
Validating Software Pipelining Optimizations ∗

Raya Leviathan
Dept. of Computer Science

Weizmann Institute of Science

raya@wisdom.weizmann.ac.il

Amir Pnueli
Dept. of Computer Science

Weizmann Institute of Science

amir@wisdom.weizmann.ac.il

ABSTRACT
The paper presents a method for translation validation
of a specific optimization, software pipelining optimiza-
tion, used to increase the instruction level parallelism in
EPIC type of architectures. Using a methodology as in
[15] to establish simulation relation between source and
target based on computational induction, we describe
an algorithm that automatically produces a set of decid-
able proof obligations. The paper also describes SPV, a
prototype translation validator that automatically pro-
duces verification conditions for software pipelining op-
timizations of the SGI Pro-64 compiler. These verifi-
cation conditions are further checked automatically by
the CVC [12] checker.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Com-
pilers, Optimization; D.2.4 [software Engineering]:
Software/Program Verification—Formal methods, Vali-
dation; C.1.3 [Processor Architectures]: Other Ar-
chitecture Styles—Pipeline processors

General Terms
Verification

Keywords
Compilers, Optimization, Pipeline processors, Verifica-
tion, Translation Validation

1. INTRODUCTION
There is a growing awareness of the importance of for-

mally proving the correctness of safety-critical portion

∗This research was done as part of the SafeAir project
of the Eurtopean Commission

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...5.00.

of software systems. However, proving the correctness
of the implementation written in a high level language
is not sufficient. It should also be verified that what-
ever correctness has been achieved on the higher level
is not impaired in the translation done by the compiler.
But, formally verifying s full fledge optimizing compiler
is not feasible due to its size, evolution over time and
possibly, proprietary consideration. The translation val-
idation approach offers an alternative to the verification
of translators in general and of compilers in particular.
The efficacy of this approach were demonstrated by the
discovery of a bug in the Trimaran compiler, which may
produce an illegal memory access in the generated code
(see [15],[14]).

Modern architectures rely on the compiler to extract
maximum performance and to ensure correct utilization
of the processor. These requirements from the compiler
are inevitable when considering compiler for an EPIC
(Explicitly Parallel Instruction Computation) proces-
sor. In this work we choose to address the problem
of formally verifying software pipelining optimization of
an EPIC processor.

We extend the framework described in [15] and [14] to
handle machine dependent optimizations, which have an
important role for processors of the EPIC family. Here,
we describe our method to validate software pipelining
optimization. The method is implemented for the code
generator of the SGI Pro-64 compiler (to be called Pro-
64), which produces code for the Intel-IA64 architec-
ture. Our tool, SPV, Software Pipeline Validation, runs
fully automatically, starting with source and translated
programs and exiting with an either Valid or Invalid
answer.

The formalization is based on transition semantics
[9]. The correctness definition is based on refinement
relation between transition systems [3]. Our tool pro-
duces the proof obligations needed to establish the cor-
rectness of the translation. These proof obligations be-
long to the decidable logics of Pressburger Arithmetic,
arrays and uninterpreted functions. As such, they can
be checked by a fully automatic tool. For most of the ap-
plications reported here, we used the CVC (Cooperating
Validity Checker) tool [12] in order to dispatch the proof
obligations. The average run time to validate a transla-
tion which includes software pipelining optimization,

measured on programs containing small loops, is less
than a second.

2. RELATED WORK
To the best of our knowledge, no other work can di-

rectly validate software pipelining optimization. The
work of Necula [10] which aims towards validation of
a rich class of optimizations does not try to validate
this particular optimization. The method used there
applies various heuristics to recover and identify the
optimizations performed and the associated refinement
mapping. It is based on a special-purpose verification
engine included in the tool. Whereas, we are using the
method used by VOC that is described in [15]. However,
it is extended to handle a specific optimization typical
to EPIC processors. While VOC [14] handles machine
independent optimizations which are done in an early
stage of the compiler, our research concentrates on the
code generation stage which, for EPIC processors such
as the IA64 involves aggressive optimizations. VOC uses
step[2] as the verification engine, and thus the proof can
not be done automatically.

Works that do handle the code generation part
of a compiler are those based on the Verifix project as
described in [13] and [6], yet they can handle a limited
type of optimizations and code selection. In particular
they do not address software pipelining optimization.
The verification engine used in the Verifix project is
the verification tool PVS, but usually the proofs are
automatic.

Another approach, described in [8] requires a real ex-
ecution of the code. This limitation may not be accept-
able in many embedded systems.

The work described in [5] does handle optimizations
which are close to loop pipelining in the sense that it
addresses a parallel DSP processor. It uses the checker
approach, and requires a very strong relation between
the compiler and the checker.

3. TRANSITION SYSTEMS
As common formal semantics for both source and tar-

get systems, we introduce Transition Systems S, a vari-
ant of the transition systems of [9]. A Transition System
S =< V,O, Θ, ρ > is given by the following compo-
nents:

• A finite set V of system variables, The variables in
V are typed, and a state of a S is a type-consistent
interpretation of the variables. One of the vari-
ables is the control variable which represents the
location of the control of the program. For a state
s and a variable x ∈ V , we denote by s[x] the value
that s assigns to x.

• O ⊆ V a set observable variables. The observable
variables are the variables which are visible to the
external world.

• Θ an initial condition characterizing the initial
states of the system.

• ρ : A transition relation. This is an assertion
ρ(V, V ′), relating a state s ∈ Σ to its successor
s′ ∈ Σ by referring to both unprimed and primed
versions of the state variables. The transition re-
lation ρ(V, V ′) identifies state s′ as a successor of
state s if 〈s, s′〉 |= ρ(V, V ′), where 〈s, s′〉 is the joint
interpretation which interprets x ∈ V as s[x], and
x′ as s′[x]. Thus, for example, the transition re-
lation may include “y′ = y + 1” to denote that
the value of the variable y in the successor state
is greater by one than its value in the old (pre-
transition) state.

A computation of a transition system S is a max-
imal finite or infinite sequence of states σ : s0,s1, ...,
starting with a state that satisfies the initial condition
and, every two consecutive states are related by a tran-
sition relation, i.e. ∃τ :< si, si+1 >

�
ρτ for every i,

0 � i + 1 <| σ |.
Let S

S
= 〈V

S
,O

S
, Θ

S
, ρ

S
〉 and S

T
= 〈V

T
,O

T
, Θ

T
, ρ

T
〉

be two transition systems, to which we refer as the
source and target S’s, respectively. We denote by X ∈ O

S

and x ∈ O
T

the corresponding observable variables in
the two systems. We say that S

T
is a correct translation

(refinement) of S
S

if for every finite (i.e., terminating)
P

T
-computation σT : sT

0 , . . . , sT

m, there exists a finite
P

S
-computation σS : sS

0 , . . . , sS

k , such that sT

m[x] = sS

k [X]
for every X ∈ O

S
.

4. BLOCK PROGRAMS
Block programs are programs constructed out of blocks

of instructions. Where instructions are the legal ma-
chine instructions of the underlying physical processor.
An instruction changes the state of the processor by as-
signing new values to the processor memory and reg-
isters. We divide the group of possible instructions
to: branch instructions, which are either conditional
instruction (branch < condition> < label>), or uncon-
ditional one (branch<label>), and regular instructions.
A block is a sequence of instructions with no branch,
except, possibly, the last instruction of the block. The
<label> in a branch instruction is the branch destina-
tion, and its value is the index of a block. A branch
destination starts a block.

A block program P is constructed out of blocks. Let
P = {B0,...Bn} be a program, then B0 is the entry
block. Each block B of a program may have one or
two successors, denoted by succ(B) . If the last in-
struction of Bi is regular then succ(Bi) = {Bi+1}. If
the last instruction is a unconditional branch with des-
tination Bj , then succ(Bi) = {Bj}. If the last instruc-
tion is a conditional branch with destination Bj , then
succ(Bi) = {Bj , Bi+1}.

Each machine code program P, corresponds to a tran-
sition system SP =< V,O, Θ, ρ > given by the following
components:

• V = {v1, ..., vn} ∪ {pc} is a finite set of system
variables. where pc ∈ {0, ..., n + 1} is the control
variable. Its value denotes the index of the block in

which control currently resides. When pc = n+1,
we say that the program is terminated, or reached
the exit point. Block index (i) and block name
(Bi) are used interchangeably.

• O : The observable variables are memory vari-
ables, function parameters and return value.

• Θ : The initial condition assertion where, Θ→
pc = 0.

• ρ : The transition relation.

Each block Bi in the program is represented by a
block transition relation ρ

i
(V, V ′) = (pc = i �

vi∈V

v′
i =

Exp(V)). The program transition relation is : ρ =
n�

i=0

ρ
i
(V, V ′). In writing transition relation, we often

use the notation Pres(U) for U ⊆ V which is an abbre-
viation for �

v∈U

(v′ = v), stating that all U-variables are

preserved by the relevant transition.

5. THE VALIDATE PROCEDURE
We assume that both the source and target programs

can be presented as a combination of basic blocks, each
of which containing a sequence of assignments and op-
tionally terminated by a branch.

Consider, for example, the source and target pro-
grams presented in Fig. 1. Their presentation as a di-

0 : S := 0;
I := 1;

1 : do
{

S := S + 2 ∗ A[I];
I + +;

} while(I <= 100)
2 :

0 : s := 0;
i := 1;

1 : do
{

s := s + a[i];
s := s + a[i];
i + +;

} while(i <= 100)
2 :

- Source- -Target -

Figure 1: Source and Target Programs

rected graph, whose nodes are blocks and the edges con-
nect a block to its successors, is given in Fig. 2. We
present a proof rule, called VALIDATE, which will en-
able us to prove that a target program correctly imple-
ments a given source program.

1. Construct a control abstraction κ : {0, .., n+1} 7→
{0, .., m + 1} such that

κ(0) = 0 ∧ κ(n + 1) = m + 1.

2. For each block, Bi form an invariant ϕi that states
a target property which should hold true whenever
pc = Bi.

– Source –

0 : S := 0; I := 1

1 : S := S + 2 ∗ A[I];
I++;
I <= 100?

2 :

– Target –

1 : s := s + a[i];
s := s + a[i];
i++;
i <= 100?

0 : s := 0; i := 1

2 :

F

TT

F

Figure 2: Example source and target as directed
basic blocks graph

3. Construct an abstraction mapping

α : PC = κ(pc) ∧ (p1 →V1 = e1) ∧ · · · ∧ (pk →Vn = ek),

where, for each i = 1, . . . , k, pi is a condition
depending on the target variables (including pc),
Vi 6= pc is a source variable, and ei is an expres-
sion over the target variables. It is required that
when pc ∈ {1, n + 1}, α implies x = X for each
observable variable X ∈ OS .

4. For each i ∈ {0, .., n} construct a verification con-
dition

Ci :

�������� ϕi ∧ α ∧ α′ ∧ ρT
i →�

j∈succ(Bi)

(pc′ = j ∧ ϕ
′

j) ∧ (ρS
κ(i) ∨ V ′

S = VS)

� �������
The disjunct V ′

S = VS allows the execution of some
target blocks to be mapped on an empty source
execution, which modifies no source variables.

5. Establish the validity of the verification conditions.

We illustrate the application of rule VALIDATE to
establish that the target program of Fig. 1 correctly
implements the source program in that figure. To do
so, we choose

κ(i) : i for i ∈ {0, 1, 2}
α : PC = pc ∧ S = s ∧ I = i ∧ A = a
ϕi : 1 (true) for every i = 0, 1, 2
Succ(0) : {1}
Succ(1) : {1, 2}

These choices lead to the following two verification
conditions:

C0 :

�����������������������

· · · ∧ PC′ = pc′ ∧ S′ = s′ ∧ I ′ = i′ ∧ A′ = a′� 	�
 �
α′

∧

s′ = 0 ∧ i′ = 0 ∧ pc′ = 1� 	�
 �
ρT
0

→

S′ = 0 ∧ I ′ = 0 ∧ PC′ = 1� 	�
 �
ρS
0

� ����������������������

C1 :

�����������������������������

PC = pc ∧ S = s ∧ I = i ∧ A = a ∧��
pc = 1 ∧ a′ = A′ ∧
pc′ = if (i′ ≤ 100) 1 else 2 ∧
s′ = s + a[i] + a[i] ∧ i′ = i + 1

��
∧

PC′ = pc′ ∧ S′ = s′ ∧ I ′ = i′ ∧ A′ = a′

→ (pc′ = 1 ∨ pc′ = 2) ∧�
PC′ = if (I ′ ≤ 100) 1 else 2 ∧
S′ = s + 2 ∗ A[I] ∧ I ′ = I + 1 ∧ PC = 1 �

� ����������������������������
6. ARCHITECTURE DEFINITION

In this section, we define the syntax of a pseudo ma-
chine code, VIR - virtual intermediate representation ,
for a virtual architecture, based on the IA-64 family of
architectures. To simplify the presentation, we prefer
not to use the original machine-language syntax, but
will present machine programs in a higher-level, C-like,
programming style. However, the actual implementa-
tion of our approach works directly on the genuine IA-64
machine language syntax.

6.1 Machine Registers
The program refers to the following registers:

• ri - A general integer register.

• lc - Loop count register. A special register used to
count the iterations within a loop. It also controls
the loop completion.

• ti - An integer register in the rotating register file.

• pi - A one bit register, called predicate register in
the rotating predicate register file. ~p is the vector
of the predicate registers.

6.2 Machine Operations
Assigning a value to a memory variable represents a

store-
to-memory operation, while the occurrence of a mem-
ory variable on the right side of an assignment, stands
for a memory-load operation. Thus a := t1 stands for
storing the value of register t1 into memory variable
a. Direct assignment of a memory variable to another
memory variable is not allowed, since this operation is
not supported by the underlying machine. Arithmetic
operations are used with their usual meaning. We use
wait to indicate no operation. Usually, this is used when
the CPU waits for the completion of an operation, such
as a load-from-memory .

A special syntax represents the rotation of the reg-
ister file: 〈tn := tn−1 := · · · := ti〉 with the following
semantics: tn

′ = tn−1 ∧ · · · ∧ t2
′ = t1. The equivalent

notation is used for the predicate rotating register file.
The predicated execution feature of the machine is ex-
pressed by using an “if (pck

)” prefix. Before starting an
N iteration loop, with Sc pipeline stages, the predicate
array p is initialized to 10Sc−1. This means that the first
predicate register, is initiated to 1, and the remaining
Sc − 1 predicate registers are initiated to 0. All state-
ments appearing on a single command line are executed
in parallel within a single step.

7. SOFTWARE PIPELINING
Software pipelining is a technique that takes advan-

tage of advanced architecture features such as paral-
lelism (multiple memory and arithmetic units), rotat-
ing register file, predicate register and special branch
instructions [1, 7]. Software pipelining increases a loop
throughput by overlapping the loop’s iterations; that is,
by initiating successive iterations before prior iterations
complete, and achieving saturation of functional units.
To pipeline a loop, the compiler should find an instruc-
tion schedule that best utilizes the functional units, to
achieve minimal execution time, yet without causing a
register jam.

One technique for loop scheduling, is Modulo Scheduling
[11]. To find an overlapped schedule, the compiler must
take into account the constraints imposed by the avail-
ability of functional units and registers. Suppose that
execution of one iteration takes C cycles. Consider-
ation of the data dependencies within the loop body
and instructions latency leads to a calculation of an
initiation interval - Int, which is the number of instruc-
tion cycles issued for iteration i, before iteration i + 1
can be initiated. The loop body is divided into stages
whose execution time is Int cycles. The number of
stages is Sc = C/Int. Let O1, O2 be two operations
using the same machine resource which are scheduled
to cycles number c1 and c2 of a loop body, respectively.
Then, it is required that (c1 mod Int) should be differ-
ent from (c2 mod Int). When all such constraints are
satisfied, we have a sound modulo schedule .

Example 1.

Consider the C program in Fig. 3. In this loop, there

int a[100], b[100], N ;
main(){

int I = 0;
do
{ a[I] = b[I] + 5;

I + +;
} while (I < N);

}

Figure 3: C source

is no data dependency between iterations. The target
program expressed in VIR, without any optimization
appears in Fig. 4 The compiler calculates an Int of 1

cycle for this loop, but since the load delay is 2 cycles,
one iteration time (i.e. C) is 4 cycles. The number
of stages, Sc, is thus 4. Pipelining can be achieved,
by initiating source iteration i+1 one cycle after iter-
ation i . Executing the resulting instruction scheduling
is demonstrated in Fig. 5 for the same loop body, with
N = 6. ld stands for load, w for wait, st for store and
add for add, op(i) stands for execution instruction op
for source iteration i . For example ld(2) stands for the
load operation of iteration number 2. In the target pro-
gram, the optimizing compiler produces a new loop, the

i1 := 0; i2 := 0; lc := 0;
do
{

t1 := b[i1]; i1 := i1 + 1; –Load
wait one cycle for the load delay to expire; –Wait
t2 := t1 + 5; –Add
a[i2] := t2; i2 := i2 + 1; –Store
lc + +;

}while (lc < N);

Figure 4: Unoptimized target code

cycle
1 ld(1)
2 w(1) ld(2)
3 add(1) w(2) ld(3)
4 st(1) add(2) w(3) ld(4)
5 st(2) add(3) w(4) ld(5)
6 st(3) add(4) w(5) ld(6)
7 st(4) add(5) w(6)
8 st(5) add(6)
9 st(6)

Figure 5: Loop pipeline schedule

target loop, whose body is composed of the operations
of the pipeline when it is in its steady state, as are cycles
4,5,6. This operations are also called the loop kernel .
Cycles 1,2,3 are the loop prolog , while cycles 7,8,9 are
the loop epilogue. One iteration is completed at each
cycle. The number of target iterations is N+Sc-1= 9.

After allocating registers, using the rotating register
file, the target code is the one presented in Fig. 6, or
equivalently, by the IA-64 assembly code in Fig. 11 of
the appendix.

p1 := 1; p2 := 0; p3 := 0; p4 := 0;
lc := 0; i1 := 0; i2 := 0;
do{
l0 :

if (p4) a[i1] := t2; i1 := i1 + 1; Stage 4
if (p3) t1 := t4 + 5; Stage 3
if (p1) t2 := b[i2]; i2 := i2 + 1; Stage 1
〈t4 := t3 := t2 := t1〉; Register rotation
〈p4 := p3 := p2 := p1〉; Predicate rotation
lc++;
if (lc < N) p1 := 1 else p1 := 0;

while (lc < N + 3);
l1 :

Figure 6: Target pipelined loop

8. VALIDATION OF SOFTWARE PIPELIN-
ING OPTIMIZATION

In this section we describe a method to validate soft-
ware pipelining loop optimization. This method needs
only a small number of heuristics, which are based on

information printed by the compiler upon user request.
In many cases software pipeline optimization is preceded
by a loop unrolling pass. A method for proving the va-
lidity of loop unrolling transformation is described in
[15].

8.1 A General Software Pipelining Repre-
sentation

Consider a general C loop as presented on the left side
of Fig. 7, and its target pipelined code presented on the
right side of this figure. Sc is the number of stages the
optimizing compiler chose for this loop, sj is a list of
operations whose execution is predicated by the value
of pci

, t1, . . . , tl are the rotating registers used for this
loop, and p1, . . . pSc

are the predicate registers.

I = 0;
do {
L0 :

B;
I++;

} while (I < N);
L1 :

~p = 10Sc−1; lc := 0;
do {
l0 :

if (pc1) s1;
if (pc2) s2;
. . .
if (pck

) sk;
〈tl := tl−1 := · · · := t1〉
〈p

Sc
:= · · · := p2 := p1〉

lc++;
if (lc < N)

p1 := 1
else p1 := 0

� ��������������
��������������

: BT

} while (lc < N + sc − 1);
l1 :

−− Source −− −− Target −−

Figure 7: General form of a pipelined loop

All sj which depend on the same predicate register,
belong to the same pipeline stage. ci = cj is possible.
Also ∀j ∈ [1..k] : 1 ≤ cj ≤ Sc. BT is the body of
the pipelined loop, as shown in Fig. 7. The number of
target iterations is N + Sc − 1. Note that the first and
last Sc − 1 iterations of the loop execute only some of
the stages contained in the loop’s body since some of
the pi’s are 0.

8.2 The General Idea
Let ρS and ρT stand for the transition relations repre-

senting the loop body of the source and target systems
respectively, and α be the abstraction mapping. We
want to compute an invariant ϕ which can be used in
the procedure VALIDATE. We first note that while the
source loop iterates N times, the target loop iterates
N + Sc − 1 times. We handle this by choosing the idle
source transition to emulate the first Sc−1 target itera-
tion. Next we want to compute the invariant as required
in step 2 of the VALIDATE rule.

In the following subsections, we describe a method for
the automatic computation of the invariant ϕ.

8.2.1 Computing ϕ

Rather than employ a single invariant, we distinguish
between the versions of the invariant which apply to
the various prolog, epilog, and stead-state iterations.
Thus, we generate different versions of the invariant ϕi

for i = 0, . . . , Sc − 2, N, N + 1, . . . , N + Sc − 2, and a
common version ϕst corresponding to all steady-state
iterations which span the range Sc − 1 ≤ i < N . Thus,
independently of the value of N , we will always deal
with 2 · Sc − 1 different versions of the invariant.

In order to compute the different versions of the in-
variant, we use a restriction of the notion of symbolic
evaluation and symbolic state as defined in [10]. A
symbolic state is an assertion of the form

ϕ : � vi = ei,

where vi ∈ V are target system variables, and ei are
expressions.

Definition 2. Symbolic Evaluation- Let V be a set
of variables, ϕ be an assertion describing a symbolic
state, and let ρ be a transition relation. The symbolic
state resulting from the application of the transition ρ
to the symbolic state described by ϕ (also known as the
postcondition of ϕ relative to ρ) is given by:

ϕ ◦ ρ � ∃V − : (ϕ(V −) ∧ ρ(V −, V),

where V − is another copy of the variables V , intended
to capture their values before the transition is taken.

The algorithm in Fig. 8 successively computes the
2 · Sc − 2 different cases of the invariant ϕi, by sym-
bolically applying the transition ρ

B
corresponding to a

single execution of the loop’s body B
T

to the previous
symbolic state. The assertion ϕ0 is computed based on
the initiation phase before the loop starts (see Section
9). We then proceed to compute ϕ1, . . . , ϕSc−2 as the
invariants which hold at the beginning of each prolog
iteration. The assertion ϕst is valid for the loop steady
state while the assertions ϕN , . . . , ϕN+Sc−2 are valid at
the beginning of the corresponding epilog iterations.

ϕ0 := ϕ := Init ∧ ~p = 10Sc−1

for (i := 1; i ≤ Sc − 2; i := i + 1)

{ϕi := ϕ := (ϕ ∧ lc + 1 < N) ◦ ρ
B
}

ϕst := ϕ := (ϕ ∧ lc + 1 < N) ◦ ρ
B

for (i := 0; i ≤ Sc − 2; i := i + 1)

{ϕN+i := ϕ := (ϕ ∧ lc + 1 ≥ N) ◦ ρ
B
}

Figure 8: Algorithm for computing ϕ

The condition lc + 1 < N added to ϕ in the compu-
tation of {ϕ1, . . . , ϕSc−2, ϕst} guarantees that the new
value of p1 will always be 1. Similarly, the condition
lc + 1 ≥ N appearing in the computation of the cases
{ϕN , . . . , ϕN+Sc−2} guarantees that the new value of
p1 will be 0.

Following the VALIDATE procedure, the verification
condition to be validated is:

C0 :

����
ϕ ∧ α ∧ α′ ∧ ρ

B
→

(pc′ = 0 ∧ ϕ′ ∨ pc′ = 1) ∧ (ρS
L0 ∨ Pres(V S))

� ���

However, since when computing the invariant, we al-
ready split it into 2 · Sc − 1 different cases, it is neces-
sary to generate a similar number of verification condi-
tions. These conditions after appropriate simplification
are listed in Fig. 9.

8.3 Example
We illustrate this algorithm on the running example

shown in Fig. 3 (the source) and in Fig. 6 (the target).
The symbolic evaluation process of ϕi is listed in Fig. 10,
while the verification condition for the steady state, as
produced by SPV, is listed below.

Let α : lc >= 3 ∧ I = lc − 3 ∨ lc < 3 ∧ I = 0 and
κ : PC = pc.

The verification condition for the loop steady state is:
α : I = lc − 3 ∧ A = a ∧ B = b∧
α′ : I ′ = lc′ − 3 ∧ A′ = a′ ∧ B′ = b′∧
ϕst ∧ 3 � lc < N∧

ρ
B

:

�� � a′ = a with([i1] : t2)∧
i′1 = i1 + 1 ∧ i′2 = i2 + 1 ∧ t′3 = b[i2]∧
t′2 = t4 + 5 ∧ t′1 = t4 + 5 ∧ t′4 = t3∧

lc′ = lc + 1 ∧ PC = pc ∧ PC ′ = pc′ ∧ pc′ = 0

→ ρL0
:

����
� ����

A′ = A with([I] : B[I] + 5)∧
I ′ = I + 1∧
(I + 1 < N) ∧ 3 � lc′ � N
∧PC′ = if (I + 1 < N)

then 0 else 1

� ����
����

� ϕ′
st

The SPV tool produces a set of equivalent verification
conditions, which are automatically verifyed by CVC.

9. SPV: VALIDATOR OF SOFTWARE
PIPELINING OPTIMIZATION

In this section we give an overview of SPV tool. We
intend to run the tool for each code-generator pass sep-
arately. It should be noted that the code generator of
Pro-64 has about 15 passes, some of which are perform-
ing the same type of optimization. Currently, we vali-
date the software pipelining stage, and produce the ver-
ification conditions for pipelined loops.
From CGIR to a Transition System. The tool
inputs, source and target systems, use syntax and se-
mantics of the code generator internal language - CGIR
of the Pro-64. The source program is the CGIR be-
fore running software pipelining optimization and the
target is the pipelined code. CGIR represents the pro-
gram as a list of pseudo machine instructions, but also
includes annotations that describe the program as a
graph. The nodes of the graph are blocks, with at most
one branch instruction, which is the last instruction of
the block. The edges connect each block to its predeces-
sors and successors. For each block SPV produces the
compressed transition of the block, composed of mul-
tiple assignment. At most one assignment exists for
each variable. The CGIR annotations are used by SPV
as hints. The expression class (expression.cxx, expres-
sion.h) enables the efficient production of compressed

using: µ � α ∧ α′

Prolog verification conditions-

V C0 : µ ∧ lc = 0 ∧ ϕ0 ∧ ρ
B

→ lc′ = 1 ∧ ϕ′
1 ∧ Pres(V S)

V C1 : µ ∧ lc = 1 ∧ ϕ1 ∧ ρ
B

→ lc′ = 2 ∧ ϕ′
2 ∧ Pres(V S)

...
V CSc−2 : µ ∧ lc = Sc − 2 ∧ ϕSc−2 ∧ ρ

B
→ lc′ = Sc − 1 ∧ ϕ′

st ∧ Pres(V S)

Steady state verification conditions-

V Ca
st : µ ∧ Sc − 1 � lc < N − 1 ∧ ϕst ∧ ρ

B
→ Sc − 1 � lc′ < N ∧ ϕ′

st ∧ ρS
L

V Cb
st : µ ∧ lc = N − 1 ∧ ϕst ∧ ρ

B
→ lc′ = N ∧ ϕ′

N ∧ ρS
L0

Epilogue verification conditions-

V CN : µ ∧ lc = N ∧ ϕN ∧ ρ
B

→ lc′ = N + 1 ∧ ϕ′
N+1 ∧ ρS

L0

V CN+1 : µ ∧ lc = N + 1 ∧ ϕN+1 ∧ ρ
B

→ lc′ = N + 2 ∧ ϕ′
N+2 ∧ ρS

L0

...
V CN+Sc−2 : µ ∧ lc = N + Sc − 2 ∧ ϕN+Sc−2 ∧ ρ

B
→ lc′ = N + Sc − 1 ∧ ∧ pc′ = 1 ∧ ρS

L

Figure 9: Verification conditions for pipelined loop (µ � α ∧ α′)

ϕ0 :
i2 = lc ∧ i1 = lc ∧ ~p = (0, 0, 0, 1)

ϕ1 :
(ϕ0 ∧ lc + 1 < N) ◦ ρ

B
∼

t3 = b[lc − 1] ∧ i2 = lc ∧ i1 = lc − 1 ∧ ~p = (0, 0, 1, 1)
ϕ2 :

(ϕ1 ∧ lc + 1 < N) ◦ ρ
B

∼
t4 = b[lc − 2] ∧ i2 = lc ∧ i1 = lc − 2 ∧ t3 = b[lc − 1] ∧ ~p = (0, 1, 1, 1)

ϕst :
(ϕ2 ∧ lc + 1 < N) ◦ ρ

B
∼

t3 = b[lc − 1] ∧ t2 = b[lc − 3] + 5 ∧ t4 = b[lc − 2] ∧ i1 = lc − 3 ∧ i2 = lc ∧ ~p = (1, 1, 1, 1)
ϕN :

(ϕst ∧ lc + 1 ≥ N) ◦ ρ
B

∼
t3 = b[lc − 1] ∧ t2 = b[lc − 3] + 5 ∧ t4 = b[lc − 2] ∧ i1 = lc − 3 ∧ ~p = (1, 1, 1, 0)

ϕN+1 :
(ϕN ∧ lc + 1 ≥ N) ◦ ρ

B
∼

t2 = b[lc − 3] + 5 ∧ t4 = b[lc − 2] ∧ i1 = lc − 3 ∧ i2 = lc − 1 ∧ t3 = b[lc − 2] ∧ ~p = (1, 1, 0, 0)
ϕN+2 :

(ϕN+1 ∧ lc + 1 ≥ N) ◦ ρ
B

∼
t2 = b[lc − 3] + 5 ∧ i1 = lc − 3 ∧ i2 = lc − 2 ∧ t3 = b[lc − 3] ∧ t4 = b[lc − 3] ∧ ~p = (1, 0, 0, 0)

Figure 10: Example - Symbolic Evaluation of ϕ

transitions, as well as substitution and some simplifi-
cation. This class supports basic arithmetic and logic
operations, ITE - (if then else) operation as well as ar-
ray lookup and update.
Producing the control abstraction. We use the an-
notations that describe the control flow, to produce the
control abstraction. Usually, block Bi in the source sys-
tem is mapped to a block with the same index in the
target system.
Identifying Loop Linear Inductive Variables. The
current preliminary version of the tool produces the ini-
tial invariant of the software pipeline loop, ϕ0, by us-
ing the compiler annotations. In particular, registers
and temporary variables which point to arrays are an-
notated by the code generator. In the future versions
we will construct these invariants algorithmically (see
[9] page 207). This construction is performed for both
the source and the target system.
Producing the Abstraction Mapping. Mainly based
on the code generator annotations.
Constructing ϕ for Software Pipelining Loops
(swp.cxx, swp.h). SPV computes the assertions for the
prolog, epilogue and steady state following the algo-
rithm describes in subsection 6.2.1. It uses the expres-
sion class to substitute and simplify expressions. A spe-
cial simplification is performed by substituting constant
pi values for the different pipeline stages. SPV outputs
2*sc-1 assertions to be proved. The tool is able to com-
municate with more than one verification engine (cur-
rently ICS [4] and CVC).
Validation Using CVC. The produced verification
conditions are all in the decidable logics of Pressburger
Arithmetic, arrays and uninterpreted functions. The
tool output is a set of verification conditions which are
fed into CVC. CVC checks the conditions and outputs
either Valid or Invalid. It is a matter of less than a
second, for CVC, to validate all verification conditions
of the running example of this paper.

10. REFERENCES
[1] V. Allan, R. Jones, R. Lee, and S. Allan. Software

pipelining. ACM Computing Surveys,
27(3):368–432, September 1995.

[2] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner,
Z. Manna, M. P. H. B. Simpa, and T. Uribe. step

The Stanford Temporal Prover Educational
Release. Computer Science Department, Stanford
University, July 1998.

[3] K. Engelhardt, W.-P. de Roever, et al. Data
Refinement: Model-Oriented Proof Methods and
their Comparison. Cambridge University Press,
1999.

[4] J.-C. Filliâtre, SamOwre, H. Rueß, and
N. Shanka. ICS: Integrated canonizer and solver.
In Proc. 13th Intl. Conference on Computer Aided
Verification (CAV’01), 2001.

[5] S. Glenser, R. Geiβ, and B. Boesler. Verified code
generation for embedded systems. In Compiler
Optimization meets Compiler Verification, pages
23–40, 2002.

[6] G. Goos and W. Zimmermann. Verification of
compilers. In B. Steffen and E. R. Olderog,
editors, Correct System Design, volume 1710,
pages 201–230. Springer, Nov 1999.

[7] R. Huff. Lifetime-sensitive modulu scheduling. In
Programming Language Design and
Implementation. SIGPLAN, 1993.

[8] C. Jaramillo, R. Gupta, and M. Soffa. Debugging
and testing optimizers through comparision
checking. In Compiler Optimization meets
Compiler Verification, pages 87–103, 2002.

[9] Z. Manna and A. Pnueli. Temporal Verification of
Reactive Systems: Safety. Springer-Verlag, New
York, 1995.

[10] G. C. Necula. Translation validation for an
optimizing compiler. In A. Press, editor,
Proceedings of the ACM SIGPLAN conference on
Programming Language Design and
Implementation, PLDI, pages 83–95, 2000.

[11] B. Rau, M. Schlansker, and P. Tirumalai. Code
generation schemas for modulo scheduling loops.
In Proc. 25th annual international symposium on
microarchitectur, pages 158–169, 1992.

[12] A. Stump, C. Barrett, and D. Dill. CVC: a
Cooperating Validity Checker. In 14th
International Conference on Computer-Aided
Verification, 2002.

[13] W. Zimmermann and T. Gaul. On the
Construction of Correct Compiler Back-Ends: An
ASM-Approach. Journal of Universal Computer
Science, 3(5):504–567, May 1997.

[14] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg.
Voc: A translation validation for optimizing
compilers. In Compiler Optimization meets
Compiler Verification, pages 6–22, 2002.

[15] L. Zuck, A. Pnueli, and R. Leviathan. Validation
of optimizing compilers. Technical Report
MCS01-12, Weizmann Institute of Science, 2001.

APPENDIX

A. PRO64 TARGET CODE

L1 :
(p19) st [r3] = r35, 4 //[Stage4]
(p18) add r34 = 5, r37 //[Stage3]
(p18) nop //[Stage3]
(p16) ld r35 = [r2], 4 //[Stage1]
(p16) nop //[Stage1]

br.ctop L1; ;

Figure 11: IA-64 assembly code

The assembly code of the running example is listed in
Fig. 11. r3, r2 are general purpose register, r34, r35, r37
are in the rotating register file, and p16, p18, p19 are
predicate registers. br.ctop is a special branch instruc-
tion that updates and checks the loop count, rotates the
registers, and update the predicate registers.

