (of the loop variable.) It also schedules
the instructions. We present the optimized code, with the scheduling within each block, in Figure 14. Labels
BB3.1 and BB3.2 were added manually for clarity.

To prove that the target code of Figure 14 is a translation of the source code—the IR code of Figure 13—we
use VALIDATE with the following mappings: the control mapping maps target BB3, BB3.1 and BB3.2 to L2,
while BB6 is mapped to L1 and BB4 is mapped to L3. The data abstraction « is described by:

(0<5 <99 — alj] =mem(adrsa+4-5)) A (M =mem(adrsM)) A (pc=3V (pc=4Aps)) —i=r3—2)
Apc=31V(pc=4Apy)) —i=r3—4) A (pc =32V (pc=4Ap3)) —>i=1r3—3)

extern int IMPACT_EDG_GENERATED;
extern int main();

int M; { LL._2:
int a[100]; : (alil) += M;
main () { 1n: M;[100]- it+
int i; S if (i < 100) goto LL_2;
for (i=0;1 < 100;i++){ L1] LL3 :
afi] += M;} 7i = o: return(0);
} if (i < 100) goto LL_2; }
else goto LL_3;
Fig. 13. Original C-Code and its Trimaran IR
BB6: r5=M+0 r2 = a+38 r3 = 2
r4 = 1d r5
BB3: r5=r2+ -8 16 =r2+ -4 ri1l =12 + -8 tr2 = pbrr BB4 r7 = 1d r2
r8 = 1d r5 r9 = 1d r6 ri3 = r2 + -4 tr3 = pbrr BB4

p2 u = cmpp.>=.UN.UN r3 101 p3 u = cmpp.>=.UN.UN r3 100
r3 =r3 +3 trd = pbrr BB3 r14 = r7 + r4d
rl0 = r8 + r4 r12 = r9 + r4 p4 u = cmpp.<.UN.UN r3 102
st rl1l ri10 brct tr2 p2
(BB3.1:) st r13 ri2 brct tr3 p3
(BB3.2:) st r2 ri4
r2 = r2 + 12 brct tr4 p4d
BB4: Exit

~—

Fig. 14. An Optimized Trimaran Code (with scheduling)

When dealing with machine-level code, it is necessary to make some assumption about the memory allocation.
Here, the memory mem is assumed to be an array [0... N] of bytes; the array a resides in some 400 consecutive
bytes of the memory, thus 0 < adrs.a < N —400. Similarly, the 4-byte input M resides in the memory, and does
not intersect with the array. We ignore here the issue of how values are computed from memory addresses. We
do note, however, that it is the validator’s task to guarantee that the code produced by the compiler does not
access out-of-bounds memory cells. In particular, every load or store instruction has to reference memory cells
in the range [0... N].
To validate the translation, we annotate the program with the following invariants:

V3 {rs=2mod3 A 2<r3 <101 A ro=adrsa+4(rs—2) A r5=adrsM}
w3.1: {r3=2mod3 A 5<r3<103 A ro=adrs.a+4(r3 —5) A r5 = adrs-M A
p3 = (7"3 > 103) N pg = (7"2 < 102) N trs =BB4 A try =BB3 A
ri2 = mem(adrs_a + 4(rs — 4)) + mem(adrs_-M) A
r14 = mem(adrs_a + 4(rs — 3)) + mem(adrs_M)}
w32: {r3=2mod3 A 5<r3 <102 A ro =adrsa+4(r3 —5) A r5 = adrs .M A
ps = (r2 < 102) A try =BB3 A 114 = mem(adrs.a + 4(r3 — 3)) + mem(adrs_-M)}

The transition relation, while tedious, is rather straightforward to derive. Note that store instructions update
the relevant memory cells, while no other instruction alters the memory content. Using the mappings and
invariants above, we managed to prove the derived verification conditions using STeP. However, we obtained
a counter-example for the claim that the memory cells accessed are in the correct range. In fact, in the last
execution of BB3, the value of r4 exceeds N, thus the instruction r9 = 1d r6 could cause a segmentation fault
in this case.

ii

