Range Allocation for Equivalence Logic

Amir Pnueli', Yoav Rodeh!2, and Ofer Shtrichman'?

! Weizmann Institute of Science, Rehovot, Israel
2 IBM Haifa Research Laboratory

{ amir | yrodeh | ofers }@wisdom.weizmann.ac.il

Abstract. The range allocation problem was recently introduced as part of an efficient
decision procedure for deciding satisfiability of equivalence logic formulas with or without
uninterpreted functions. These type of formulas are mainly used when proving equivalence or
refinement between systems (hardware designs, compiler’s translation, etc). The problem is to
find in polynomial time a small finite domain for each of the variables in an equality formula
©, such that ¢ is valid if and only if it is valid over this small domain. The heuristic that was
presented for finding small domains was static, i.e. it finds a small set of integer constants for
each variable. In this paper we show new, more flexible range allocation methods. We also
show the limitations of these and other related approaches by proving a lower bound on the
size of the state space generated by such procedures. To prove this lower bound we reduce
the question to a graph theoretic counting question, which we believe to be of independent
interest.

1 Introduction

The range allocation problem was introduced in [PRSS98] as part of an efficient decision procedure
for equivalence logic formulas with or without uninterpreted functions. These type of formulas
are mainly used when proving equivalence or refinement (abstraction) between systems. Deciding
satisfiability (and validity) of formulas with uninterpreted functions is of major importance due
to their broad use in abstraction. We refer the reader to [BD94] and [PSS98], where these type of
formulas are used for proving equivalence between hardware designs (former) and for translation
validation, a process in which the correctness of a compiler’s translation is proven by checking the
equivalence of the source and target codes (latter).

In the past few years several different BDD-base procedures for checking satisfiability of such
formulas have been suggested. (in contrast to earlier decision procedures that are based on com-
puting congruence closure [BDL96] in combination with case splitting). Typically the first step of
these procedures is the translation of the original formula ¢ to a function-free formula in equiv-
alence logic 9 such that 1 is satisfiable iff ¢ is. Then, a procedure for checking satisfiability of
E-formulas is used for deciding 1. This second procedure is the focus of this paper.

Goel et al. suggest in [GSZAS98] to replace all comparisons in ¢ with new Boolean variables,
and thus create a new Boolean formula 9’. The BDD of ¢’ is calculated ignoring the transitivity
constraints of comparisons. They then traverse the BDD, searching for a satisfying assignment
that will also satisfy these constraints. Bryant et al. at [BV00] suggested to avoid this potentially
exponential traversing algorithm by explicitly computing a small set of constraints that are suffi-
cient for preserving the transitivity constraints of equality. By checking 9’ conjuncted with these
constraints using a regular BDD package they were able to verify larger designs.

The method which we will present here, extends the method first presented in [PRSS98|, where
1)’s satisfiability is decided by allocating a small domain for each variable, such that ¥ is satisfiable if
and only if it is satisfiable over this small domain. To find this domain, the equalities in the formula
are represented as a graph, where the nodes are the variables and the edges are the equalities and
disequalities (disequality standing for #) in . Given this graph, a heuristic called range allocation
is used in order to compute a small set of values for each variable. To complete the process, a
standard BDD based tool is used to check satisfiability of the formula over the computed domain.



In [RS01] we elaborate on this by generating a smaller graph than [PRSS98]. This is achieved by
examining the original formula with uninterpreted function ¢, instead of its translated version 1.

In this paper, we extend the second part of [PRSS98|, by suggesting a more general method of
allocating finite domains to variables. Using the information in the graph generated by [PRSS9§]
or [RS01], we suggest and analyze different procedures for generating a small state space that is
adequate for checking 1. One of our main results is a general lower bound on the size of the state
space generated by any method using only the information in this graph. The suggests the need
for a more in depth investigation of the formula at hand, rather than only examining which atomic
equalities appear in it.

2 Equivalence logic formulas

An equivalence logic formula (called an E-formula) has the following syntax:

(Formula) «— (Term) = (T'erm)| ~(Formula) | (Formula) V (Formula)

(Term) «— (Variable) | ITE((Formula), (Term),(Term))

ITE(f,t,e) stands for if f then ¢ else e. The E-formula ¢ is said to be satisfiable if there is some
assignment of values to ¢’s variables that satisfies ¢. Therefore, an E-formula ¢ with variables V
is a function ¢ : INV — {0,1}. However, not all such functions can be realized as E-formulas, for
example ¢(a,b) = a > b. Therefore, we will try to make a more accurate definition.

Definition 1. (partition): Given a set V, we say that o = {a1,...,ax} is o partition of V if:

I.V=aiUasU...Uag
2. for all i # j we have that a; Ne; =0

Given a partition o = {oq,...,0r} we denote v ~, v if there is @; € a such that u,v € a,.
In other words, a partition a gives us an equivalence relation ~,. In fact, there is a one-to-one
correspondence between the set of equivalence relations on V and its set of partitions.

Given an assignment to the variables of V, a : V — IN, we denote by partition(a) the partition
of V that satisfies a(v) = a(u) <= v ~partition(a) %- The following is immediate from the fact that
E-formulas only query comparisons between their input variables:

Claim. For E-formula ¢, if assignments a, b satisfy partition(a) = partition(b) then ¢(a) = ¢(b).

This means that E-formula ¢ on variables V can be viewed as a function of the partitions of V
instead of as a function of assignments to V. Denote by P(V') the set of partitions of the set V. ¢
can therefore be viewed as a function ¢ : P(V) — {0, 1}. In fact, any function from P(V') to {0,1}
can be realized as an E-formula with variable set V.

It is easy to verify that letting each variable in an equivalence formula range over {1,...,|V|}
suffices for checking the formulas satisfiability. This shows that deciding satisfiability of equiva-
lence formulas is in NP, and therefore is clearly NP-complete (proved via a trivial reduction from
satisfiability of boolean formulas).

3 Equivalence Graphs

Definition 2. (E-graph): An E-graph G is a triple G = (V, EQ, DQ) where V is the set of vertices,
and EQ (Equality edges) and DQ (disequality edges) are sets of unordered pairs from V.

We will use G and ‘H to denote E-graphs, and G and H for standard graphs. For E-graph G =
(V, EQ,DQ) we denote V(G) = V, EQ(G) = EQ and DQ(G) = DQ. We denote by G- the



graph on vertices V(G) and edges EQ(G). We use < to denote the subgraph relation: H < G if
EQ(H) € EQ(G) and DQ(H) € DQ(G).

We say that a partition « satisfies equality edge (u,v) if u ~, v, and that it satisfies inequality
edge (u,v) if u o4 v. We say that a partition « satisfies E-graph G (denoted a |= G) if it satisfies
all of G’s edges. An E-graph is said to be satisfiable if there exists a partition that satisfies it.

Lemma 1. An E-graph G is satisfiable iff for every (u,v) € DQ(G), w and v are not connected in
G-.

The algorithms of [PRSS98,RS01] construct for a given E-formula ¢, an E-graph G, satisfying the
following property:

Definition 3. (adequacy of E-graphs for E-formulas): The E-graph G is adequate for the E-
formula ¢ if either ¢ is not satisfiable, or there exists a satisfiable H < G such that any partition
a |="H satisfies p(a) = 1.

Hence, if we want to check whether ¢ is satisfiable, we only need to check ¢ on a relatively small
set of partitions:

Definition 4. (adequacy of partition sets for E-graphs): For an E-graph G and a set of partitions
R C P(V(G)), we say that R is adequate for G iff for every satisfiable H < G, there is a € R such
that a |="H.

This leads to the following claim:

Claim. If the partition set R is adequate for the E-graph G and G is adequate for the E-formula
©, then ¢ is satisfiable iff there is some a € R such that p(a) = 1.

To use this claim, we need to devise a procedure that, given an E-graph G, will find a small partition
set R which is adequate for G.

4 Static Range Allocation

The method of [PRSS98] generates for an E-formula ¢, an E-graph G which is adequate for ¢, and
then uses it to find for each variable v of ¢, a small range of natural numbers D(v). It is then
proved that ¢ is satisfiable iff it is satisfiable where each variable v is allowed to range only over
D(v) (as opposed to IN).

Therefore, we check ¢ over the assignment set Ap = {a | Vv, a(v) € D(v) }. The corresponding
partition set is Pp = {partition(a) | @« € Ap}, and the construction of [PRSS98| guarantees that
Pp is adequate for G. In general, we will say that assignment set A is adequate for an E-graph G
if its corresponding partition set is adequate for G.

All methods proposed so far (including this paper), generate a new Boolean formula from the
original E-formula ¢. For example, the static range allocation method replaces every variable of ¢
by a variable ranging over a finite domain. This resulting formula is then translated to a Boolean
formula using standard methods.

We will therefore measure the complexity of our proposed methods in terms of the number of
Boolean variables in the newly generated Boolean formula (or equivalently, the size of the state
space checked , which is 2 to the power of the number of Boolean variables). For example, in
static range allocation, the state space size will be ], |D(v)], i.e., the number of boolean variables
needed is ), log(|D(v)|). This complexity measure is not always related to the true complexity of
checking the resulting formula, but it is usually a good indicator for it.



5 Dynamic Range Allocation

We propose the new method of dynamic range allocation which improves upon the static range
allocation method. Both experimental (Section 9) and theoretical (Section A) results show the
advantages of dynamic over static range allocation.

Definition 5. (dynamic assignment): The mapping x : V — INUV is a dynamic assignment if it
is acyclic; i.e., there exists an ordering of V, v1,...,vn such that, x(v;) = v; implies j > i.

Definition 6. (induced assignment): For the dynamic assignment x, we define the induced (static)
assignment T : V — IN:

1. If z(v) € IN then T(v) = z(v)
2 Ifzx(v) =u €V then T(v) = T(u).

Note that this is a recursive definition, and that it is well defined since we required that dynamic
assignments be acyclic.

Ezample 1. The dynamic assignment: z(vi) = ve,z(v2) = vs and z(vs) = 2, induces the static
assignment T: T(vy) = 2,%(ve) = 2, T(v3) = 2.

For E-graph G and dynamic assignment z we denote z =G f T |= G.

Definition 7. (dynamic range): A dynamic range for vertez set V is a function D : V — 28UV

that is acyclic; i.e. there exists an ordering of V, v1,...,vs such that, v; € x(v;) implies j > i.

A dynamic range D gives rise to Xp = {z | Vv € V,z(v) € D(v) }, a set of dynamic assignments,
which in turn induces a set of static assignments Xp = {Z | z € Xp }. We will therefore say that
D is adequate for the E-graph G if the above assignment set Xp is adequate for G.

One advantage of dynamic range allocation is that given an E-formula ¢, and an adequate
dynamic range D for ¢, we can efficiently generate a Boolean formula that is satisfiable iff ¢ is,
with little increase in the size of the formula.

W.l.o.g., assume that the variable ordering satisfying Definition 7 is vy,...,v,, and therefore,
fore every ¢, D(v;) € INU {v; +1,...,v,}. We encode the range D(v;) by a variable ¢; whose
domain is:

D(ci) = (NN D(vi)) U{-j | v; € D(vi) }
That is, we include in D(c;) all the integers which are in D(v;) and, for each v; € D(v;), we include
—j in D(¢;).
Then, we can derive a formula x which is satisfiability equivalent to ¢ but depends only on the

variables ¢, ..., cp. If these variables are then finite, i.e., all D(v;) are finite, then x can be easily
translated to a Boolean formula. We let

x1 = let (v; = if (¢; > 0) then ¢; else v_.,) in ¢
We then derive xs, X3, - .., Xn successively, where for each ¢ > 1:
xi = let (v; = if (¢; > 0) then ¢; else v_,) in x;_1

Finally, we let x = xn. Note that since the dynamic range is acyclic, the resulting formula (with
term-sharing) is also acyclic.

Claim. If D is adequate for G which is adequate for ¢, the resulting formula y is satisfiable iff ¢
is.



We now wish to construct a procedure that, given an E-graph G, will construct a small adequate
dynamic range for it. Notice that like in static ranges, the size of the state space when using a
dynamic range D is [], |D(v)|.

We will use the following notation for an E-graph G and a vertex v € V(G): I'gg(v) =
{u | (u,v) € EQ(G)}, and I'ng(v) = {u | (u,v) € DQ(G)}.

We now define the E-graph G[v], which results from removing the vertex v from G and trans-
forming v’s equality and disequality constraints to constraints on its neighboring vertices:

1. The vertex set is V(G) \ {v}.

2. Initially, G[v]’s edges are all the edges of G which are not adjacent to v.

3. For u1 # ue and u1,us € I'gg(v), add an equality edge (u1,us2).

4. For u1 # ue, 1 € I'ng(v) and ue € I'gg(v). add a disequality edge (u1,u2).

Ezample 2. In Figure 1, Gi = Ggla], G2 = G1[b], G3 = Ga[d], etc.

The following theorem is our building block for the construction of procedures that calculate an
adequate dynamic range for a given E-graph G (see Appendix B.1 for its proof):

Theorem 1. For E-graph G and v € V(G), if the dynamic range D is adequate for Glu], then D’
s adequate for G, where D' is defined as follows:

1. D'(v) = D(v) for every v # u.
2. If I'ng(u) = 0 and I'pg(u) # 0 then D'(u) = I'sg(u). Otherwise, D'(u) = I'gg(u)U{unique}.

Where unique € IN and unique ¢ U, D(v).

Based on Theorem 1, the following procedure finds an adequate dynamic assignment set for a given
E-graph G:

1. Set counter « 0.
2. Pick some vertex v of V{(G).

3. Set:
“ {counter} I'ggv) =10
D(v) = § I'eg(v) U {counter} I'pg(v) #0 and I'pg(v) #0
I'go(v) I'gg(v) #0 and I'pg(v) =10
4. Set G = G[v].

5. Set counter «— counter + 1.
6. If V(G) # 0 return to Step 2.

Notice that counter is only used to generate unique numbers.

Ezample 3. Using this procedure we can generate an adequate dynamic range for the E-graph G
of Figure 1:

1. Set D{(a) = {c} and calculate G; = Gy|a].
2. Set D(b) = {0,d, e}, and Go = Gi[b].

3. Set D(c) = {1,d,e}, and G5 = Gi]c].

4. Set D(d) = {276}7 and G4 = G3 [d]

5. Set D(e) = {3}.

The resulting state space in our example was of size 18. If we would have taken a different order
on the vertices when using our procedure: a,d, b, ¢, e, the resulting state space would be of size 12.
In our implementation we use a simple greedy heuristic that in Step 2 chooses the vertex which
will be allocated the smallest domain in Step 3. This heuristic generates a state space of 12 on the
above example. In Section 9 we compare this procedure with the static range allocation procedure
of [PRSS9g].



Go G1 Ga Gs Ga

Fig. 1. Dynamic range allocation is based on an incremental process in which vertices are removed one
by one, and their constraints are reallocated to their neighbors. The dashed lines in graphs Go,...,Gs
represent equality edges while solid lines represent disequality edges.

The sequence of E-graphs generated by our procedure is almost the same as that generated by
the procedure suggested by [BV00], except they don’t distinguish between equality and disequality
edges, and therefore the vertices in our graphs should generally have a smaller degree. In their
procedure, when a vertex is removed from the graph, the number of Boolean variables added to
the formula is equal to its degree, and therefore the number of Boolean variables appearing in their
resulting formula is >, degree(v), where degree(v) is the degree of v in the graph at the time
of its removal. In contrast, in our procedure, when a vertex v; is removed, a variable ¢; ranging
over degree(v) + 1 values is added to the formula, and so we get ), log(degree(v) + 1) Boolean
variables. Therefore, we need much less Boolean variables than their method. However, we note
that the Boolean formula they generate is very different than ours, and in spite of the increased
number of boolean variables, may actually be easier to check.

6 One-Orientable Assignment Sets

In this section we present an alternative method for finding a partition set that is adequate for
a given E-graph. This method generates a partition set of a different kind, with a more complex
representation. Although the resulting Boolean formula has a relatively small number of Boolean
variables in it, this method is not practical since this Boolean formula is much larger and more
complex than the original one. This renders this method impractical, yet still interesting since we
can show that on a large set of E-graphs the number of Boolean variables is slightly more than
twice the minimal number needed.

Definition 8. (partition of a graph): A graph G defines a partition:
ag ={W CV(G) | W is a connected component of G}

Definition 9. (one-orientable): A graph is one-orientable if its edges can be directed in such a way
that the out-degree of every vertex < 1.

Definition 10. (one-orientable partition set): The one-orientable partition set of an E-graph G is
One(G) = {ap | graph H is one-orientable and H < G-}

Proposition 1. One(G) is adequate for G.

Ezample 4. Figure 2 presents the graph G— of some E-graph G. The sub-graphs 1,...,5 de-
scribe some of its one-orientable sub-graphs, and therefore their corresponding partitions are in
One(G); i.e., {{a,b,c,d}} € One(G) because of sub-graph 1, {{e}, {b}, {c}, {d}} because of 2, and
{{a, b}, {c,d}} because of 5. Note that the only sub-graph of this graph that is not one-orientable
is the graph itself.



$<’—O O O V Z/dT Oo=—"0
O—>i O O <—O0 =0 Oo—=0
1 2 3 4 5

Fig. 2. The small graphs are one-orientable sub-graphs of the graph on the left. The direction on the edges
was added for demonstrating the fact that the sub-graphs are one-orientable.

As a result, if we are given an E-formula ¢ together with an adequate E-graph G for it, we can
check if ¢ is satisfiable by checking if there is some partition a € One(G) such that ¢(a) = 1. This
is implemented as follows:

Represent ¢ as a Boolean formula with atoms (v = v). This can be done by flattening all
the ITE terms in the formula. This flattening procedure increases the size of the formula only
polynomially. Now construct the following formula C:

1. For each v € V(G), C has an input variable I, ranging over {u | (u,v) € EQ(G) } U {x}.

2. For each u,v € V(G), C contains an internal variable e, ,y := (lu = v) V (I, = u).

3. C contains a circuit for calculating the transitive closure of a graph with vertices V(G). for
every u,v € V(G), it has input variable €(u,v), and output variable ¢(, ). There are known
constructions of this circuit that are of polynomial size (e.g., using successive log{(V(G)) boolean
matrix multiplications).

4. Replace every atom (u = ) in ¢ by t(y,v)-

Proposition 2. C is satisfiable iff o is satisfiable.

The general idea of the construction (see Appendix B.2 for the proof) is that the variables e,
represent a one-orientable sub-graph of G— that results from undirecting all the edges (u, I,,). Then
tu,» represents the partition resulting from this sub-graph, that is used as input to ¢.

The size of the resulting state space is [[, |[1,| = [[, oy (degree(v) + 1), where degree(v) is the
degree of v in G_.

7 Lower Bound On The Size of Partition Sets

In Section 6, we constructed an adequate partition set (the one-orientable partition set) for a given
E-graph G. This set was of size at most J[, o (degree(v) + 1), where degree(v) is the degree of v
in G_. In this section we show every partition set that is adequate for G is at least of size:

1
H (idegree’(v) +1)
veEV

where degree’(v) is the degree of v in (V(G), EQ(G) N DQ(G)). Therefore on any E-graph where
EQ(G) C DQ(G), One(G) is close to optimal in terms of the number of Boolean variables that is
needed to represent such a state space. We get that any adequate assignment set will need at least
2> (log(degree(v) + 2) — 1) Boolean variables, and that for representing One(G) we need only
slightly more than twice this number: Y log(degree(v) + 1).

It is important to notice that a lower bound on the size of an adequate partition set for the
E-graph G is in fact a lower bound on the size of the state space generated by any method that uses
only the information in G. This means that this lower bound applies to any method that examines
only the set of atomic equalities (and their polarity) that appear in the E-formula. To break this
lower bound barrier, a more careful analysis of the formula will be needed.

We start with the following definition:



Definition 11. (maximal satisfiable sub-graph): An E-graph H is a maximal satisfiable sub-graph
of G (denoted H <a G ), if it is a satisfiable sub-graph of G, and there is no Hy that is a satisfiable
sub-graph of G such that H is a proper subgraph of H;.

Lemma 2. If H; <« G, Ha << G and Hy # Ho then there is no partition o such that a |="Hy and
o IZ Hg.

Proof. Assume to the contrary: o = H; and a | Hs. Define E-graph H = (V(G),EQ(H1) U
EQ(H2), DQ(H1) U DQ(Hz)). Clearly, o |="H. Also, H < G, and thereby H <« G. Since H;, Ha <
H, H == H1 == Hg. o

Lemma 1 directly implies:
Corollary 1. If partition set R is adequate for the E-graph G, then |R| > |[{H | H <« G}|.

Counsider an E-graph G where EQ(G) C DQ(G). For this type of E-graphs we can bound their
set of maximal satisfiable sub-graphs. We say a partition « is connected in a graph G if every set
a; € ais connected in G restricted to the vertices of ;. We denote by CP(G) the set of connected
partitions of G.

Ezample 5. In the graph of Figure 2, {{a, b}, {c},{d}} and {{a, ¢,d}, {b}} are connected partitions,
yet {{¢c, b}, {a,d}} is not.

Proposition 3. If EQ(G) C DQ(G), then |[CP(G=)|<|{H | H<« G}
Proof. We define the following mapping;:
Yv:{H|H<G}— CP(G-)

Where ¥(H) = ay_ (see Definition 8).

Clearly, for every H, ¥(H) € CP(G=) since for every a; € ay_, «; is a connected component
of H- < G_, and so «; is connected in G_.

To prove the proposition we show that v is onto. For a € CP(G=), define H < G to be:

1. If 4 ~4 v and (u,v) € EQ(G) then (u,v) € EQ(H).
2. If w44 v and (u,v) € DQ(G) then (u,v) € DQ(H).

We claim that H is maximal and that ¥(H) = a (clearly H is satisfiable). To show that ¥(H) = a,
we need to show that the connected components of H— coincide with the sets of a:

1. Each connected component of H= is a subset of some a; € a, since every edge (u,v) € H=
satisfies u ~q .

2. Each a; is a subset of some connected component of H—, since all edges of G— between vertices
of a; are in H—, and «; is connected in G_.

We now show that H is maximal. We have to handle two cases:

1. (u,v) € EQ(G), (u,v) ¢ EQ(H). This means that u £, v, and therefore, since EQ(G) C
DQ(G), then (u,v) € DQ(H), but then if we add (u,v) to EQ(H) it makes H unsatisfiable.
2. (u,v) € DQ(G), (u,v) € DQ(H). This means that u ~, v, implying there exists a; € a such
that u,v € a;. a; is connected in G, and therefore in H—. Now, using Lemma 2, we see that
adding (u,v) to DQ(H) will make H unsatisfiable.
O

Corollary 2. For an E-graph G such that EQ(G) C DQ(G), every partition set R that is adequate
for G satisfies |R| > |CP(G=)|.

Theorem 2. For every graph G, |CP(G)| > \/Hvev(G)(%degree(v) +1)



We believe this theorem (and its proof) to be of independent interest, as it addresses a natural (yet
nontrivial) combinatorial counting question: the number of connected partitions of a given graph.
In fact, using a construction similar to that of one-orientable sets, it is easy to show that for
every graph G, |CP(G)| < [, ey () (degree(v) + 1). Together with Theorem 2 we have a good
approximation of |CP(G)|.
Combining Theorem 2 with Corollary 2 we get:

Corollary 3. For an E-graph G such that EQ(G) C DQ(G), every partition set R that is adequate
for G satisfies

1
|R| > H (idegree(v) +1)
veV(G)

Where degree(v) is the degree of v in G—.

Claim. For any two E-graphs G; < G,, if partition set R is adequate for G5 then it is also adequate
for G;.

Using this claim with Corollary 3:
Corollary 4. For an E-graph G, every partition set R that is adequate for G satisfies

1
|R| > H (Edegree’(v) +1)
veV(G)

Where degree' (v) is the degree of v in (V(G), EQ(G) N DQ(G)).

8 Proof of Theorem 2

In order to prove Theorem 2 we need the following lemmas:

Lemma 3. For a graph G and two non-intersecting sets S,T C V(G) such that SUT = V(GQ)

|CP(@)| > H(degreeT(v) +1)
veS

Where degreer(v) = [{u € T | (u,v) € E}|.
Proof. Consider the following procedure that constructs a partition a:

1. First start with @ = {{v} | v € T} (Note that « is not a partition yet).
2. For all vertices v € S do one of the two:

(a) Take one vertex u € T such that (u,v) € E, and add v to u’s set in a.
(b) Add the set {v} to a.

Clearly, the final « is a partition, and is connected, since we add a vertex v to a set only if there
is a vertex u in that set such that (u,v) € E.

For each vertex v € S, we have to choose between degreer(v) + 1 choices in the procedure.
So, if we show that different choices for the vertices always lead to different partitions, then we
constructed a set of ||, s(degreer(v) + 1) different connected partitions of G.

First note that the partition a constructed has the following property: Every a; € «a satisfies
one of:

L.osNT=0and || =1
2. |aiﬂT|:1.



10

From this we see that two different runs lead to different partitions. If a vertex v chooses to join
some u € T, it will not be in the same set with any other 4’ € T'. So different choices here lead to
different partitions. Also, if a vertex chooses not to join any u € T', then it will be a singular set in
a, and this cannot happen if it chooses to join some vertex of T'. O

Lemmma 4. For a graph G, there are non-intersecting sets Sy, S1, such that Sy U S1 = V(G), and
for every v € S;, degrees ,_, (v) > Ldegree(v).

Proof. Start with two arbitrary sets Sy and S;. While possible, pick some v € S; such that
degrees _, (v) < tdegree(v). Take v from S; and put it in S;_;. If there are no such vertices
left, then Sy and S; satisfy the lemma.
We claim that the procedure will end. This is because each such move increases the following
function:
Cut(Sg,S1) = |{{u,v) € E(G) | u € Sp,v € 51}

This is because:
Cut(So U {v}, 51\ {v}) = Cut(Sy, 51) + degreeg, (v) — degrees,(v)

By the way we pick our vertices, we see that this function increases for each move we make. Since
Cut(Sg, S1) < |E(G)|, the procedure will halt after at most |E(G)| moves. O

We comment that the proof of Lemma 4 is in fact a schoolbook construction of a maximum cut in
a graph.

Proof. (of Theorem 2): Using Lemma 4 we get two sets non-intersecting sets Sy and S;. Now we
use Lemma, 3, setting S = Sg, and T' = S;. We get:

|CP(G)| > H (degrees, (v) +1) > H degree )+1)

vESy vESo
We use Lemma 3 again, setting S = 57 and T = Sy. We get:
|CP(G)| > H degree )+ 1)
vES1
Combining:
|CP(G)|* > H (ldegree(v) +1)- H (ldegree(v) +1) = H (ldegree(v) +1)
€85 2 €S 2 ev 2
v 0 v 1 v

Proving the theorem. ]

9 Static vs. Dynamic Ranges

It is difficult to estimate the advantages of using dynamic ranges. We cannot show any relation to
the minimal partition set possible (as we did for one-orientable ranges), but since dynamic ranges
generalize static ranges, they are at least as good. There are E-graphs where dynamic ranges seem
to not give any advantage over static ones, but we will show an example where using a dynamic
range gives far better results.

Consider the following E-graph G:

LV={vlie{l.,nppu{dl i€ {1, .,n}je{l,... .}
2. DQ:{(’U,',’U]‘) |i,j€{1,...,n}}



11

3. BQ = {(vi,v;) |i,je{1,...,n}}u{(ugf,v,») |ie{l,...,n},je{l,...,d}}

In other words, G is constructed of a clique of equality and disequality edges: vy,...,v,, where
each v; has d equality leaves connected to it u},...,ud.

Assume D is some static range of minimal size that is adequate for G.
Claim. for all 7 and j, D(v;) C D(uf)
Proof. Assume there is some [ € D(v;) \ D(u}). Define range D’ to be the same as D, except
D'(v;) = D(v;) \ {l}. We claim that D’ is adequate for G contradicting the fact that D is minimal.

For a satisfiable H < G, there exists an assignment ¢ € D s.t. ¢ = H. We find o' € D' s.t.
a' |= 'H. We split to two cases:

1. If (v;,u)) € EQ(H) then a(v;) = a(u?), and therefore, since a(ul) # 1, a(v;) # I, and then we
define o’ = @, since ¢ € D',

2. If (vi,ul) ¢ EQ(H) then adding this edge to H will leave it satisfiable (this is because of G’s
structure). Therefore, there is some a € D that satisfies this new H. This a will also satisfy
the original H. Using the same argument as in (1) we see that a € D’.

O

We therefore have that for all i and 7, |D(u?)| > |D(v;)|, and therefore:

d
II 1D > (HID(WN)
i, i
Considering the restriction of G to {v1,...,v,}, and using corollary 4, we have:
n\ s
D(w;)| > (_)
TPl 2 (5

Therefore:

d+1
I1 |D<v)|=H|D<vi)|-H|D<uzf)|z(Hm(mn) > ()

veV(G)

If we take log, of this number (to get the number of Boolean variables needed), we have
L -(d+1)-n-(log(n) — 1). In comparison, the following dynamic range is adequate for G:

1w ={1,...,4}

Which is of size n!, i.e., O(nlog(n)) Boolean variables, which does not depend on d at all.
Note that the lower bound on the size of any static range is true for any E-graph containing
this E-graph as a sub-graph.

10 Experimental Results

To test our dynamic range allocation procedure and compare our results to the static range al-
location procedure of [PRSS98], we generated many random E-graphs. For each E-graph G we

calculated the size of the resulting state space generated |S|, and then calculated |S |W to give
the average size of the range for each variable.

We believe dynamic range allocation performs especially well on E-graphs that can be divided
into components with a small number of equality edges between them. We performed the following
set of tests:



12

Set V(G) = {1,...,100}. For each p € {.2,.25,...,1} and ¢q € {.01,.02,...,.2} we generate 10
random E-graphs, by letting each edge (i, ) be chosen with probability p if i mod 4 = j mod 4,
and with probability ¢ otherwise. This way we get 4 components with edge probability p for edges
internal to these components, and probability ¢ for edges between the components. We also ran a
simpler set of tests, where for each p € {.02,.04,...,1} we generated 10 random E-graphs on 100
vertices, where each edge is taken with probability p.

In Figure 3 we see the summary of the results, where for each test we averaged the results
(S| 100) of dynamic and static ranges over the 10 graphs, and give the ratio between them. We can
see that for all cases the ratio is greater than 1, meaning the dynamic range allocation is at least as
good (on the 10 graph average), and that on sparse graphs (either ¢ is small or p is small) we get an
improvement of approximately 2, which means a decrease of 2'%0 in the state space size. We have

Fig. 3. The ratio between the average domain sizes (of each variable) allocated by the static and dynamic
range allocation methods, as computed on graphs with 100 vertices and 4 components on the left graph,
where p and g are the probabilities of adding edges in and between the components, respectively. The right
graph summarizes the results for graphs with 100 vertices and edge probability p.

also implemented dynamic range allocation as a part of a procedure for checking uninterpreted
functions [RS01], and achieved a factor 2 improvement in the range size, similar to the results on
random graphs. However, we have not found a case where this improvement led to a significant
change in running times. This is especially because our examples are of two types: the run either
completes in less than 1 second, or it never completes.

References

[BD94] J.R. Burch and D.L. Dill, “Automatic Verification of Microprocessor Control”, In Computer-
Aided Verification CAV ’9) .

[BDL96] Clark W. Barrett, David L. Dill and Jeremy R. Levitt, “Validity Checking for Combinations
of Theories with Equality”, In Formal Methods in Computer Aided Design FMCAD ’96 .

[BV0O] R. E. Bryant and M. N. Velev, “Boolean satisfiability with transitivity constraints”, In
Computer-Aided Verification CAV 2000 .

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz and V. Singhal, “BDD Based Procedures for a Theory of
Equality with Uninterpreted Functions”, In Computer-Aided Verification CAV ’98 .

[PRSS98]  A. Pnueli, Y. Rodeh, M. Seigel and O. Shtrichman, “Deciding Equality Formulas by Small
Domain Instantiations”, In Computer-Aided Verification CAV 99 .

[PSS98] A. Pnueli, M. Siegel and O. Shtrichman, “Translation Validation for Synchronous Languages”,
In International Colloguium on Automatae, Languages and Programming ICALP 98 .

[RS01] Y. Rodeh and O. Shtrichman, “Finite Instantiations in Equivalence Logic with Uninterpreted
Functions”, In Computer-Aided Verification CAV ’01 ..



13
A  Proofs

A.1 Dynamic Range Allocation

Proof. (of Theorem 1): For a satisfiable H < G, we find & € D' such that z = H. We first notice
that since H is satisfiable, H[v] is also satisfiable. Also, H[v] < G[v]. Therefore there is some z € D
such that z |= H[v]. We extend z to v, and therefore only need to show that z satisfies all edges of
‘H involving v since all other edges are clearly satisfied by z.

1. If there isno (u, v) € EQ(H), then set z(v) = unique. Since all edges involving v are disequality
edges, we have that z = "H.
2. If there is some (u,v) € EQ(H), then set z(v) = u:
(a) For a vertex w such that (v,w) € EQ(H), if w = u then clearly, T{w) = Z(v). Otherwise,
there is an equality edges (u,w) € EQ(H[v]), and therefore Z(w) = Z(u), and then Z(w) =
Z(v).
(b) For a vertex w such that (v,w) € DQ(H), since H is satisfiable, w # u. Also, there is a
disequality edge (w,u) € DQ(H][v]), and then Z(v) = Z(u) # T(w).
O

A.2 One-Orientable Assignment Sets
To prove proposition 1, we need the following definitions:

Definition 12. (forest): A forest is an acyclic undirected graph.

Definition 13. (spanning forest): A spanning forest for a graph G, is a subgraph F of G, such
that F is a forest, and the connected components of F' and G are the same.

Claim. Every graph has a spanning forest.

Definition 14. (forest partition set): The forest partition set of the E-graph G is:
F(G)={ar | F is a forest and F < G_}

Proposition 4. F(G) is adequate for G.

Proof. Given a satisfiable H < G, take the forest F' to be a spanning forest of the graph H_.
Clearly, E(F) C EQ(H) C EQ(G). So, ar € R.
We claim that ar = H:

1. If (u,v) € EQ(H), then v and v are in the same connected component of H—, and therefore of
F. This means that u ~,, v.
2. If (u,v) € DQ(H) then v and v are not in the same connected component of H- by Lemma
2. This means that they are in different components of F', and therefore u 4, v.
O

Proof. (of Proposition 1): Since every forest is one-orientable (by rooting each of the trees in the
forest, and directing all edges towards the root), we get that F(G) C One(G) and therefore One(G)
is adequate for G. O

Proof. (of Proposition 2): We first show that the graphs represented by the variables e(,,,) are all
the one-orientable sub-graphs of G— possible.

Take some one-orientable H < G—. Denote by D the directed graph resulting from directing
H’s edges in such a way that every vertex has out-degree at most 1 in D. We define assignment a
to the input variables of C. For each v:



14

— If there is exactly one u such that (v,u) € D, set a(l,) = u.
— Otherwise, there are no outgoing edges from v in D. Set a(l,) = *.

We get that a(e(y,)) = 1 iff (u,v) € H. Therefore, a(t(,)) = 1 iff u and v are connected in H. In
other words a(t(y,)) = 1 if u ~qp .

So, for every a € One(G), there is some assignment a to C, such that a(C) = ¢(a), and since
One(G) is adequate for ¢, we conclude. O



