From Falsification to Verification

Doron Peled* Amir Pnuelit Lenore Zuck?

May 31, 2001

Abstract

This paper enhances the linear temporal logic model checking process with the ability to
automatically generate a deductive proof that the system meets its temporal specification.
Thus, we emphasize the point of view that model checking can also be used to justify why
the system actually works. We show that, by exploiting the information in the graph that is
generated during the search for counterexamples, when the search of counterexamples fails,
we can generate a fully deductive proof that the system meets its specification.

*Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, E-mail: doron@research.bell-labs.com
tDept. of Computer Science, Weizmann Institute of Sciences, E-mail: amir@wisdom.weizmann.ac.il
iDepartment of Computer Science, New York University, E-mail: zuck@cs.nyu.edu

1 Introduction

Model checking [CE81, EC80] is an automatic process for verifying temporal properties of fi-
nite state systems. It was first applied to Linear Time Temporal Logic (LTL) properties in
[LP85, LPZ85]. Model checking techniques construct a (finite) model that represents the joint
computations of the system and the negation of the property to be verified, and apply graph
algorithmic techniques to the model to check that no computation of the system satisfies the
negation of the property (and violates the property.) In the equivalent (and independently
developed) automata-theoretic approach ([VW86, Kur95]) both system and (negation of) prop-
erty are explicitly represented as automata, and the intersection of the automata is checked for
emptiness.

When executions that violate the property exist, at least one is reported and serves as
a counterexample for the specification. When the search for counterexamples fails one may
conclude that the system satisfies its specification. However, our confidence in such a positive
conclusion is tarnished by two possible factors:

e For reasons of complexity and decidability, the system that is checked is often an over-
simplification of the actual system, hence, the failure to find counterexamples for the
checked system does not necessarily imply that the actual system is fault free. Perhaps
we simplified away a source of a problem that will cause the actual system to misbehave.

e There always exists the possibility that the model checker itself contains a bug which
causes it to report success while, in fact, even the checked system is still faulty.

Both of these risks may cause us to treat with diffidence a result which purely claims success
without providing some supporting evidence, a “witness” or “certificate” that the property does
indeed hold over the considered system. This ‘proof by lack of counterexample’ is the main
drawback of the model checking approach; some would even say that model checking is a tool
for falsification rather than a tool for verification.

An alternative approach to model checking is deductive verification that incrementally con-
structs proofs until the desired conclusion, a proof the system meets its specification, is obtained.
Deductive verification is often manual, and, like all deductive proofs, requires considerable hu-
man sgkill and time. One of its main benefits is that it often explains why the system satisfies
its specification.

In this paper we enhance the LTL model checking process with the ability to automatically
generate a deductive proof that the system meets its LTL specification. Thus, we emphasize the
point of view that model checking can also be used to justify why the system actually works.
We show that, by exploiting the information in the graph that is generated during the search for
counterexamples, when the search of counterexamples fails, we can generate a fully deductive
proof that the system meets its specification.

Several advantages are gained by a checker that, when the property is invalid, produces
a counter example, and when the property is valid automatically produces a proof. For one,
the proof can be independently checked (by a theorem prover). If the system checked is a
simplification of a more complex system, the proof can help to justify (or refute) why the
property holds for the more complex system, and, conceivably, be transformed into a similar
proof for that complex system.

Moreover, since the deductive proof is based on the simple axiom system of LTL, it can be
checked mechanically via an independent theorem prover. Consequently, the automatic proof
can be utilized as a device for debugging the model checker itself.

The automata which represent the system and a tester for the LTL property, are represented
in this paper as Just Discrete Systems (JDS) [KP00]. The JDS model, which is a variant
of Fair Transition System model [MP95], is introduced in Section 2. A JDS is a transition
systems that includes a set of justice requirements, each being an assertion that should be met
by a computation of the system infinitely many times. JDSs correspond to Generalized Biichi
automata in the automata theoretic view.

Both the system to be checked and the negation of the property are expressed by JDSs.
We construct the synchronous parallel composition of these two JDSs to obtain a new JDS,
the computations of which are the system computations that violate the property. If such a
computation exists—the new JDS is feasible—it provides the desired counterexample. Otherwise,
the graph generated by the composition is exploited to provide several alternative deductive
proofs for the validity of the property over the system’s computations.

The main challenge is how to represent the proof that is implicit in the composition JDS.
We would like to represent it in a way that would explain to the user why the property holds for
the checked system. We explore two alternatives of representing such a proof. Our first proof
system (Section 3) automatically generates a proof based on well-founded ranking.

We then (Section 4) provide an algorithms that generates two temporal logic proof scripts,
one that proves that the negation of the property is not satisfiable over the system, and the
other proves that the property is valid over the system.

The process of generating the second proof script had been implemented in a new system,
PROOFPROD, currently under construction in NYU. In Section 5 we present a sample output
of PROOFPROD. While the machine generated temporal logic proofs seems to be hard to read,
minor heuristics can transform them to proofs that resemble efficient human-generated proofs.

Related Work: A preliminary version of this work [PZ01] introduces the concept of gener-
ating the proof as a complementary stage of model checking using Generalized Biichi automata
and general proof rules. In an independent work, Namjoshi [Nam01] has shown a proof system
for the p-calculus, based on alternating tree automata and parity games. There, LTL is treated
a special case CTL* using V-automata, and fairness is recommended to be incorporated into the

property.

2 Preliminaries

This section describes Just Discrete Systems (JSDs), the computational model for the reactive
systems we study here, reviews temporal logic, describes tableaux for JDSs, and shows how to
use the tableaux for model checking.

2.1 Sequences

Let V be a set of typed variables. A V-state is an interpretation of V', assigning to each variable
z € V a value in its respective domain. We denote by s[z] the value s assigns to variable z. Let
Yy denote the set of all V-states. A sequence over V', or a V-sequence, is a (possibly infinite)

sequence o = $g, 1, . .. over Ly. We defined the length of o, |o|, to be w if o is infinite, and the
number of states in ¢ if it is finite.

Given a V-sequence o = sg, s1,... and some i, 0 < i < |o|, we denote by o¢ the suffix of &
obtained by removing its first ¢ elements. For a state assertion ¢, we say that i is a @-position
of o if s; is a p-state (i.e., s; = ©).

2.2 Just Discrete Systems

As a computational model for reactive systems, we take the model of just (weakly fair) discrete
system (JDS), which is a slight variation on the model of fair transition system [MP95].
A s D:(V,0,0,p,T) consists of the following components.

o V = {u,..,un} : A finite set of typed system variables, containing data and control
variables. The set of states (interpretation) over V is denoted by Xy. When V is clear
from the context, we denote ¥y simply by ¥. Note that ¥ can be both finite or infinite,
depending on the domains of V.

e O={o1,...,0n} CV : A finite set of observable variables. These are the variables which
the environment can observe.

e O : The initial condition — an assertion (first-order state formula) characterizing the initial
states.

e p: A transition relation — an assertion p(V, V'), relating the values V of the variables
in state s € X to the values V' in a successor state s’ € X. For example, the assertion
2’ = x + 1 corresponds to the assignment z := z + 1 and states that the value of variable
z in the successor state s’ is greater by one than its value in state s.

The state s’ is defined to be a D-successor of state s if

(s,8) = p(V, V).
That is, p evaluates to true when we interpret every z € V' as s[z] and every z’ as s'[z].

o J :{Ji,...,Jdi}: A set of justice (weak fairness) requirements. The justice requirement
J € J is an assertion, intended to guarantee that every computation contains infinitely
many J-state (states satisfying J).

We require that every state s € ¥ has at least one D-successor. This is often ensured by including
in p the idling disjunct V = V' (also called the stuttering step). In such cases, every state s is
its own D-successor.

Computations

Let D be a JDs for which the above components have been identified. We define a computation
of D to be an infinite sequence of states

O :80,81582; -

satisfying the following requirements:

o Initiality: sg is initial, i.e., s9 = ©.
e Consecution: For each j =0,1,..., the state s;j41 is a D-successor of the state s;.
e Justice: For each J € J, o contains infinitely many J-positions

We denote by Comp(D) the set of computations of JDs D.
A finite or infinite sequence which satisfies the requirement of consecution is called a run of
D. A run which satisfies the requirement of initiality is called an initialized run.

Observations and Equivalence of Systems

Let U C V be a subset of the state variables and s be a V-state. We denote by sl},, the U-state,
called the projection of s on U, which is obtained by restricting the interpretation of variables
to the variables in U.

For a V-state sequence o: sg, $1,..., we denote by o |}, the projected U-state sequence
oll,: sod,,814,,.... An O-state sequence {2 is called an observation of the JDs D if O = o,
for some computation o of D. We denote by Obs(D) the set of observations of JDS D.

Systems Dy and Dy are comparable if they have the same sets of observable variables, i.e.,
01 = Os. System D, is said to be an abstraction of the comparable system Ds, denoted D; C Do
if Obs(D1) C Obs(Dz). The comparable systems D; and Dy are said to be equivalent, denoted
D, ~ Dy, if their sets of observations are identical. That is, Obs(D;) = Obs(Dz). Note that if
D1 and Dy are equivalent then each of them is an abstraction of the other.

Feasibility and Viability of Systems
A DS D is said to be feasible if D has at least one computation. D is defined to be viable if any
finite initialized run of D can be extended to a computation.

2.3 Operations on JDS’s

Systems D; and D» are compatible if Vi NVo = O N Os.
The synchronous parallel composition of the compatible systems Dy and Ds, denoted by
D1 ||| D2, is given by the Jps D = (V, 0,0, p, J), where

vV = Vi U W
(@) = O U O
¢ = 01 AN O
p = P A p2
J = J U T

Claim 1 Let D = D, ||| D2. Then, a V-sequence o is a computation of D iff ol,, is a compu-
tation of D1 and o}, is a computation of Dy. Similarly, the O-sequence o is an observation of
D iff ol,, is an observation of Dy and ol is an observation of Dy.

Synchronous parallel composition is mainly used for LTL model checking as will be shown below.

2.4 Temporal Logic

Let TI be a set of propositions, which can also be viewed as a set of boolean variables. A TI-state
s is an interpretation of these variables, which we can also represent as an element of 21, i.e.
a subset of II, where p € s iff s[p] is interpreted as 1 (true). We consider here linear time
propositional temporal logic formulae over II, using the Boolean connectives V and —, and the
temporal operators next-time O and wuntil Y. Temporal logic formulae are interpreted over
infinite sequences of II-states in the usual way (see, e.g., [MP91].) Thus, 0 = ¢ denotes that
the infinite II-sequence o satisfies the temporal formula ¢. Formula ¢ is said to be satisfiable is
there exists a (II-)sequence o satisfying ¢. Formula ¢ is valid if o |= ¢ for every Il-sequence o.

Let P be a JDS whose observables are O = Il and ¢ be a temporal formula over II. We say
that ¢ is valid over P (P-valid) if every observation of P satisfies (.

Other Boolean connectives and Temporal operators ([1, &, V, etc.) can be defined using
V, 7, O, and U. We assume that all the temporal formulae are given in the positive normal
form, i.e., with negation applied only to propositions. This can be easily achieved by pushing
negation inwards, using the following equivalences:

- = 9 —0Op = O
“(pVy) = (e A “(pAY) = (V)
~eUy) = (mp) V() ~(eVy) = (~oU(y)

For an arbitrary formula ¢, we denote by pos(yp) the positive form formula which is equivalent
to . We introduce the notation p = ¢ as an abbreviation of [J(p — ¢).

2.5 Tableaux and their corresponding JDS’s

Let ¢ be a temporal logic formula presented in positive normal form. Let closure(p) be the
set of formulae including all the sub-formulae of ¢ and the formulae O 1 for every U and V
sub-formula 1 of . A p-atom A is a consistent subset of closure(p) that satisfies the following:

1. If A contains a conjunction p A ¢ it must contain both p and g¢.
2. If A contains a disjunction p V ¢ it must contain p or q.
3. If A contains an until formula 1 = plfq, it must contain either g, or p and O #; and

4. If A contains 1 = pV ¢, it must contain g and either p or O 1.

For an atom A, we denote by x(A) the conjunction of all formulae contained in A. An atom
graph G, = (A, Ao, E) for a formula ¢ consists of:

e A set A of p-atoms.
o A subset Ay C A of initial atoms. It is required that ¢ € A for every A € Ay.

e A set of edges E C A x A connecting atoms within the graph G. If (A, B) € E, then it is
required that p € B for every next-formula QO p € A.

The atom graph G = (A4, Ay, E) is said to be a tableau for ¢ if

e o= \/ x(4).
Ae A,

e xX(4) — \/ O x(B) for every A € A.
(A,B)EE
We refer to a proposition p € II or a negation of a proposition as a literal. For an atom A, we
denote by prop(A) the conjunction of all literals contained in A.
Let G = (A, A, E) be an atom graph, where A = {A1,...,Ap}. Wedefine D¢ : (V,0,0,p,T),
the JDS corresponding to G by:

e V=IIU{xk:[l..n]}. Thus, we include in V' a control variable &, ranging over {1,...,n}.
e O=IL
e O: \/ (k=1 A prop(4;)).
AieAo
e p: \/ (k=1 A &'=3 A prop(4;)).
(Ai,Aj)EE

J = {Jpuq | pUq € ¢}. Thus, J contains a justice requirement J,y;, for every until
formula pU g contained in closure(p). The justice requirement J,y, is given by

Jpuq (\/("BZZ))V(\/ (”:i))

gEA; pUgZA;

In the case that G is a tableau for the formula ¢, we say that D¢ is a temporal tester for ¢ and
denote it by T,,.
The following theorem summarizes the properties of a temporal tester:

Theorem 1 Let T, be a temporal tester for the formula ¢ over the propositional variables IL.
Then, a I1-sequence o is an observation of T, iff o |= .

Furthermore, let 0 = sg, $1,... be a computation of Ty, let i > 0 be position, and j = s;[k]
be the value of K in state s;. Then, o = x(4;).

2.6 Model Checking

Let P be a finite-state JDS whose observables are II. The goal of model checking is to establish
the P-validity of a temporal property . This is accomplished by constructing a JDS whose obser-
vations are all the P-observations that satisfy —. If this JDs has no observations (equivalently,
no computations), then ¢ is P-valid.

Let ¢ = =, and let Ty =T, be a tester for ¢. We define the JDS

Dy = P|| Ty
The following theorem follows immediately from Claim 1 and Theorem 1:
Theorem 2 The formula ¢ is P-valid iff Dg is infeasible.

Consequently, in order to verify that ¢ is P-valid, the process of model checking involves
constructing the JDS Dg and checking that it is infeasible.

6

3 A Well-Founded Approach to P-validity

Let ¢ be a temporal formula, P be a program, and ¢ = -p. We keep ¢, ¢, and P fixed for the
sequel. We describe how to obtain a deductive proof of the P-validity of a property .

The JDS Dg can be viewed as a (labelled) directed graph G¥ = (S, Sy, 7), where § is the set
of states of Dg , Sp is the set of initial states, and 7 is the set of edges connecting states to their
immediate successors. We assume that every node in S is reachable from an initial state.

A well-founded domain (W,) consists of a set W and a total ordering relation > over W
such that there are no infinitely decreasing < chains ag > a1 > A ranking function for Dg
is a function that maps the states of Dg into a well-founded domain. Assume that the justice
requirements of Dg are {J1,...,Jr}. Rule WELL, presented in Fig. 1, can be used to prove that
the system Dg is infeasible.

For a JDS Dg with justice requirements Jq, ..., Jy,

assertions Ply--5Pr

a well-founded domain (W, »),

and ranking functions 4y,...,8.: S =W

W2. p A g = (pi N Gi=0)VVi_ (g A di-d) fori=1,...,r

W3. p Awi ANJ] = Vjoi(@; A 6= 8) fori=1,...,r

Dg is infeasible

Figure 1: Rule WELL.

Theorem 3 WELL is sound.

Proof: It suffices to show that given ¢q,...,¢,, (W,>), and 41,...,d, that satisfy the three
premises W1-W3, Dg is infeasible. Assume to the contrary that Dg has a computation o: sg, s1,- - ..
Since o is a computation, sg = ©. By premise W1, there exists some iy € {1,...,r} such that
30 = @i, Denote dy = d;,(s0) € W.

By premises W2 and W3, there exists an 47 € {1,...,r} such that s; = ¢;, and d; =
di, (s1) = do, where dy = d; implies 41 = ip and s;, [~ J;,. Proceeding in this way, we identify an
infinite index sequence g, 1, . .. and an infinite rank sequence dy =< d; =< ... such that for every
§>0,8Fpjdi= 5ij (sj), and d; = dj41 implies that i; = 4,41 and s;41 & Ji; -

Since W is well-founded, the sequence of ranks cannot decrease infinitely many times. Thus,
there exists some stabilizing position ¢ > 0 such that for every j > ¢, dj = d.. It follows that
for every j > ¢, i; = i., and sj41 [~ J;,. Thus, o violates the justice requirement J;, and is
therefore not a computation of Dg . a

We now describe how to automatically obtain the assertions, well-founded domain, and
ranking functions: W = N and > is the usual > ordering. Let Tf be the dag obtained from Gg
after its separation to strongly connected components (SCCs). Each Tf -node is either a SCC

of G, or a single Gg -node that is not part of any SCC. Let L be the set of Tf -nodes that are

not in any SCC. For every SCC C, let UNJusTe C {1,...,r} be the set of indices of the justice
requirements that are not satisfied by any of C’s nodes.

For every ¢ = 1,...,r, let ; be a formula that describes the set of all nodes that belong to
L or to an SCC that violates J;:

@; =L U {s:s5€C s.t. i € UNJUST¢}

As for the ranking, we let §; = ... = §,, and denote it by 4. For all Gg nodes s that are in
Tf ’s leaf nodes d(s) = 0. If §(s) is undefined, and § is defined for all Tf -SUCCESSOrs 81, .. ., Sk of
3, then 6(s) = Jrna,x;?:1 d(s;) + 1.

Lemma 1 (Completeness) If Dg is infeasible, then the procedure above produces assertions,
well-founded domain, and ranking that satisfy the premises of WELL.

Proof: Since Dg is infeasible, every SCC violates some J;, and therefore any node that is in
an SCC satisfies some ;. All nodes that are not in any SCC trivially satisfy all ¢;s. Hence,
every Gg -state satisfies some ;. From the construction it is easy to see that every state leads
either to a state with the same ranking (in the same SCC), or to a node with a lower ranking
(out of the SCC), thus W2 holds. Assume that s = ¢;, s’ |E J;, and (s,s') € p. If s € F, then
obviously d(s) > d(s’). If s € F, then, since s |= ¢;, it follows that s’ and s are not in the same
SCC. Consequently, §(s) > d(s’). a

4 From Falsification to Verification

This section presents a procedure that exploits the information in Gg to generate deductive
temporal proofs of ¢’s P-validity. In particular, we present an algorithm that generates simul-
taneously two proof scripts, one of Dg ’s infeasibility, and one of ¢’s P-validity. Thus, the first
proof script establishes the falsification of ¢, and the second establishes the verification of ¢.

Let s € S be a state of Dg , and assume that the state variables of P are V¥ = {z1,...,z,}.
Let A(s) = Aj_;(zi = v;). Note that the only Vf -variable not included in V¥ is k. We denote
by A, the atom A; where j = s[x] is the value s assigns to k. We define

X(s) =XAs) A x(4s) and x(s) = —x(4s)

The formula X(s) is the characteristic formula of s. Its intended meaning is to describe the
temporal formulae hold when a computation of Dg reaches s. The formula x(s) describes the
temporal formulae that hold when an initial run of an infeasible Df reach s. Note that X(s)
does not refer to the state variable x. However, since x(A;) uniquely identifies £ as having the
value j, this is not necessary.

The properties of the characteristic formulae and of the xs are stated in the following claim,
whose proof follows immediately from the definitions and from Theorem 1:

Lemma 2 For every computation o = Sg,... of Dg, and every i > 0, o' |= X(s;). Similarly, if
Dg is infeasible, then for every run o = sy, ... of DY, and every i > 0, o* |= x(s;)

An immediate corollary of Lemma, 2 is:

Corollary 1 Dg is infeasible iff X(sg) — F for every so € Sy. Similarly, ¢ is P-valid iff
A(s0) == x(s0) for every sy € Sy.

Based on Corollary 1, we describe a procedure that attempts to show that X'(s) = F (for
the first proof script) and that A(s) == x(s) (for the second proof script) for every state s € S.
If ¢ is P-valid, our procedure terminates after showing the above for every initial state so € S,
which, by Corollary 1, achieves our goal. If ¢ is not P-valid (and Dg is feasible) our procedure
terminates while failing to show the above for every s¢ € Sj.

Both proofs are achieved by a chain of temporal formulae that are P-valid, and each either
follows immediately from the properties of Dg , or from the previous P-validates in the chain.
Initially, the proof is empty. It then proceeds according to the procedure in Figure 2.

The procedure in Figure 2 describes how both proof scripts are constructed. The procedure
resembles the completeness proof of [LP85, LPZ85], but, while the procedure there is purely
semantic (working on the graph), here we give it a syntactic flavor.

(a) For each program justice requirement J € J¥, add the line

OoJ

to the proof.
(b) For every state s € S, add

X(s) =\ 0X()

s'eT(s)

to the proof.
(¢) Let all S’s nodes be “unmarked”. Repeat the following while there are unmarked
nodes:

(c.1) If there is an unmarked node all of whose successors are marked,
then add the line

X(s) = F A(s) = x(s)
to the first proof script ‘ to the second proof script
and mark s.

(c.2) If there is an SCC C of Dg , all of whose nodes are unmarked, such
that all exits from C lead to marked nodes and for some justice
requirement J € J no state C is a J-state, add, for every node
s € C, the lines

X(s) = OVyecX(S) Als) == X(s)
X(s) = F
to the first proof script ‘ to the second proof script

and mark s.
(c.3) If no node was marked in either (c.1) or (c.2), report a counter-
example and halt.

Figure 2: A Procedure to Generate a Temporal Proof of P-validity

Theorem 4 If the procedure of Figure 2 terminates with oll nodes marked , then for every initial
node 89, X(s0) == F and A(so) == x(s0). Moreover, for every initial node sy, the formulae
generated by the first proof script constitute a proof that X (sg) == F, and the formulae generated
by the second proof script constitute a proof that M\(sp) == x(s0)-

Proof Qutline: Note first that the procedure marks all nodes only if there is no path in
Dg leading from an initial node to a SCC that satisfies every justice requirement. Thus, the
procedure terminates with all nodes marked only when Dg is infeasible.

The validity of steps (a) and (b) is immediate. In step (c.1) we are considering (and marking,
if possible) a node that does not belong to any SCC from the graph. That is, we are removing
state s which, at the time of removal, has all its successors marked. Assume that the successors
of s in the original graph Gg are $1,...,8g. In step (b) we added to the proof the lines

K
x(s) = \/ OX(si) (1)
i=1
Since all of the successors are marked, it follows that for each i =1,...,k, the first and second

proofs contains the lines X(s;) == F and A(s;) == x(s;) respectively. Combining these lines
with formula (1), we conclude X(s) == Fand A(s) == x(s).

In step (c.2) we are dealing with an SCC C, all of whose nodes are unmarked, and all of
whose exit edges lead to marked nodes. Consider a state s € C. Viewing again proof line (b)
for state s, we observe that for every immediate successor s’ of s which lies outside of C the
proofs contain lines X(s') = F and A(s') == x(s') respectively. Consequently, we can reduce
formula (1) into the formula

x(s) = \/ ox() (2)
(s,8')€T,s'€C

which can be weakened into

X(s) =\ X() 3)

s'eC
Taking the disjunction of formula (3) over all s € C, we obtain
(Vx©) = oV xe) (4
seC seC
from which, by the axioms of LTL, we can infer
x(s) = oV x() (5)

seC

for every s € C.

There are two possible reasons why SCC C was marked. FEither it failed to satisfy one of
the program justice requirements J € J7, or one of the atoms A, for some s € C contained the
formula pl/g and no state within C satisfies gq.

10

In the first case, the failure to satisfy J implies that X(s) — —J for every s € C. By
formula (5) this implies X(s) == []—J which, in view of the line [<> J originally placed in
the proof leads to X'(s) == F, however, since X (s) < A(s) A—x(s), it follows that A(s) == x(s).

Consider the second case in which all atoms within C contain the formula pl/g but do not
contain the formula q. Let s be a node within C. Since C is strongly connected, s must have an
immediate predecessor 3 € C. Let sq,...,s; be all the nodes which are immediate successors of
§ such that g € A, for every ¢ = 1,...,k. From the construction it can be established that

K
X(s) A g = \/ X(si) (6)
i=1
Since no node within C contains ¢ in its atom, it follows that sq,..., s; are outside of C and, as C

is currently marked, the proofs must contain lines X(s;) == F and A(s;) == x(s;) respectively,
for every i = 1,...,k. Together with formula (6), this implies X(s) A ¢ == F. It follows that

X(s) = (pUq A —q) for every s € C. By formula (5) this implies X'(s) = (I:I(pUq) A O —uq)
which is equivalent to X(s) == F and to A(s) == x(s). a

5 Experimental Results

We have constructed PROOFPROD, a prototype system that generates temporal proofs as de-
scribed above. For example, we ran PROOFPROD on the following JDS P: V consists of
L € {0,1,2} and p € {T,F}. We use Lj to denote L = j. © is LO A p; The single justice
requirement is J = LO V L2. The transition relation p is given by:

(LOALO' Ap") V ((LOVL1) AL A—p') vV ((L1VL2) AL2' Ap')

The property whose P-validity we’d like to establish is ¢ = & [p. The atom graph for
¢ = - = [—p is described in Fig. 3. There, source-less edges point to initial states, and
double circles denote states belonging to the (single) justice set Jj.

09

Figure 3: An atom graph of T

Fig. 4 contains the proof that PROOFPROD generated where we used an option that displays
the proof in ITEX.

We are currently working on heuristics to simplify temporal logic formulae that will allow
to make the proof more compact. Fairly simple transformations can establish that all of []p,
O < Op, and O Op imply ¢ = & [p, which helps simplify lines(6)—(9) of the proof in Fig. 4
to

11

(1) Oo(LovL2)
LOAPAPAQOQPASOPpAQOCp) = QULOAPADA O AO—p A OOp)V
LLA-DPASPAQOPAOpAQOOP)V(ILLA-PpAGA O AO—pA-p))
LLADPASIAQOPACpAOOp) = O(LLApADdAOPp AO—pAQOQO-p)V
(L1/\—|p/\¢/\O¢/\<>—|p/\—|p)V(L2/\p/\¢/\O¢/\<>—|p/\O<>—|p))
(L1/\—|p/\¢/\O¢/\<>—|p/\—|p) —)O((Ll/\—|p/\¢/\O¢/\<>—|p/\O<>—|p)V
(L1/\—|p/\¢/\O¢/\<>—|p/\—|p)V(L2/\p/\¢/\O¢/\<>—|p/\O<>—|p))
(L2APpAPAQIAO—pAQO-p) = O(L2Ap AP A O AO—p A OO-p))
(L2Ap) = (¢ Vv OpVviopv OOp)

(L1A-p) = (v OpVOpVp)
(L1 A-p) = (¢V Op Vv OpVv Otp)
(LoAp) = (¢V OpVviopv Olp)

Figure 4: Proof script of P-validity of ¢

(6) (L2Ap)—¢ (7) (L1A-p) = (¢ VD)
(&) @LiA-p)—o (9) @LoAp)—o
Another set of heuristics is more specific to the type of formulae we obtain in the proof script.
Consider the procedure of Figure 2. For every SCC C, let exit(C) = {s' : for some (s,s') €
7,8 € C and s’ € C} i.e., exit(C) is the set of all nodes the resider directly outside of C. It is easy
to see that, if the procedure terminates when all nodes are marked, then for every SCC C that
is marked in step 3.2 because if fails to satisfy a program justice requirement,

Ms) = (Vae) Ax@eyu \/ x®) (7)

teC tcexit(C)

Similarly, for every SCC C that is marked in step 3.2 because if fails to satisfy a pldq justice
requirement,

M) = (VA Axe)w(\ x@) (8)

teC tcezit(C)

In our example, since the SCC that consists of the single node whose A is L2 A p is removed
because if fails to satisfy the justice requirement ¢ —p, and its set of exit nodes is empty, we
obtain from formula (8) that L2 Ap =~ (L2Ap A (¢ V p)) WF, which implies (by LTL
theorems) and the simplification rules above that L2Ap == [](L2 A p). Using a simplification
rule “CI(p Aq) — [p”, we can obtain L2Ap == []p instead of line (6) in the proof.

These, and other heuristics we are working on, help to greatly simplify the proof scripts
generated by PROOFPROD, making the proof methodology advocated here both practical and
beneficial.

6 Conclusion and Future Work

The paper demonstrates how model-checking, that is considered useful only for purposes of
falsification, can be used to obtain deductive verification.

As reported in Section 5, we are currently working on heuristics to our system that will
generate proofs that are closer to “human” proofs. We are also working on extending our results
to apply to systems that employ a wider set of fairness constraints, as well as on obtaining
deductive proofs from symbolic model checkers.

12

Acknolwedgement We would like to thank Yi Fang for her technical assistance with PROOF-
PROD, and thank Jessie Xu and Yonit Kesten for careful proofreading of the manuscript.

References

[CES81]

[EC80]

[KPOO]

[Kur95]

[LP85)]

[LPZ85]

[MP91]

[MP95]

[Nam01]

[PZ01]

[VW386]

EM. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. IBM Workshop on Logics of Programs,
volume 131 of Lect. Notes in Comp. Sci., pages 52-71. Springer-Verlag, 1981.

E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel pro-
grams using fixpoints. In Proc. 7th Int. Collog. Aut. Lang. Prog., volume 85 of Lect.
Notes in Comp. Sci., pages 169-181. Springer-Verlag, 1980.

Y. Kesten and A. Pnueli. Verification by finitary abstraction. Information and Com-
putation, a special issue on Compositionality, 163:203-243, 2000.

R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, New Jersey, 1995.

O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy
their linear specification. In Proc. 12th ACM Symp. Princ. of Prog. Lang., pages
97-107, 1985.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logics
of Programs, volume 193 of Lect. Notes in Comp. Sci., pages 196-218. Springer-Verlag,
1985.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

7. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York, 1995.

K.S. Namajoshi. Certifying model checkers. In Proc. 13" Intl. Conference on Com-
puter Aided Verification (CAV’01), Lect. Notes in Comp. Sci., Springer- Verlag, 2001.
To appear.

D. Peled and L. Zuck. From model checking to a temporal proof. In Proc. of the 8th
International SPIN Workshop on Model Checking of Software (SPIN’2001), volume
2057 of Lect. Notes in Comp. Sci., pages 1-14. Springer-Verlag, 2001.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332-344, 1986.

