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Abstract. The paper presents a sound and (relatively) complete de-
ductive proof system for the verification of CTL* properties over possibly
infinite-state reactive systems. The proof system is based on a set of
proof rules for the verification of basic CTL* formulas, namely CTL* for-
mulas with no embedded path quantifiers. We first present proof rules for
some of the most useful basic cTL* formulas, then present a methodol-
ogy for transforming an arbitrary basic formula into one of these special
cases. Finally, we present a rule for decomposing the proof of a general
(non-basic) CTL* formula into proofs of basic CTL* formulas.

1 Introduction

The paper presents a sound and (relatively) complete deductive proof system
for the verification of CTL* properties over possibly infinite-state reactive sys-
tems. The logic ¢TL* is a temporal logic which can express linear-time as well
as branching-time temporal properties, and combinations thereof, and contains
both LTL and CTL as sub-logics. A complete deductive proof system for linear-
time temporal logic (LTL) has been presented in [16] and further elaborated in
[17] and [18]. This proof system has been successfully implemented in the Stan-
ford Temporal Verifier STEP [15]. The presented work can be viewed as an
extension of the approach of [16] to the logic cTL*.

A deductive proof system for cTL* is valuable for several reasons. In spite
of the impressive progress in the various versions of model-checking and other
algorithmic verification techniques, they are still restricted to finite-state sys-
tems. The only verification method known to be complete for all programs is
still the method of deductive verification. There are special benefits to the ex-
tension of the deductive methodology from the linear-time framework to the
more expressive branching semantics of ¢TL*:

1. Some important system properties are expressible in CTL* but not in LTL.
Typically, these are “possibility” properties, such as the wiability of a sys-
tem, stating that any reachable state can spawn a fair computation. This is
strongly related to the non-zeno’ness of real-time and hybrid systems.
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2. As shown in [21], the problem of synthesis of a reactive module can be
solved by checking for validity of a certain cTL* formula, even if the original
specification is a pure LTL formula.

Deductive verification of cTL* formulas is valuable even in the context of finite-
state systems which can be model-checked:

3. A counter-example of even simple CTL formulas such as E[]p is no longer
a simple finite printable trace. A convincing evidence of a counter-example
could be an automatically produced proof of its existence.

4. In general, model-checking is useful if it produces a counter-example. How-
ever, when it terminates declaring the property to be valid, the user is not
always convinced. A deductive proof can provide a convincing argument of
such a validity [19,20].

The proof system presented here is based on a set of proof rules for basic cTL*
formulas, which are ¢TL* formulas with no embedded path quantifiers. Thus,
a basic ¢TL* formula has the form Qgp, where Q is a path quantifier and ¢
is a path formula (according to the CTL* terminology) or, equivalently, can be
described as an LTL formula. As a first step, we reduce the problem of verifying
an arbitrary ¢TL* formula into a set of verification tasks of the form p; = 3;
where p; is an assertion and §; is a basic ¢TL* formula. This reduction is based
on the following observation: Let f(3) be a cTL* formula which contains one
or more occurrences of the basic ¢TL* formula 3. Then, a sufficient condition
for f(B) to be valid over the computation tree of system D (D-valid) is the
D-validity of the formulas p = (3 and f(p), for some assertion p, where f(p)
is obtained from f(8) by replacing all occurrences of § by the assertion p. By
repeated application of such replacements (for appropriately designed assertions
p), we reduce the verification problem of an arbitrary ¢TL* formula to a set of
verification problems, each requiring a proof of a formula of the form p; = 3;.

In the context of finite-state model checking, this decomposition of the veri-
fication task based on the path quantifiers has been first proposed by Emerson
and Lei in [5]. It has been used again in [12] for the construction of a symbolic
model checker (SMC) for CTL* properties over finite state systems.

Concentrating on rules for verifying properties of the form p = 3, we present
first a set of rules for the special cases of basic formulas of the forms Al q, EQ gq,
gEUr, Ef(¢q, and A< ¢q. For the universal path quantifiers, these rules are
adapted versions of corresponding LTL rules taken from [16].

To deal with arbitrary basic cTL* formulas, we introduce another reduction
principle which replaces each basic path formula by a newly introduced boolean
variable which is added to the system D. This reduction can be viewed as a
simplified version of the tableau construction proposed in [14] and later referred
to as the construction of a tester [11]. A basic path formula is a path formula
whose principal operator is temporal and it contains no other nested temporal
operators.

Thus, our proof method is based on two statification transformations which
successively replace temporal formulas by assertions which contain no path quan-



tifiers or temporal operators. The first transformation replaces a basic cTL* for-
mula § by an assertion p, provided that we can independently establish the
D-validity of the entailment p = (. The second transformation replaces the
basic path formula ¢ by the single boolean variable z, (which is also a trivial
assertion) at the price of augmenting the system D by a temporal tester T,.

It is interesting to compare the general structure of this proof system with
the LTL deductive proof system presented in [16] and elaborated in [17,18,15].
Similar to the approach presented here, the system lists first useful rules for
special form formulas, the most important of which are formulas of the form
p=>0gq,p= g and (0 p = [0 ¢, where p and g are arbitrary past
formulas. To deal with the general case, [16] invokes a general canonic-form
theorem, according to which every (quantifier-free) LTL formula is equivalent to
a conjunction of formulas of the form [] & p; = [ & ¢, for some past formulas
p; and g;.

While this approach is theoretically adequate, it is not a practically accept-
able solution to the verification of arbitrary LTL formulas. This is because the
best known algorithms for converting an arbitrary LTL formula into canonic form
are at least exponential (e.g., [6] which is actually non-elementary). A better ap-
proach to the verification of arbitrary LTL formulas is based on the notion of
deductive model checking [23], which can also be described as a tableau-based
construction.

The approach presented here, based on successive elimination of temporal
operators, can be viewed as an incremental tableau construction and offers a
viable new approach to the verification of arbitrary LTL formulas, even though
it is presented as a part of a deductive proof system for ¢TL*, which is a more
complex logic than LTL.

There have been two earlier complete axiomatizations of propositional CTL*.
The work reported in [22] provides (the first) complete axiomatization of pure
propositional ¢TL*, thus solving a long standing open problem in branching-
time temporal logic. Comparing this impressive result with our work, we should
remind the reader of our motivation which is to provide a deductive system
to verify first-order CTL* expressible properties of reactive systems, where the
computational model includes a full fledged set of weak and strong fairness as-
sumptions. Our goal is to derive a deductive system for CTL* which extends the
LTL deductive methodology expounded in [18] and provides realistic tools for
verifying non-trivial reactive systems, such as those implemented in the STeP
system [15]. Theoretically, this goal can be implemented even within the pure-
logic axiomatization of [22], because CTL* (being more expressive than LTL) can
certainly capture the computation tree of a reactive system including all fairness
assumptions. This allows us to reduce the verification problem D |= ¢ into the
pure validity problem = S, — ¢, where S, is the cTL* formula characterizing
the computation tree of system D. While this is possible in theory, it is highly im-
practical and leads to very obscure and unreadable proofs. A similar dichotomy
exists in finite-state LTL verification. On one hand, one can use the special LTL
model checking technique proposed in [14] for verifying D |= ¢ whose complex-



ity is exponential in ¢ but only linear in D. On the other hand, one can reduce
this to the problem of checking the validity of the implication S, — ¢ which is
exponential in both ¢ and D. It is obvious that the specialized technique which
does not transform the system into a formula is (exponentially) better than the
reductionist approach. While the analogy between finite-state model checking
and deductive verification is not perfect, this argument serves to indicate the in-
herent rise in complexity when using pure temporal logic techniques for practical
verification.

Another related work is that of Sprenger [25]. This approach is much closer to
our own, because it preserves the distinction between the system and the formula,
and contains a special treatment of the different kinds of fairness. The advantage
of our approach is that it proceeds at a coarser level of granularity, and therefore
yields a much simpler proof system. Sprenger’s method of local model checking
proceeds at steps analogous to the basic steps of a tableau construction, including
step by step handling of the boolean connectives. Our approach attempts to get
rid of one temporal operator at each step, applying the appropriate rule for this
operator, with no need to trace cycles and close leaves in the tableau. We believe
that our proof system and its application to be significantly more succinct and
effective and, therefore, more amenable to the construction of support systems
for serious reactive verification.

The paper is organized as follows. In section 2 we present the FDS computa-
tion model. In Section 3, we present the logic CTL*. In Section 4, we show how to
decompose the task of verifying a general CTL* formula into tasks, each verifying
a basic ¢TL* formula. In Section 5, we present the methodology by which we
propose to prove a basic ¢TL* formula. This methodology starts by presenting
a set of proof rules for some of the most useful basic CTL* properties, and claim
soundness and completeness of these rules. We then show how to reduce an ar-
bitrary basic ¢TL* formula to one of these special cases. Finally, in Section 6,
we present an example of the application of these rules.

2 The Computational Model

As a computational model for reactive systems, we take the model of fair discrete
system (FDS). An ¥Ds D:(V,0,p,J,C) consists of the following components.

o V = {uy,..,un} : A finite set of typed state variables over possibly infinite
domains. We define a state s to be a type-consistent interpretation of V,
assigning to each variable u € V' a value s[u] in its domain. We denote by X
the set of all states.

e O : The initial condition. This is an assertion characterizing all the initial
states of the FDS. A state is called initial if it satisfies ©.

e p: A transition relation. This is an assertion p(V, V'), relating a state s €
XY to its D-successor s’ € X by referring to both unprimed and primed
versions of the state variables. The transition relation p(V, V') identifies state
s' as a D-successor of state s if (s, s') = p(V, V'), where (s, s') is the joint
interpretation which interprets x € V as s[z], and 2’ as s'[z].



o J={,..., i} : A set of assertions expressing the justice (weak fairness)
requirements. Intentionally, the justice requirement J € J stipulates that
every computation contains infinitely many J-states (states satisfying J).

e C = {(p1,q1),---(Pn,qn)} : A set of assertions expressing the compassion
(strong fairness) requirements . Intentionally, the compassion requirement
(p,q) € C stipulates that every computation containing infinitely many p-
states also contains infinitely many g¢-states.

Let o : sg,s1,..., be a sequence of states, ¢ be an assertion, and 5 > 0 be a
natural number. We say that j is a ¢-position of o if s; is a -state. Let D
be an FDS for which the above components have been identified. We define a
run of D to be a finite or infinite sequence of states o : sp, s1, --., satisfying the
requirement of
e Consecution: For each j = 0,1, ..., the state s;;1 is a D-successor of the
state s;.

and such that it is either infinite, or terminates at a state sy which has no
D-successors.

We denote by runs(D) the set of runs of D. An infinite run of D is called fair if
it satisfies the following:

o Justice: For each J € J, o contains infinitely many J-positions
e Compassion: For each (p,q) € C, if o contains infinitely many p-positions,
it must also contain infinitely many g¢-positions.

We say that a fair run o : sq, 81, ... is a computation of D if it satisfies
o Initiality: so is initial, i.e., so = 6.

We denote by Comp(D) the set of all computations of D.

A state s is said to be D-reachable if there exists a run sg, $1,82,...,5 =S, ...
in D such that sg = ©. Let p be an assertion, and s be a state in D. We say
that s is p,, -reachable if s is reachable from a D-reachable p-state. We say that
a state s is D-feasible if it participates in some computation of D. An FDS D is
feasible if it has at least one computation, i.e., if Comp(D) # 0. We say that an
FDS D is viable if every D-reachable state is D-feasible. Note that the FDS model
does not guarantee viability.

Parallel Composition of FDS’s

Fair discrete systems can be composed in parallel. Let D; = (V;, 05, pi, T, Cs),
i € {1,2}, be two fair discrete systems. Two versions of parallel composition are
used. Asynchronous composition is used to assemble an asynchronous system
from its components (see [KP00]). Synchronous composition is used in some
cases, to assemble a system from its components (in particular when considering
hardware designs which are naturally synchronous). However, our primary use of
synchronous composition is for combining a system with a tester T, for a basic
LTL formula ¢, as described in section 5. We define the synchronous parallel



composition of two FDS’s to be

D= <V797p7\7;C) = (VI;@laPl;Jl;CI) IH <‘/2;927p2;\.¢2ac2)5 where
V=ViuV, 6=@1/\62, p=p1 N pa, ‘_7=‘_71U‘_72, C=CLUCs.

We can view the execution of D as the joint execution of Dy and Ds.

3 Branching Temporal Logic

In the following we define the branching temporal logic CTL* (see [4]). We assume
a finite set of variables V' over possibly infinite domains, and an underlying
assertion language £ which contains the predicate calculus augmented with fix-
point operators. > We assume that £ contains interpreted symbols for expressing
the standard operations and relations over some concrete domains, such as the
integers. A ¢TL* formula is constructed out of assertions (formulas over L) to
which we apply the boolean operators, temporal operators and path quantifiers.
The basic temporal operators are
O —Next U —Until W — waiting-for
Additional temporal operators may be defined as follows:

Op=1Up, Op=-0,

The path quantifiers are E, A, Ef and Ay. We refer to E; and Ay as the fair
path quantifiers and to E and A as the unrestricted path quantifiers. In the
following, we present the syntax and semantics of the logic which is interpreted
over the computation tree generated by an FDS. We use the terms path and
fair path as synonymous to a run and a fair run respectively, over an FDS. Let
T : Sg,S1,... bearun of D. Then, we write 7[0] to denote sg, the first state in 7
and, for j > 0, we write 7[j..] = s, 841, ... to denote the suffix of 7 obtained by
omitting the first j states. If the path 7 is finite, we use |7| to denote its length.

The Logic cTL*

There are two types of sub-formulas in CTL*: state formulas that are interpreted
over states, and path formulas that are interpreted over paths. The syntax of a
CcTL* formula is defined inductively as follows.
State formulas:

e Every assertion in £ is a state formula.

o If p is a path formula, then Ep, Ap, E¢p and Ayp are state formulas.

e If p and ¢ are state formulas then so are pV ¢ and p A q.

Path formulas:

3 As is well known ([13],) a first-order language is not adequate for (relative) com-
pleteness of a temporal proof system for infinite state reactive programs. The use
of minimal and maximal fix-points for relative completeness of the liveness rules is
discussed in [16], based on [26].



e Every state formula is a path formula.
e If p and ¢ are path formulas then so are pV q, pA q, O p, pUq and pWq.

The formulas of cTL* are all the state formulas generated by the above rules.

We say that pis a basic CTL* formula if p is a ¢TL* formula with no embedded
path quantifiers. A basic ¢TL* formula of the form Ay or Asy (Ev or Efv) is
called a basic universal (existential) formula. We define a basic path formula
to be a path formula ¢ whose principal operator is temporal, and such that ¢
contains no other temporal operators. Note that the set of basic universal cTL*
formulas corresponds to the set of linear temporal logic formulas (LTL). We refer
to the set of variables that occur in a formula p as the vocabulary of p. The
semantics of a CTL* formula p is defined with respect to an FDS D over the
vocabulary of p. The semantics is defined inductively as follows.

State formulas are interpreted over states in D. We define the notion of a
cTL* formula p holding at a state s in D, denoted (D, s) |= p, as follows:

e For an assertion p,
(D,s)Ep sk
e For state formulas p and g,
(D,s)Epve & (D,s)Epor(D,s) =g
(D,s)EpAa & (D,s)pand (D,s) g
e For a path formula p,
(D,s) E Ep & (D,7m) = p for some path # € runs(D) satisfying

w[0] = s.
(D,s) = Ap < (D,7) E p for all paths # € runs(D) satislying
7[0] = s.

The semantics of Eyp and Asp are defined similar to Ep and Ap respectively,
replacing path (run) by fair path (fair runs).

Path formulas are interpreted over runs of D. We define the notion of a cTL*
formula p holding at a run 7 € runs(D), denoted (D, ) = p, as follows:

e For a state formula p,
(D,7) = p & (D) Fp.
e For path formulas p and g,
(D,m) EpVy & (D,m)Epor (D) Eq
(D,m) EpAg & (D7) Epand (D,7) Egq
(D,m) = Op & | >1and (D,7[1.]) Ep
(D,7,j) E pUq & (Dyrk.]) E ¢ for some k > 0, and
(D,nli..]) Epforeveryi,0<i<k
(D,m,j) EpWa &  (D,m) EpUg,or (D,xfi.]) E ploralli <|rl.
Let p be a cTL* formula. We say that p holds on D (p is D-valid), denoted D = p,
if (D, s) = p, for every initial state s in D. A c¢TL* formula p is called satisfiable
if it holds on some model. A ¢TL* formula is called walid if it holds on all models.

We refer to a state which satisfies p as a p-state. Let p and g be ¢TL* formulas.
We introduce the abbreviation

p=>gq for A[J(p—q).



where p — ¢ is the logical implication equivalent to —=p V ¢. Thus, the formula
p = q holds at D if the implication p — ¢ holds at all D-reachable states.

Let V be a set of variables and 1 be a cTL* formula over V. We denote by 7’
the formula ¢ in which every variable v € V' is replaced by the primed variable
v,

Without loss of generality, we assume that a formula is given in positive
normal form, which means that negation is only applied to assertions, namely, to
formulas with no temporal or path operators. Any cTL* formula can be brought
to a congruent positive form by a repeated application of the following rewriting

rules.

——p — P

~(pAqg) — (-pV q)
~(pVaq) — (=pA-q)
-Op —-QOp

~(pUq) — (=g)W(=p A —q)
~(pWq) — (mq)U(-p A —q)
—|Afp e Efﬁp

—|Efp — Afﬂp

4 Decomposing a Formula into Basic ¢TL* Formulas

Consider a ¢TL* formula ¢ which we wish to verify over an ¥DS D. As a first
step, we show how to reduce the task of verifying the formula ¢ into simpler
subtasks, each required to verify a basic ¢TL* formula over D. This reduction
repeatedly applies rule BASIC-STATE which is presented in Fig. 1.

For a formula f(y),
a basic ¢TL* formula ¢,
and an assertion p,
Rl.p= ¢
R2. f(p)
fe)

Fig. 1. BASIC-STATE.

The rule considers an arbitrary formula f which contains one or more occurrences
of the basic ¢TL* formula . The rule calls for an identification of an assertion
p which characterizes all states which satisfy the formula . It then reduces
the task of verifying f(¢) into the two simpler tasks of verifying the entailment
p = ¢, where ¢ is a basic ¢TL* formula, and the formula f(p) obtained from f
by substituting the assertion p for all occurrences of .

Example

Consider the system D presented in Fig. 2.
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Fig. 2. An example system D

This system has a single state variable  and no fairness conditions. For this
system we wish to prove the property f : EL] E>(x = 1), claiming the existence
of a run from each of whose states it is possible to reach a state at which x = 1.

Using BASIC-STATE, it is possible to reduce the task of verifying the non-basic
formula EC] E<(x = 1) into the two tasks of verifying

R1. (x=0)=EO@=1)
R2. E(z =0)

Note that, as the assertion p, we have chosen z = 0. The design of an appropriate
assertion p which characterizes states satisfying ¢ is the part which requires
creativity and ingenuity in the application of BASIC-STATE.

In the following section, we present methods which can be used to prove
entailments of the form p = ¢ for an assertion p and basic ¢TL* formula ¢.

5 Proof Rules for Basic ¢TL* Properties

In this section we present a set of proof rules for proving entailments of the
form p = ¢ for an assertion p and a basic ¢TL* formula ¢. To simplify the
presentation, we consider only systems with no compassion requirements, and
deal only with the justice requirements (7).

5.1 Preliminary Inference Rules

We introduce two basic inference rules as part of the deductive system. Let D
be an FDS and p, g be assertions. The first rule is generalization, presented in
Figure 3. The rule transforms a state validity (denoted by I=) into a temporal
validity (denoted by ). The premise I|= p states that assertion p holds at every
possible state. Then obviously, p holds at every reachable state of every model,
and therefore the basic universal ¢cTL* formula A [] p holds at the initial state
of every model (equivalently, D = A []p for every FDS D).

For an assertion p,
Er
FAOp

Fig. 3. GEN (generalization)

The second rule is entailment modus ponens, presented in Figure 4. The rule
states that if every reachable state satisfies both p and the implication p— ¢



(i-e., D satisfies A[Jp and A[J(p—q)), then ¢ holds at every reachable state
(D satisfies A []q).

For assertions p and q,
FAOp, Ep=g4
EAQq

Fig. 4. EMP (entailment modus ponens)

In the following we present a set of proof rules all having a common structure.
Premises are stated above the line and the conclusion is presented below the line.
Each rule claims that if the premises hold over D, then so does the conclusion.
When the validities of the premises and the conclusion are over different FDS’s,
the relevant FDS are stated explicitly, otherwise the common FDS is omitted.

5.2 Safety Rules

First we consider safety formulas of the form Q [] ¢, where ¢ is an assertion and
Qe {A,As, E, Es} is a path quantifier. We refer to such formulas as invariance
formulas. We use the terms universal and existential invariance for the CcTL*
formulas {A (0 ¢,Ay (¢} and {E [ ¢, Ey (] ¢} respectively.

Universal Invariance In Figure 5, we present the rule for universal invariance,
which is similar to the rule for LTL invariance. Rule A-INV states that if the set

For an FDS D with transition relation p,
assertions p, ¢ and ¢,

II. p= ¢

2. o= ¢

3. o Ap= ¢
p=Allq

Fig. 5. A-INV (universal invariance)

of premises I1 — I3 are D-valid, then the conclusion is D-valid. Premise I1 and 12
are shorthand notations for D = A [J(p— ¢) and D = A [I(¢ — q) respectively.
Premise I1 states that every D-reachable p-state is also a y-state. Similarly,
premise 12 states that every D-reachable p-state is a g-state. Assertion ¢ is
introduced to strengthen assertion ¢ in case g is not inductive, namely, in case ¢
does not satisfy I3 (see [18] for a discussion on inductive assertions). Premise 13
is a shorthand notation for D = A (e(V) A p(V,V')— (V")). The premise
states that every p-successor of a D-reachable p-state is a p-state (equivalently,
all transitions of D preserve ). Rule A-INV establishes the invariance formula
A[dq over all p,-reachable states (i.e., all states that are reachable from a
D-reachable p-state), for some assertion p.



Claim (universal invariance). Let D be an FDS. Rule A-INV is sound and rela-
tively complete, for proving unrestricted universal (state) invariance over D.

Proof Sketch The proof of completeness is based on the identification of an
assertion ¢, expressible in our assertional language, which satisfies the premises
of rule A-INvV. We follow the construction of [16] (further elaborated in [17]) to
show the existence of an assertion characterizing all the states that can appear
in a finite run of a system D. O

Existential Invariance We define a well-founded domain (A, >) to consist of
a set A and a well-founded order relation > on A. The order relation > is called
well-founded if there does not exist an infinitely descending sequence ayg,as, ...
of elements of A such that a9 > a1 > ...

Next, we present three proof rules which together constitute a sound and
(relatively) complete set for proving existential (state) invariance. The first rules,
E-NEXT and E-UNTIL presented in Figures 6 and 7, prove the validity of the
cTL* properties £ (O q and gEUr respectively, over all D-reachable p-states,
where p, ¢ and r are assertions. Both rules are defined for the unrestricted

For an FDS D with transition relation p,
assertions p, q, ¢

Nl. p=> ¢
N2. o= IV':p A{
p= EQgq

Fig. 6. E-NEXT.

For an FDS D with transition relation p,
assertions p, ¢, and ¢,
a well-founded domain (A4, >), and a ranking function § : X' +— A

Ul. p= ¢
U2. o= 7V (g ATV :(pAL AE<E
p= qEUr

Fig. 7. E-UNTIL

existential path quantifier £ which quantifies over any path, not necessarily a
fair path (recall that E is weaker than Ey). While not being invariance rules by
themselves, the E-NEXT and E-UNTIL rules are included in this subsection because
they are essential for the invariance rule E;-INV presented in Figure 8. Rule
E-NEXT uses an intermediate assertion ¢ which strengthen assertion p in case p
is not inductive. Premise N2 is a shorthand notation for D = A [(p(V) —3IV':
p(V, V') A q(V")). The premise states that from every D-reachable ¢-state, there
exists a D-transition into a g-state.

The rule E-UNTIL uses a well-founded domain (A, ), and an intermediate as-
sertion ¢, associated with a ranking function §. Function § maps states into the



set 4 and is intended to measure the distance of the current state to a state sat-
isfying the goal r. The third rule, E¢-INV presented in Figure 8, is the existential
invariance rule. We use the notation (i @,, 1) for (i + 1)mod m. Rule Ef-INV
proves a temporal property using three premises. Premises I1 and I2 use state
reasoning, and premise I3 requires temporal reasoning. Premise I3 is resolved
by the rules E-NEXT and E-UNTIL which transform the temporal reasoning into
state reasoning. For the special case that p = © and ¢ = T, rule Ef-INV proves
feasibility of D. For the case that p = ¢ = T, the rule proves viability of D.

For assertions p, ¢o, ..., Pm,
an FDS D with justice requirements Jo = T, J1,...,Jm € J,

I1. p=> \/‘Pi
i=0
For:=0,...,m,
12. i = J;

B. wi= g AN EQ@EUpe, 1)
p=Ef[lq

Fig. 8. Bf-INV.

Claim (existential invariance). Let D be an FDS. Rules E-NEXT, E-UNTIL, and
Ef-INV are sound and relatively complete, for proving their respective conclu-
sions.

Proof Sketch: For rule E-NEXT, it is straightforward to write a first-order
assertion ¢ which characterizes all the D-reachable p-states, i.e. all p-states par-
ticipating in a run of D. For rule E-UNTIL, we can use again an assertion ¢ which
characterizes all the D-reachable p-states. We can use a ranking function § which
measures the number of steps from a D-reachable p-state s to its closest r-state
reachable by a continuous g-path. It only remains to show that these two con-
structs are expressible within our assertional language. For rule Ef-INV, we can
use a maximal fix-point expression to construct an assertion ¢ characterizing all
accessible states initiating a continuous-q fair path. For the sub-assertions ¢,
we can take p A J;. O

5.3 Liveness properties

Universal Liveness Under Justice In Figure 9, we present the rule for uni-
versal eventuality properties of the form p = Ay & r. The rule uses a well-
founded domain (A, >), and a set of intermediate assertions ¢, ..., pm,, each
associated with its own ranking function ;. Each function §; is intended to mea-
sure the distance of the current state to a state satisfying the goal gq. Premise
W1 states that every p-state satisfies ¢ or one of 1, ..., ¢,,. Premise W2 states
that for every i, 1 < i < m, a g;-state with rank §; = u is followed by either a
g-state or a g;-state that does not satisfy J; and has the same rank u, or by a



pj-state (1 < j < m) with a smaller rank (i.e., w > §;). The rule claims that if
premise W1, and the set of m premises W2 are D-valid, then the (fair) universal
eventuality property Ay > ¢ is satisfied by all D-reachable p-states.

For an FDs D with transition relation p and justice set J = {J1,...,Jm },

assertions p,q, Y1,. .., Om,
well-founded domain (A, >) and ranking functions 81,...,6m : ¥ +— A

Wl p = qv Vo
ji=1
W2 Fori=1,...,m

i Ap = ¢V (I AQAE=6)V Vw§A(5i>5§)>
=1

p=>A; g

Fig.9. A¢-EVENT (universal well-founded eventuality under justice).

Claim (Completeness of universal eventuality). Rule Az-EVENT is sound and
relatively complete, for proving the D-validity of universal eventuality formulas.

Proof Sketch: This rule is semantically equivalent to the LTL rule for the
property p = <> q. We refer the reader to [16] for the non-trivial proof of relative
completeness of this rule.

O

5.4 Assertional Basic ¢TL* Formulas

As the last rules for special cases, we present two rules dealing with the entail-
ments p = Qg, where p and ¢ are assertions and Q € {Ay, Ef} is a fair path
quantifier.

Rule Af-ASRT, presented in Fig. 10, can be used in order to establish the
validity of the entailment p = Aq, for the case that p and ¢ are assertions.

For assertions p and ¢,

pA-qg=> A OF
p= Asq

Fig. 10. Af-ASRT.

The rule claims that, in order to prove the validity of p = A;q, it is sufficient
to show that no fair runs can depart from a reachable state satisfying p A —gq.
This is shown by proving (using rule A;-EVENT) that every fair run departing
from a reachable (p A —g)-state satisfies A;<> F (“eventually false”), which is
obviously impossible. Thus there can be no fair runs departing from such a state
and, therefore, no such states are reachable as part of a computation.

The dual rule Ef-ASRT is presented in Fig. 11.

This rule claims that, in order to prove p = Efgq, it is sufficient to show that
every reachable p-state satisfies ¢ and initiates at least one fair run.



For assertions p and ¢,
p=q A E/JT
p= Efq

Fig.11. E¢-ASRT.
5.5 Basic ¢TL* Properties: The General Case

Finally, we present our general approach to the verification of an entailment of
the form p = ¢ for an assertion p and an arbitrary basic ¢TL* formula ¢.

The approach is based on a successive elimination of temporal operators from
the formula ¢ until it becomes an assertional basic ¢TL* formula, to which we
can apply rules A¢-ASRT or Ef-ASRT. Elimination of the temporal operators is
based on the construction of temporal testers, as follows.

We define a temporal tester for each of the three temporal operators O,
U and W. These testers are a simplified version of the tableau construction
presented in [14] and its later symbolic version which was referred to as tester
[11]. For an assertion p, we denote by V,, the set of variables occuring in p.

For the basic path formula O p, we construct the tester T(,, as follows:

Vv 3%U{xo}
@ : T
P 1 %o =p'
J=C:0

For the basic path formula pi{q, we construct the tester Ty, as follows:

V:V,uV,u{zy}

O:T
pixy=(qVpAa,
T A{~ay v ¢}

C:0

For the basic path formula p W ¢, we construct the tester Ty, as follows:

ViV, UV, U {zy}
O:T

pixw=I(qV DAz,
T H{zw V (-p A —q)}
C:0

Let f(y) be an arbitrary cTL* formula containing one or more occurrences of the
basic path formula ¢. In Fig. 12, we present the rule BASIC-PATH which reduces
the proof of f(y) to the proof of f(z,), where z, is a boolean variable, and
f(z,) is obtained from f(¢) by replacing every occurrence of ¢ by z,,.

6 An Example

In this section, we present an example system and a deductive proof of a property
it has. In Fig. 13, we present the system D. This system has a single state variable



For a ¢TL* formula f(¢),
a basic path formula ¢,
and an FDS D,

DT, = f(zy)
D E  flp

Fig. 12. BASIC-PATH.

z and no fairness conditions. For this system we wish to prove the property
T = Ay & [ even(x), stating that every computation eventually stabilizes with
an even value of the state variable x.

_—, _—,

Fig. 13. An example system D

Following are the first steps of the deductive proof for this property. The proof
is presented in a goal-oriented style, where we identify for each goal the subgoals
which are necessary in order to establish the goal and the rule which justifies
the deductive step.

D E T=A; OO even(z) A tester for x = [] even(z)
DTy E T=>A4;Ou A tester for z, = Oz
DITullTe E 1= Asz,

Thus, these proof steps reduced the task of verifying the formulaT = Ay & [0 even(z)
over system D to the verification of the simpler formula T = Az, over the sys-

tem D* = D|||T4||| T The transition relation of system D* is presented in

Fig. 14.

The justice requirements associated with D* are
Jiixzg V —even(z), Ja:tmxy Vo2
We now use rule Ay-ASRT in order to reduce the goal D* =T = Asz,, into the

goal D* = —z, = A< F. This goal is proven using rule Af-EVENT with the
following choices:

p: —|.Z‘<>
g: F
w1725 A Ty A even(x) 61:2—x

w21 g A Ty A —even(x) by:2—1x



(x:0,25:0, 5 : 1) (x:1,25:0, 2y : 1) (x:2,25:0, 2, : 1)

(x:0,25:0, 2z :0)

0

(x:1,25:0, 2z, :0) (x:2,25:0, 2, :0)

Fig. 14. The augmented system D*
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