Automatic Verification of Probabilistic Free
Choice*

Lenore Zuck!, Amir Pnueli?>-!, and Yonit Kesten?

! New York University, New York zuck@cs.nyu.edu
2 Weizmann Institute of Science, Rehovot, Israel amir@wisdom.weizmann.ac.il
3 Ben-Gurion University, Beer-Sheva, Israel yKesten@bgumail.bgu.ac.il

Abstract. We study automatic methods for establishing P-validity (va-
lidity with probability 1) of simple temporal properties over finite-state
probabilistic systems. The proposed approach replaces P-validity with
validity over a non-probabilistic version of the system, in which prob-
abilistic choices are replaced by non-deterministic choices constrained
by compassion (strong fairness) requirements. “Simple” properties are
temporal properties whose only temporal operators are <> (eventually)
and its dual [] (always). In general, the appropriate compassion re-
quirements are “global,” since they involve global states of the system.
Yet, in many cases they can be transformed into “local” requirements,
which enables their verification by model checkers. We demonstrate our
methodology of translating the problem of P-validity into that of verifi-
cation of a system with local compassion requirement on the “courteous
philosophers” algorithm of [LR81], a parameterized probabilistic system
that is notoriously difficult to verify, and outline a verification of the
algorithm that was obtained by the TLV model checker.

1 Introduction

Probabilistic elements have been introduced into concurrent systems in the early
1980s to provide solutions (with high probability) to problems that do not
have deterministic solutions. Among the pioneers of probabilistic protocols were
([LR81,Rab82]). One of the most challenging problems in the study of prob-
abilistic protocols has been their formal verification. While methodologies for
proving safety (invariance) properties still hold for probabilistic protocols, for-
mal verification of their liveness properties has been, and still is, a challenge. The
main difficulty stems from the two types of nondeterminism that occur in such
programs: Their asynchronous execution, that assumes a hostile (though some-
what fair) scheduler, and the nondeterminism associated with the probabilistic
actions, that assumes an even-handed scheduler.

It had been realized that if one only wants to prove that a certain property
is P-valid, i.e., holds with probability 1 over all executions of a system, this

* This research was supported in part by the John von Neumann Minerva Center for
Verification of Reactive Systems, The European Community IST project “Advance”,
and ONR grant N00014-99-1-0131.

can be accomplished, for finite-state systems, in a manner that is completely
independent of the precise probabilities. Decidability of P-validity had been first
established in [HSP82] for termination properties over finite-state systems, using
a methodology that is graph-theoretic in nature. The work in [PZ86b] extends
the [HSP82] method and presents deductive proof rules for proving P-validity
for termination properties of finite-state program. The work in [PZ86a,PZ93]
presents sound and complete methodology for establishing P-validity of gen-
eral temporal properties over probabilistic systems, and [VW86,PZ86a,PZ93]
describe model checking procedure for the finite-state case.

The emerging interest in embedded systems brought forth a surge of research
in automatic verification of parameterized systems, that, having unbounded
number of states, are not easily amendable to model checking techniques. In
fact, verification of such systems is known to be undecidable [AK86]. Much of
the recent research has been devoted to identifying conditions that enable au-
tomatic verification of such systems, and abstraction tools to facilitate the task
(e.g., [KP0O,APRT01,EN95EN96, EK00,PRZ01].)

Many of the probabilistic protocols that have been proposed and studied
(e.g., [LR81,Rab82,PZ86b,CLP84]) are parameterized. An obvious question is
therefore whether we can combine verification tools of parameterized systems
with those of probabilistic ones. The work in [PZ86b] provides several examples
of deductive verification of parameterized probabilistic systems, including the
free philosophers algorithm of [LR81] that guarantees livelock freedom of the
system. A verification of the more complex courteous philosophers algorithm of
[LR81] is in [L85], using a methodology that cannot be automated.

The main additional difficulty encountered when verifying probabilistic pro-
grams is “probabilistic fairness” — the fairness requirement over computations
that suffices to replace measure-theoretic considerations. In this paper we study
the problem of automatic verification of P-validity of probabilistic systems using
a method that is also applicable to the verification of parameterized probabilistic
systems. We show how, for the case of simple temporal properties, probabilis-
tic systems can be translated into non-probabilistic systems by replacing the
probabilistic fairness with compassion (strong fairness.) “Simple” properties are
temporal properties whose only temporal operator are > (eventually) and its
dual [] (always). While this, of course, impairs the expressive power of the
properties proven, it encompasses almost all properties of probabilistic protocols
that have been studied. The compassion requirements obtained, however, are
many and global (i.e., are with respect to global states.) Consequently, the sys-
tems obtained are not easily accommodated by most model checkers, that expect
compassion requirements to be local. In many cases, and almost all of those we
have studied, it is possible to transform the new compassion requirements into
few local ones.

We demonstrate our methodology of translating the problem of P-validity
into that of verification of a system with local compassion requirement on the
“courteous philosopher” algorithm of [LR81], a parameterized probabilistic sys-
tem that is notoriously difficult to verify. We describe the automatic verifica-

tion of the algorithm obtained using TLv [PS96], the Weizmann Institute’s pro-
grammable model checker.

2 Fair Discrete Systems

As a computational model for reactive systems we take the model of fair discrete
systems (FDS) [KPO00], which is a slight variation on the model of fair transition
system [MP95]. Under this model, a system S : (V,0,W,0,p, J,C) consists of
the following components:

e V: A finite set of typed system wariables, containing data and control vari-
ables. A state s is an assignment of type-compatible values to the system
variables V. For a set of variables U C V, we denote by s[U] the set of values
assigned by state s to the variables U. The set of states over V is denoted
by X. In this paper, we assume that X is finite.

e O C V: A subset of observable variables. These are the variables which can
be externally observed.

e W C V: A subset of owned variables. These are variables which only the
system itself can modify. All other variables can also be modified by steps
of the environment.

e O: The initial condition — an assertion (first-order state formula) character-
izing the initial states.

e p: A transition relation — an assertion p(V, V'), relating the values V' of the
variables in state s € X to the values V' in an p-successor state s’ € X.

o J: A set of justice (weak fairness) requirements. The justice requirement
J € J is an assertion, intended to guarantee that every computation contains
infinitely many J-states (states satisfying J).

o C: A set of compassion (strong fairness) requirements. Each compassion
requirement is a pair (p,q) € C of assertions, intended to guarantee that
every computation containing infinitely many p-states also contains infinitely
many g-states.

We require that every state s € X has at least one p-successor. This is often
ensured by including in p the idling disjunct V = V' (also called the stuttering
step). In such cases, every state s is its own p-successor. A system is said to be
closed if W =V, i.e., all variables are owned by the system.

Let o: sg, 81, S2, -.., be an infinite sequence of states, ¢ be an assertion, and
let j > 0 be a natural number. We say that j is a ¢-position of ¢ if s; is a
p-state.

Let S be an ¥DS for which the above components have been identified.
We define an (open) computation of S to be an infinite sequence of states
0: 8o, 81,82, ---, satisfying the following requirements:

o Initiality: o is initial, i.e., so = O.
o Consecution: For each j = 0,1, ...,
m 5941 [W] = s2;[W]. That is, s2j4+1 and s»; agree on the interpretation of
the owned variables .
® 55549 is & p-successor of spj41.

o Justice: For each J € J, o contains infinitely many J-positions
e Compassion: For each (p, q) € C, if o contains infinitely many p-positions,
it must also contain infinitely many g-positions.

According to this definition, system and environment steps strictly interleave.
Since both the system and environment allow stuttering steps, this is not a
serious restriction.

For an FDS S, we denote by Comp(S) the set of all computations of S. A
property is a (next- and previous-free) propositional linear time temporal logic,
possibly including past operators, over the states of S. A property ¢ is valid over
Sis o | ¢ for every o € Comp(S).

Systems S; and Sz are compatible if their sets of owned variables are disjoint,
and the intersection of their variables is observable in both systems. For com-
patible systems S; and Sa, the parallel composition of &1 and Si, denoted by
Si || Sz, is the FDS whose sets of variables, observable variables, owned variables,
justice, and compassion sets are the unions of the corresponding sets in the two
systems, whose initial condition is the conjunction of the initial conditions, and
whose transition relation is the disjunction of the two transition relations. Thus,
a step in an execution of the new system is a step of system S, or a step of
system Sy, or an environment step.

An observation of S is a projection of S-computation onto O. We denote
by Obs(S) the set of all observations of S. Systems S¢ and Sa are said to be
comparable if they have the same sets of observable variables, i.e., O, = O,.
System Sy, is said to be an abstraction of the comparable system S¢, denoted
Sc E 84 if Obs(Sa) C Obs(Sc). The abstraction relation is reflexive, transitive,
and compositional, that is, whenever S¢ C S4 then (S¢ || Q) C (S4| Q). It is
also property restricting. That is, if So C Sa then S4 | p implies that S¢ = p.

All our concrete examples are given in SPL (Simple Programming Language),
which is used to represent concurrent programs (e.g., [MP95,MAB*94]). Every
SPL program can be compiled into an FDS in a straightforward manner. In partic-
ular, every statement in an SPL program contributes a disjunct to the transition
relation. For example, the assignment statement

bo:y:=x+1; {q:

can be executed when control is at location £;. When executed, it assigns z+1 to
y while control moves from ¢y to #;. This statement contributes to p the disjunct

peo: at by A at by Ny =z+1 Az =u.

The predicates at_£y and at_¢; stand, respectively, for the assertions 7; = 0 and
m; = 1, where 7; is the control variable denoting the current location within the
process to which the statement belongs.

3 Parameterized Systems and Their Verification

A parameterized FDS is a system S(N) = P[1] || ... || P[N], where the P[i]’s
are symmetric SPL programs. For each value of N > 0, S(NN) is an instantiation

of an FDS. We are interested in properties that hold for every process in the
system. Because of symmetry, we can express them in terms of one process,
say P[1]. Thus, we are interested in properties of the type ¢(1), where ¢(1)
is a temporal formula referring only to variables that are known to P[1]. The
problem of parameterized verification is to show that (1) is valid (P-valid) over
S(N) for every N. A similar situation exists if we are interested in properties,
such as mutual exclusion, which involve two contiguous processes. In this case,
we can test these properties by checking whether a property (1,2) holds for
the specific processes P[1] and P[2], for every value of N > 2.

Parametric verification is known to be undecidable (see, e.g., [AK86]). Recent
research has focused on methodologies to identify systems and properties for
which the problem of parametric verification is decidable, and, for these systems,
to provide for semi- or fully- automatic verification.

One of the main ideas that have been proposed is to identify some number,
say Np, such that validity of ¢(1) over S[N'] for every N' < Ny suffices to
establish its validity for all N' > N [APR*01,EN95,EN96,EK00,PRZ01].

To prove the liveness property of a parameterized system, we propose a vari-
ant of the network invariant strategy of [KP00] (see also [WL89,BCG86,CGJ95],
[KM95]). The approach is described by:

1. Divine a network invariant 7 which is an FDS intended to provide an ab-
straction for the parallel composition of P; || - - - || P, for any n > ¢ for some
small constant c.

2. Confirm that 7 is indeed a network invariant, by verifying that P, C 7 and
that (Z||P) C Z.

3. Model check Py || Z = p.

4. Conclude that S(N) = p for every N > 1.

The crucial step in establishing that a candidate 7 is a good network invariant
is in proving the refinement (C) relation between systems. Usually, the abstract
system has significantly more non-determinism than the concrete system. Thus,
showing the every concrete step has a unique abstract step that maps to it
(and preserves the value of the observable variables) may be quite complicated.
Indeed, it has been our experience that a significant part of the effort of proving
refinement is devoted to “guiding” TLV to find the abstract step that maps to a
concrete step.

4 Example: Deterministic Dining Philosophers

The purpose of this example is twofold: To show a parameterized system and
outline its verification, and to present the problem of the dining philosophers
that we look at more carefully in Section 6.

Assume there are N > 2 processes (philosophers) arranged in a ring (sitting
around a table) numbered counter-clockwise Py, ..., Py.Let i®1 = (i mod N)+
land i©1 = (i—2 mod N)+ 1. These definitions lead to the facts that N1 =1

and 161 = N. Every two adjacent philosophers, P; and Pjg1, share a com-
mon fork, y[i ® 1]. A description of a typical portion of the table is in Fig. 1.
Philosophers spend most of their lives thinking (non-critical), however, occasion-

P

Fig. 1. Part of The Table

ally a philosopher may become hungry. In order to eat, a philosopher needs to
obtain both its adjacent forks. A solution to the dining philosophers problem is
a program for the philosophers, that guarantees that no two adjacent philoso-
phers eat simultaneously, and that every hungry philosopher eventually eats. It
is well known that if the system is fully symmetric, there are no deterministic
solutions to the problem. An almost symmetric solution, using semaphores for
the forks, is presented in the SPL program described in Fig. 2. The system is
“almost symmetric” since all processes, but one, follow the same protocol, while
the singled out process (P[1]) follows a different protocol: A “regular’ philoso-
pher P[i], ¢ > 1, reaches first for its left fork and then for its right fork. The
“contrary” philosopher P[1] reaches first for its right fork and then for its left
fork.

in n:integer where n > 2
local ¢ : array [1..n] where ¢ =1
4y : loop forever do] [£o : loop forever do |
¢1 : NonCritical ¢1 : NonCritical
n {5 : request ylj] {5 : request y[2]
|| P[j] = {3 : request y[j & 1] || P[1] :: {3 : request y[1]
j=2 {4 : Critical {4 : Critical
{5 : release ylj] 5 : release y[2]
| [46 : release y[j ®1] | | | |4 :release y[1] | |

Fig. 2. A deterministic solution with one contrary philosopher.

The liveness property of the system is:

O(at£o1] = O(at-La[1])),

We now outline two different (and successful) network invariant strategies
used for obtaining the liveness property of the protocol. In both, we view each
regular philosopher as a system P(left, right), where the semaphores left and
right are the only observables. We seek an invariant Z(left, right) which is an
abstraction of the philosophers chain

local f: array[2..k] of boolean where f =1
P(left, f121) | POF2) 8D I --- |l P(f[K], right)

for every k > 2. This means that any (left, right)-observation of S[k] is matched
by a corresponding (left, right)-observation of Z(left, right).

S[k] =

Abstraction 1: The “two-halves”. Observing how the two border members of
S[k] manipulate the obesrvables left and right, led, after experimentation to an
abstraction consisting of the composition of a left half philosopher and a right
half philosopher, as presented in Fig. 3.

[4o : loop forever do | [mo : loop forever do]

¢, : NonCritical
{5 : request left

: NonCritical
:idle

L(left) :: 43 : idle || R(right) :: ms3 : request right
{4 : Critical my4 : Critical
{5 : release left ms : skip

U6 : skip

L : release right
Extra Compassion: (at_f¢s A right >0, at_{4)

Fig. 3. The two-halves Network Invariant

The additional compassion requirement reflects the possibility that the leftmost

process in S[2] may only deadlock while requesting its right fork (at ¢3) if the
rightmost process can eventually always holds on to its right fork. To show that
an arbitrary regular philosopher never starves, it is suffices to verify

CTIPITIR k (atts » atty)

where R is a contrary philosopher and the locations in the property refer to P.

Abstraction 2: The “four-by-three”. An alternate simpler invariant can be
obtained by taking Z = S[3], i.e. a chain of 3 (unmodified) philosophers.
To prove that this is an invariant, it is sufficient to establish

(p(1] II p[2] | p13] Il p[4]) T (P[] [Pl6] || P[7])
i.e., that 3 philosophers can faithfully emulate 4 philosophers.

This is established by letting P[5] mimic p[1] and P[7] mimic p[4]. As to P[6],
it can remain idle until it finds out that S[4] is 2 (internal) steps away from a
guaranteed deadlock (all of p[1],...,p[4] remain stuck at location £3), at which
point P[6] joins P[5] and P[7] in order to form a similar deadlock at the abstract
level. This requires the capability of clairvoyance, which has been implemented
within TLV.

5 Adding To and Removing Probabilities From FDSs

We describe the formal model for probabilistic discrete systems (PDS) and P-
validity. We then show how, when establishing P-validity of simple properties,
PDS’s can be translated into FDSs.

5.1 PDS: Adding Probabilities to FDSs

A probabilistic discrete system (PDS) S: (V,0,W,0,p,J,C,P) consists of an
FDS (V,O,W,0,p,J,C) and a probabilistic fairness condition P containing
tuples of the form (p; ai: qi,...,a,: qn), where qi,...,q, are mutually dis-
joint state assertions, and Y., a; = 1. It is also required that p is disjoint
of any of the g;’s. Intuitively, the meaning of a probabilistic fairness condition
{p; 01: quy--.,Qn: gy) is that whenever the system moves from a p-state into
a state satisfying Vz.":1 q;, it moves into a g;-state with probability «;. Let s
be a p-state. It is required that s has precisely n + 1 successors, s (itself) and
$1,---,8n, where s; satisfies ¢;, for every i = 1,...,n.

The following definition applies to a PDS with a single probabilistic tuple
{p; a1: q1,...,0n:). Its generalization to systems with more than one such
tuple is straightforward.

An (open) computation tree of a PDS is formed as follows:

e The root of the tree is any state which is initial, i.e. satisfies ©.

e Every node s at level 2j has a single descendant which is an environment
successor of s,i.e. a state § such that s[W] = s[W].

e Every node s at level 2j + 1 which is not a p-state, has a single descendant
which is a p-successor of s.

e Every node s at level 25 4+ 1 which is a p-state has either itself s as a single
descendant, or the n descendants si,...,sy,.

Such a tree induces a probability measure over all the infinite paths that can be
traced in the tree, where each edge from s to s; is assigned the probability a;.
A computation tree is called admissible if the measure of paths which are just
and compassionate is 1.

Following [PZ93], we say that a temporal property ¢ is P-valid over a com-
putation tree Ty, if the measure of paths in that satisfy ¢ is 1. (See [PZ93] for a
detailed description and definition of the measure space.) Similarly, ¢ is P-valid
over the PDS S if it is P-valid over every admissible computation tree of S.

Much work has been devoted to replacing the measure space required in
the definition of P-validity by “simpler” notion of fairness. In particular, we
have been searching for a definition of “z-fairness” of computation, such that
o would be P-valid iff it is satisfied by every z-fair computation of S. Such is
the a-fairness of [PZ93]: For a past temporal logic formula x, a computation
0 = 8¢, - - . 18 a-fair with respect to X if, for every probabilistic fairness condition

(pyar:quy. .., 00 qn),

50,---,8=EXx AN p and sjpiEq@V...Vg for infinitely many j’s

implies
S0,---»Sj = x A p and sjp1 = q for infinitely many j’s

forevery £=1,...,n.

In other words, if the computation reaches a “p to \/ ¢;” transition infinitely
many times from y-prefices, then each mode of the transition should be taken
infinitely many times from x-prefices. A computation if a-fair iff it is a-fair with
respect to every past temporal formula x. A result of [PZ93] is:

Theorem 1. A temporal property o is P-valid over S iff every a-fair computa-
tion of S satisfies .

While a-fairness is sound and complete, it is hardly satisfactory, since it calls
for establishing a-fairness with respect to “every past formula.” The work in
[PZ93] also presents a model checking procedure of finite state PDSs against
temporal specification that do not have the temporal operators O and U. That
is, the temporal properties whose P-validity is established in the model checking
can include all the past operators, but the only future operator they can have is
<> (and its dual, []). The model checking procedure there involves constructing
the closure of the (negation of the) property, building an atom graph where each
atom node is a maximal logically-consistent subset of formulae in the closure
that correspond to program states, and nodes are connected if they do so in
both the tableau of the property and the program itself.

A careful examination of this model checking procedure reveals that in order
to establish P-validity over finite state PDSs and {(O, U }-less properties, it
suffices to consider computations that are a-fair only with respect to every past
formula that appears in the closure of the property. Consequently, we have:

Corollary 1. Given a finite-state PDS S and a {O, U }-less property ¢. Then
o is P-valid over S iff for every past formula x appearing the in the closure of
p, every S-computation that is a-fair with respect to x satisfies .

5.2 Removing Probabilities from PDSs

Consider simple temporal properties that do no include any of the past, or the
future OO and U operators. Thus, simple temporal properties include, as their
only temporal operators, <> and it dual, []. The work in [SZ93] includes an
extensive study of this class.

While at first glance it may seem that this class of simple temporal prop-
erties is extremely restrictive, it is actually a rather inclusive class, since it
accommodates all the safety, and most of the progress properties one usu-
ally wants to prove about PDSs. E.g., mutual exclusion usually has the form
((trying; — < critical;) which is a simple temporal property.

The closure of a simple temporal property includes no past formulae. Conse-
quently, we can replace a-fairness by fairness with respect to every state asser-
tion. We call this notion of fairness ~y-fairness. Formally, a S-computation o is

~-fair if it is a-fair with respect to every state assertion. Note that for a finite-

state system, the relevant state assertions are the states themselves (in fact, the

v comes from “global”, since this is fairness with respect to the global states.)
We can therefore conclude from Corollary 1:

Corollary 2. Given a finite PDS S and a simple temporal property . Then ¢
is P-valid over S iff every S-computation that is y-fair satisfies .

Corollary 2 implies that, in order to prove that a simple temporal property is
P-valid over a finite PDS, it suffices to prove that it is satisfied over all (just and
compassionate) computations of the system where if the probabilistic choice is
made infinitely many times from a given state, then each outcome of that proba-
bilistic choice should be taken from that state. Hence, each probabilistic fairness
condition {p;ai: q1,...,an: ¢,) can be translated into a set of compassion re-
quirements that includes every pair of states (s, s’) such that s is a p-state and '
is a g;-state for some i. For a set P of probabilistic fairness requirements, denote
by C(P) the set of compassion properties obtained by replacing each condition
in P by the corresponding set of compassion requirements. We then have:

Theorem 2. Given a finite PDS S : (V,0,p,7,C,P). Let §' : (V,0,p,T,C U
C(P)) be the FDS obtained from S by translating the probabilistic fairness condi-
tions of S into compassion requirements. Then for every simple temporal property

(2
¢ is P-valid over S iff ¢ is valid over S’

While Theorem 2 implies that PDSs can be translated into FDSs, a straight-
forward application of the idea may lead to systems that are not manageable by
current model checkers. The reason for this is that the state assertions appear-
ing in the probabilistic fairness conditions are usually local, while the assertions
appearing in the new compassion requirements are usually global. For example,
in the probabilistic fairness condition, p is usually of the form at_/¢,[i] and the
g;’s are of the form at_£, [i], stating that “from any global state where P[i] is
about to take a probabilistic choice whose outcomes are to move it from location
z to locations vy, . . . , ¥, €ach with a positive probability, it should reach each of
these locations from that global state infinitely many times.” Each compassion
requirement (s, s;) we obtain has on the left one of the global states where P[] is
in location z, and on the right a set of states where it is in location y;. We cannot
combine the left-hand-side s-s into a single compassion requirement, since this
has the undesirable effect of allowing a computation where, e.g., P[i] always gets
to y; from certain states, and always to ys from others. Thus, unless somehow
manipulated, we will end up with too many compassion requirements that are
global, both are undesirable properties for the purpose of model checking. Note
that the situation gets completely out of hand when dealing with parameterized
systems. There, the number of compassion requirements one may end up with if
not careful is exponential in the size of the code of a single process.

Consequently, a crucial step in establishing P-validity of simple properties
using existing model checking technique is then to “localize” the compassion

requirements and to minimize their number. While we have no general method-
ology of doing that, we succeeded to do it for many interesting cases. The most
complex case is described in the next section.

6 The [LR81] Dining Philosophers Protocol

In Lehmann and Rabin’s Courteous Philosophers Algorithm the forks are shared
variables that are set when held and reset when on the table. In addition to the
forks, adjacent philosophers share a lastL[i @ 1] variable, initially -1, and after
one of the them eats, denoting whether it’s the left (P;) philosopher that last
ate or the right. Each philosopher P; has additional boolean variables (written
by it and read by its immediate neighbours), signR[i] which denotes its wish to
eat to its left neighbor (P;g1) and signL[i] which denotes its wish to eat to its
right neighbor (Pig1).

The algorithm is a refinement of the “Free Philosophers” algorithm, in the
same paper, were each hungry philosopher chooses randomly whether to wait to
its left or right fork first, and, after (and if) it obtains it, waits until the other fork
is available. The Free Philosophers are guaranteed, however, only that eventually
some philosopher eats. The Courteous Philosophers are similar to the free ones,
the difference being that a courteous philosopher can pick up its first fork only
if its partner (on that side) is either not hungry or is the last to have eaten
between the two of them. An SPL code of the protocol is described in Fig. 4.1

The justice requirements and probabilistic fairness conditions of the system
are the obvious ones, and there are no compassion requirements. Since the prop-
erty we want to establish is the liveness property

D(at,él[l] — <>at7€8[1])7

which is a simple property, we proceed to translate the probabilistic fairness into
compassion requirements.

A naive replacement of the probabilistic fairness properties by compassion
will lead to roughly 12V global compassion requirements which is unaccept-
able. To minimize and localize the requirements, we employed a combination of
studying the system (and its deductive proof in [L85]) and experimentation with
proving the liveness property for N = 3,4 using TLV. The chain of reductions
we went through is as follows.

The deductive proof focuses, at each step, only on two adjacent processes. It
seemed therefore reasonable to localize the compassion, and to require it from
each processes only with respect to its immediate neighbours. This led to includ-
ing in the compassion set of each process i the requirements:

(at_L1[i] N cond, at_Ls[i] A cond), (at_tLi[i] A cond, at_{5[i] A cond)

! In the protocol, as presented in [LR81], the instructions appearing in lines 9-11 are
not atomic. Making them atomic, as we did in our presentation doesn’t impair the
proof since none of these non-atomic assignments are observable to a single process.
It does, however, reduce state space for model-checking.

in N: integer where N > 2
local signL, signR, y, : array [1..N] of boolean init 0
local lastL : array [1.N] of {—1,0,1} init —1
[loop forever do
[{o : non-critical
¢y ¢ signL[i] :== 1; signR[i] :== 1; goto {0.5 : £2;0.5: {5}
£y . await ~y[i] A (-signR[i©1] V lastLli] = 1)

and then y[i] ;=1
L: Ifylidl] =0

then y[i @ 1] := 1; goto {3

N Ly : y[i] :=0; goto ¢
| P[i] =: l5: await -yt ®1] A (-signL[i @ 1] V lastL]i ® 1] = 0)
i=t and then y[i 1] :=1
bg: Ify[i] =0

then y[i] := 1; goto {3
{7 y[i @ 1] :=0; goto ¢
{3 : Critical
by : signL[i] := 0; signR[i] := 0
£10 : lastL[d] := 0, lastLli ® 1] :=1
b y[d] =05y D 1] :=0

Fig. 4. The Courteous Philosophers

for every

cond € {at_gg,,u,(]ul[i © 1], at_£2,3[i © 1], at_&;[z' S 1], at_&;,g[i © 1], at_€7[i S) 1]}

at_gg,,u,(]“l[i D 1], at_£2,3[i (&) 1], at_&;[z' &) 1], at_&;,g[i (&) 1], at_€7[i (&) 1]

The process of deriving small and local compassion sets is non-algorithmic
in nature, however, the result can always be automatically verified.

To provide an automatic proof of the liveness property of the protocol, we
first reduced the state space, by eliminating the variables y[i], signL[], signR][¢],
whose values can be uniquely determined by the locations of the relevant pro-
cesses. We also compressed all the actions performed in locations £g — ¢4 into a
single statement labeled . All of these reductions do not alter significantly the
behavior of the processes but simplify its verification. This leads to the protocol
described in Fig. 5.

Using TLV we established the property

Oat_ts[i] = S O(at_bs[iwl] A lastLli @ 1) =1) (1)

for every i. From this, by induction around the philosophers ring, we can show
that if one process gets stuck at £5 then all processes eventually get stuck at
U5, with lastL[1] = --- = lastL[N] = 1. Since the only statement which modifies
any of the lastL[i] variables is s, which sets lastL[i] to 0, and lastL[i ® 1] to
1, we conclude that the situation lastL[1] = --- = lastL[N] = 1 is unreachable.
Therefore, no process can get stuck at location £5. In a symmetric way, we can
show that no process ever gets stuck at location £a.

in N: integer where N > 2
local lastL : array [1..N] of {—1,0,1} init —1
[loop forever do
[{o : non-critical
£, : goto {0.5:£2;0.5: 45}
£y await at_{lo[i ©1] V at_£o. 5[© 1] A (lastL[i] # 0)
. L3 if at_£1,25.7[t @ 1] then go to {s
1 B l4: go to {4y
L5 : await at_lo[i 1] V at_f125.7[i D 1] A (lastL[i] # 1)
Le : if at_£y. 5[t © 1] then go to fs
l7: go to {4
ls : Critical; lastL[i] := 0; lastLli ®1] :=1

Fig. 5. Location-based Courteous Philosophers

This allows us to add the justice properties —at_£3[i], 7at_¢s5[i] to the justice
set of each process. Thus, from now on, we restrict our attention to progressive
philosophers which are guaranteed not to get stuck at either £ or /5.

Next, we follow the ideas developed in Section 4 and view each philosopher
PJi] as a system P(lloc, cloc, rloc, clst, rlst), whose observables are, respectively,
lloc = P[i © 1].loc, cloc = Pli].loc, rloc = P[i ® 1].loc, clst = lastL[i], and
rist = lastL[i ® 1]. We seek an invariant Z(elloc, lloc, rloc, erloc, llst, erlst) which
is an abstraction of the following philosophers chain S[k]:

in elloc, erloc : [0..8]
in-out list, erlst: [—1..1] where llst, erlst = —1
out lloc,rloc: [0..8] where lloc, rloc =0

local loc : array|[2..k—1] of [0..8] where loc =0
lastL : array|[2..k] of [—1..1] where lastL = —1
P(elloc, lloc, loc[2], Ust, lastL]2]) || --- || P(loc[k—1], rloc, erloc, lastL[k], erlst))

for every k > 2.

Abstraction 1: The “two-halves”. As in the same abstraction of the determin-
istic case, we obtain an abstraction consisting of the composition of a left-half
philosopher and a right-half philosopher. This abstraction is presented in Fig. 6.

The additional compassion property (at_£f2. 4 A at_ms. .7, at_fg V at_mg) re-
flects a remote interaction between the two end processes.

Using TLV, we model checked that the network invariant, so derived, is in-
ductive, and, that properly connected to a full philosopher, the system satisfies
the liveness property.

Abstraction 2: The “five-by-four”. As in the deterministic case, the “k+1-by-
k” abstraction has the potential of being much simpler. Unlike the deterministic
case, this cannot be done for k¥ = 3 because of the additional (lastL) variables.

in elloc, erloc : [0..8]
in-out list, erlst: [—1..1] where list, erlst = —1
out lloc, rloc: [0..8] where lloc, rloc =0

"loop forever do] loop forever do

- mo : non-critical

my : goto {ma2, ms}

my : skip

mg : if erloc € {1,2,5..7} then
I go to mg
m4 : go to my

[4o : non-critical
f1 H gOtO {82, £5}
£> : await elloc=0 V
elloc € {0..5} Allst £ 0
43 : go to {l4, {3}

54 El(:i;o b ms : await erloc=0 V

5

s : if elloc € {0..5} then go to {s m e'rlozetjl{,fn, 5"77”} ? erlst 7 1
{7 :go to £ 6:8 7, Mg

m7 : go to my
- msg : Critical; erlst:=1

¢s : Critical; list:=0

Extra Compassion: (at—£€2.4 A at—ms..7, at—€s V at_ms)

Fig. 6. A two-halves abstraction for the Courteous Philosophers

There is a reason to believe that it can be accomplished for k¥ = 4. We describe
here the ideas that lead us to this belief. However, since model-checking this
abstraction requires running nine processes, we have so far failed in checking it
in TLV, hence we just sketch the main ideas.

Thus, we take Z = S[4], that is, a chain of 4 (unmodified) philosophers, and
prove that

(1] [I p[2] | P3] I p[4] || p[5]) € (P[6] || P[7] [| P[8] || P[9])

i.e., that 4 philosophers can faithfully emulate 5 philosophers (and the observable
variables.)

This is established by letting P[6] mimic p[1] and P[9] mimic p[5]. The middle
processes, P[7] and P[8], remain mostly idle. The only scenario in which P[7] has
to move is when p[1] gives up its left fork, i.e., the system moves from a at_/¢3[1]-
state into a at_{4[1]-state. Similarly, P[8] has to move only in the symmetric
situation with respect to p[5] (moving from £g into to £7). In each of these cases,
it is possible to let the relevant middle process get hold of the fork it shares with
its external neighbour, so that to justify the neighbour’s failure to obtain the
fork. It is also possible to do it in a way the will guarantee compassion of the
abstract system.

7 Conclusion and Future Research

In this paper we studied the problem of proving P-validity (validity with prob-
ability 1) of “simple” LTL specifications over finite state program. We showed

how probabilistic fairness can be replaced by compassion (strong fairness), thus
reducing the problem of proving P-validity of probabilistic program to that of
verifying (strongly) fair programs. The compassion requirements so obtained
are generally global, i.e., are expressed relative to global state of the system.
In order to model-check such properties, the compassion requirements must be
local, i.e., expressed relative to states of single processes. Once one obtains local
compassion properties, establishing P-validity of simple properties can be fully
automatic.

We demonstrated our ideas by providing a formal proof for the Courteous
Philosophers algorithm of Lehman and Rabin, a notoriously difficult to formally
verify. (Indeed, this is the first published verification of it.) The protocol is a
somewhat involved protocol that is both parameterized and probabilistic. We are
happy to report that we succeeded in obtaining the proofs using the Weizmann
programmable model checker TLV.

The main drawback of our method is the ad-hoc manner in which we “local-
ized” the compassion properties. We are attempting to develop better method-
ologies and tools to assist us in this step. We are also studying more examples,
e.g., parameterized probabilistic mutual exclusion protocols.

Another issue, closely related to the work here, is the notion of abstraction
and tools for its verification. The research reported here helped us identify some
extensions of the notion of abstraction (notably, clairvoyance and stuttering)
that can considerably improve our tools. We are currently attempting to find
more such extensions. Thus, we hope to soon be able to automatically establish
the “five-to-four” abstraction reported at the end of the previous section.

References

[AK86] K.R.Aptand D. Kozen. Limits for automatic program verification of finite-
state concurrent systems. Information Processing Letters, 22(6), 1986.

[APRT01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verifica-
tion with automatically computed inductive assertions. In Proc. 137¢ Intl.
Conference on Computer Aided Verification (CAV’01), volume 2102 ofLect.
Notes in Comp. Sci., Springer-Verlag, pages 221-234, 2001.

[BCG86] M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks
with many finite state processes. In Proc. 5th ACM Symp. Princ. of Dist.
Comp., pages 240-248, 1986.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parametrized networks
using abstraction and regular languages. In 6th International Conference
on Concurrency Theory (CONCUR’95), pages 395-407, 1995.

[CLP84] S. Cohen, D. Lehmann, and A. Pnueli. Symmetric and economical solutions
to the mutual exclusion problem in a distributed system. Theor. Comp. Sci.,
34:215-225, 1984.

[EKO00] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the
few. In 17th International Conference on Automated Deduction (CADE-17),
pages 236-255, 2000.

[EN95] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In Proc. 22th
ACM Conf. on Principles of Programming Languages, POPL’95, San Fran-
cisco, 1995.

[EN96]

[HSP82]
[KMO95]

[KPO0O]

[L85]

[LR81]

E.A. Emerson and K.S. Namjoshi. Automatic verification of parameter-
ized synchronous systems. In R. Alur and T. Henzinger, editors, Proc. 8"
Intl. Conference on Computer Aided Verification (CAV’96), volume 1102 of
Lect. Notes in Comp. Sci., Springer-Verlag, 1996.

S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent
programs. In Proc. 9th ACM Symp. Princ. of Prog. Lang., pages 1-6, 1982.
R.P. Kurshan and K.L. McMillan. A structural induction theorem for pro-
cesses. Information and Computation, 117:1-11, 1995.

Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones
of practical formal verification. Software Tools for Technology Transfer,
4(2):328-342, 2000.

Zuck L. Interim report to PhD Committee. Technical report, Weizmann
Institute of Sciences, 1985.

D. Lehmann and M.O. Rabin. On the advantages of free choice: A sym-
metric and fully distibuted solution to the dining philosophers problem. In
Proc. 8th ACM Symp. Princ. of Prog. Lang., pages 133-138, 1981.

MAB'94] Z. Manna, A. Anuchitanukul, N. Bjgrner, A. Browne, E. Chang, M. Colén,
] g

[MP95]

[PRZ01]

[PS96]

[PZ86a]
[PZ86b]
[PZ93]
[Rab82]
[5Z93]

[VWS86]

[WL89)]

L. De Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP: The Stanford
Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp.
Sci., Stanford University, Stanford, California, 1994.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with
invisible invariants. In Proc. 7** Intl. Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01), volume 2031,
pages 82-97, 2001.

A. Pnueli and E. Shahar. A platform for combining deductive with al-
gorithmic verification. In R. Alur and T. Henzinger, editors, Proc. 8"
Intl. Conference on Computer Aided Verification (CAV’96), volume 1102 of
Lect. Notes in Comp. Sci., Springer-Verlag, pages 184-195, 1996.

A. Pnueli and L. Zuck. Probablistic verification by tableaux. In Proc. First
IEEE Symp. Logic in Comp. Sci., pages 322-331, 1986.

A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols.
Distributed Computing, 1:53-72, 1986.

A. Pnueli and L.D. Zuck. Probabilistic verification. Inf. and Cont., 103(1):1-
29, 1993.

M.O. Rabin. The choice coordination problem. Acta Informatica, 17:121—
134, 1982.

A P. Sistla and L.D. Zuck. Reasoning in a restricted temporal logic. Inf.
and Cont., 102(2):167-195, 1993.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages
332-344, 1986.

P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants. In J. Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lect. Notes in Comp. Sci., pages
68-80. Springer-Verlag, 1989.

