Validating Software Pipelining Optimizations

Raya Leviathan and Amir Pnueli

Dept. of Computer Science, Weizmann Institute of Sciences*

August 22, 2001

Abstract

There is a growing awareness, both in industry and academia, of the crucial role of
formally proving the correctness of safety-critical components of systems. Most formal
verification methods verify the correctness of a high-level representation of the system
against a given specification. However, if one wishes to infer from such a verification
the correctness of the code which runs on the actual target architecture, it is essential
to prove that the high-level representation is correctly implemented at the lower level.
That is, it is essential to verify the the correctness of the translation from the high-
level source-code representation to the object code, a translation which is typically
performed by a compiler (or a code generator in case the source is a specification
rather than a programming language).

Formally verifying a full-fledged optimizing compiler, as one would verify any other
large program, is not feasible due to its size, ongoing evolution and modification, and,
possibly, proprietary considerations. The translation validation method used in this
paper is a novel approach that offers an alternative to the verification of translators in
general and compilers in particular. According to the translation validation approach,
rather than verifying the compiler itself, one constructs a validation tool which, after
every run of the compiler, formally confirms that the target code produced on that run
is a correct translation of the source program.

The paper presents a method for translation validation of a specific optimization
used to increase the instruction level parallelism in EPIC type of architectures. Based
on our general methodology to establish simulation relation between source and tar-
get based on computational induction, we describe an algorithm that automatically
produces assertions that help i this process.

1 Introduction

There is a growing awareness, in both industry and academia, of the crucial role of formally
proving the correctness of safety-critical systems, or portions thereof. Most verification
methods deal with the high-level specification of the system. However, if one is to prove that

*e-mail: raya@wisdom.weizmann.ac.il

the high-level specification is correctly implemented at the lower level, one needs to verify
the compiler which performs the translation. Verifying the correctness of modern optimizing
compilers is challenging due to the complexity of the target architectures as well as the
sophisticated analysis and optimization algorithms used in the compilers.

Formally verifying a fully fledged optimizing compiler, as one would verify any other large
program, is not feasible due to its size, evolution over time and possibly, proprietary consider-
ations. Translation validation is a novel approach that offers an alternative to the verification
of translators in general and of compilers in particular. According to the translation vali-
dation approach, rather than verifying the compiler itself, one constructs a wvalidating tool
which, after every run of the compiler, formally confirms that the target code produced is a
correct translation of the source program.

The introduction of new classes of microprocessor architectures, such as the EPIC (Ex-
plicitly Parallel Instruction Computing) class exemplified by the Intel IA-64 architecture, led
to a new family of sophisticated optimizations, currently being developed and incorporated
into architecture-targeted compilers such as the Trimaran and the SGI PRO64.

Our ultimate goal is to develop a methodology for the translation validation of advanced
optimizing compilers, with an emphasis on EPIC-targeted compilers. Though our method-
ology offers a solution to a wide range of optimization, in this particular paper we choose to
concentrate on one of the code generator optimizations called software pipelining.

Here we introduce the theory of a correct translation. This theory provides both a precise
definition of the notion of a target program being a correct translation of a source program,
and the methods by which such a relation can be formally established. We then apply this
methodology to the software pipelining optimization phase of the case study compiler.

2 Transition Systems

As common formal semantics for both source and target systems, we introduce Transition Systems
TS’s, a variant of the transition systems of [SSP98]. A Transition System S = (V,0,0, p) is
a state machine consisting of V' a set of state variables, O C V aset of observable variables, ©
an nitial condition characterizing the initial states of the system, and p a transition relation,
relating a state to its possible successors. The variables are typed, and a state of a TS is a
type-consistent interpretation of the variables. For a state s and a variable z € V', we denote
by s[z]| the value that s assigns to z. The transition relation refers to both unprimed and
primed versions of the variables, where primed versions refer to the values of the variables
in the successor states, while unprimed versions refer to their value in the pre-transition
state. Thus, for example, the transition relation may include “y’ = y + 1” to denote that
the value of the variable y in the successor state is greater by one than its value in the old
(pre-transition) state.

The observable variables are the variables we care about. When comparing two systems,
we require that the observable variables in the two systems match. Typically, we require that
the output file of a program, i.e. the list of values printed through its execution, be identified
as observable variables. If desired, the history of external procedure calls of a selected set of
procedures can also be included among the observable variables.

A computation of a TS is a maximal finite or infinite sequence of states, o : s¢, s1,- .. ,
starting with a state that satisfies the initial condition, i.e., sy = ©, and every two consecutive
states are related by the transitions relation, i.e. (s;, si41) | p for every 4, 0 < i+ 1 < |o]'.

Let P, = (V,,0,,0,,p,) and P, =(V,,0,,0,,p,) be two TS’s, to which we refer as the
source and target TS’s, respectively. Such two systems are called comparable if there exists a
one-to-one correspondence between the observables of P, and those of P,.. To simplify the no-
tation, we denote by X € O, and z € O, the corresponding observables in the two systems.
We say that P, is a correct translation (refinement) of P, if for every finite (i.e., terminating)
P, -computation ¢”: of,... 0, there exists a finite P,-computation ¢°: oj,... ,0}, such

that s7 [z] = s;[X] for every z € V.

2.1 The VALIDATE procedure

We assume that both the source and target program can be presented as a combination of
basic blocks, each of which containing a sequence of assignments and optionally a test.
Consider, for example, the source and target program presented in Fig. 1.

S = 0; s :=0;
for(I :=1; I <=100; I++) for(i :=1; i <=100; i++)
{§8:=S5+2xA[l]} {s:=s+ali]; s:=s+ali];}
— — Source — — — — Target — —

Figure 1: A Source program and its target

Their presentation as a directed graph whose edges are basic blocks is given in Fig. 2.
We present a proof rule, called VALIDATE, which will enable us to prove that a target program
correctly implements a given source program.

1. Establish a control abstraction x mapping target locations (such as 0,1,2 in Fig. 2)
into corresponding source locations. The control abstraction should map the initial and
terminal target locations (0 and 2, respectively) into the initial and terminal source
locations.

2. For each target location 7, form an invariant ¢; that states a property which should
hold true whenever control visits location .

3. Establish a data abstraction
o (p1_>U1:E1)A"'A(pnﬁvn:En)

assigning to some source state variables v; € V, — {w} an expression E; over the target
state variables, conditional on the (target) boolean expression p;. Note, that o may
contain more than one clause for the same variable.

Yo|, the length of o, is the number of states in . When o is infinite, its length is w.

3

— 1007 1 <= 1007
[<= 1007 s := s+ alil;
1 . ’
Tt ++
— Source — — Target -

Figure 2: Example source and target as directed basic blocks graph

4. For each pair of target locations ¢+ and 7 such that j is a successors of ¢ in the target
program graph, form the verification condition:

Cij : i AaApg Ad = (Bl VORG) = K0 AV =Vs) A g

In this formula, piTj represents the transformation effected by the target basic block
connecting location ¢ to j. Similarly, pf(i)’n(;) represents the transformation effected by
the source basic block connecting location x(7) to location k(j). Note that in the case
that x(j) = k(i) we allow the target transition to be emulated by a source idling step
in which the source program does not change its state.

5. Establish the validity of all the generated verification conditions.

We will illustrate the application of rule VALIDATE to establish that the target program of
Fig. 1 correctly implements the source program in that figure. To do so, we choose

k(i): i forie{0,1,2}
(67 S:S /\I:Z
@;: 1 forevery:=0,1,2

These choices lead to the following three verification conditions:

Cor: - As=0Ai'=1LA - NS =éAT=i - =0nAT=1
%,—/ - -~ / Lot ~ —
P51 o P51

, < 100
S=s b= . . S'=4
Ch [/\ T—i] A [/\ s'=3+A[z]+A[z]] A [/\ I]

AN =i+1
I <100
— AN S'=8542x Al

ANT=I+1
1> 100
_ S=s ;L S'=4
Clz.[AI:Z.]/\[/\S—S]/\[AI,:Z.,]

AN i=74
I > 100
— A S =8

AN T'=1

It is not too difficult to see that these three verification conditions are valid.

Next, we consider a more complicated example, which requires the use of non-trivial
invariants ;. Here, the source program is the same as in Fig. 1 but the target program is
given by the version presented in Fig. 3.

s:=0; t:= A[l];

for{i:=1; i <=100; i++}
{s=s+ A[i] +t; if i <100 then t:= A[i + 1]}

Figure 3: A more complex target program

We choose
k(k) : k for k €{0,1,2}
o I=1 AN S=zs
Yo=p2: 1
o (i < 100) — t= Alj]

3 Architecture Definition

In this section, we define the syntax of a pseudo machine code, VIR - virtual intermediate representation,
for a virtual architecture, based on the IA-64 family of architectures. To simplify the presen-

tation, we prefer not to use the original machine-language syntax, but will present machine

programs in a higher-level programming style. However, the actual implementation of our

approach works directly on the genuine IA-64 syntax.

3.1 Machine Registers

Our program refer to the following registers:
e 7; - A general integer register.

e [c - Loop count register. A special register used to count the iterations within a loop.
It also controls the loop completion.

e {; - An integer register in the rotating register file.
e p[i] - An array of one bit registers, called predicate registers.

In the actual architecture, there is a fixed number of predicate registers and, like the ¢;’s,
they are rotated after every loop’s iteration. However, in our presentation here we prefer to
treat them as an array whose size equals the number of iterations, and which are referenced
as p[lc + ¢;] for various constants c;’s

3.2 Machine Operations

Assigning a value to a memory variable represents a store-to-memory operation, while the
occurrence of a memory variable on the right side of an assignment, stands for a memory-load
operation. Thus a := ¢, stands for storing the value of register ¢; into memory variable
a. Direct assignment of a memory variable to another memory variable is not allowed,
since this operation is not supported by the underlying machine. Arithmetic operations
are used with their usual meaning. A special syntax represents the rotation of the register
file: (t, := t,_1 = --- = t;) with the following semantics: t," = t,_ 1 A --- Aty = ;.
The predicated execution feature of the machine is expressed by using an if p[lc + ¢;| then
statement. Before starting an V iteration loop, with sc pipeline stages, the predicate array
p is initialized to 0°¢~11¥0%~!. This means that the first sc — 1 and the last sc — 1 entries
of the array p are set to 0, while the middle /V entries are set to 1. We use wait to indicate
no operation. Usually, this is used when we wait for the completion of an operation, such as
a load-from-memory.

3.3 Parallel Execution

All statements appearing on a single command line are executed in parallel within a single
step. However, in case a register is referenced by more than one statement on the same
command line, we should interpret the overall effect as though the statements were executed
in a sequential order from left to right. For example, the effect of a line containing the
statements:

tz = tl; tl = 1,

is to store in £3 the old value of ¢;, while loading the constant 1 into %;.

4 Software Pipelining

Software pipelining is a technique that takes advantage of advanced architecture features such
as parallelism (multiple memory and arithmetic units), rotating register file, predicate regis-
ter and special branch instructions [AJLA95, Huf93]. Software pipelining increases a loop’s
throughput by overlapping the loop’s iterations; that is, by initiating successive iterations
before prior iterations complete, and achieving saturation of functional units. To pipeline a
loop, the compiler should find an instruction schedule that best utilizes the functional units,
to achieve minimal execution time, yet without causing a register jam.

One technique for loop scheduling, is Modulo Scheduling [RST92]. To find an overlapped
schedule, the compiler must take into account the constraints imposed by the availability
of functional units and registers. Suppose that execution of one iteration takes cn cycles.
Considering data dependencies of the loop body and instructions latency, leads to calculating
the I -initiation interval, which is the number of instruction cycles issued for iteration ¢,
before iteration ¢ + 1 can be initiated. The loop body is divided into stages whose execution
time is IT cycles. The number of stages is sc = c¢n/II. Let Oy, O3 be two operations using
the same machine resource which are scheduled to cycles number ¢; and ¢y of a loop body,
respectively. Then, it is required that (¢; mod IT) should be different from (c; mod IT).
When all such constraints are satisfied, we have a sound modulo schedule.

Example 1 Consider the C program in Fig. 4. In this loop, there is no data dependency

int a[100], b[100], N
main(){
int I;
for(I=0;I<N;I++){
alIl = b[I] + 5;

}

Figure 4: C source

between iterations. The target program expressed in VIR, without any optimization appears
in Fig. 5 The compiler calculates an I7 of 1 cycle for this loop, but since the load delay is

11 =05 79 := 0;

for(le=0; lec < N; le:=lc+1){
ty:=bli]; =0+ 15 ~Load
wait one cycle for the load delay to expire; —Wait
ty i =11 + 5; —Add
alig] == to; i9 := 12 + 1; —~Store

}

Figure 5: Unoptimized target code

2 cycles, one iteration time cn is 4 cycles. The number of stages, sc, is thus 4. Pipelining
can be achieved, by initiating source iteration i¢+1 one cycle after iteration ;. Executing
the resulting instruction scheduling is demonstrated in Fig. 6 for the same loop body, with
N = 6. ld stands for load, w for wait, st for store and add for add, op(3) stands for execution
instruction op for source iteration i. For eaxmple [d(2) stands for the load operation of
iteration number 2. In the target program, the optimizing compiler produces a new loop,

cycle 1 | ld(1)

cycle 2 | w(1) 1d(2)

cycle 3 | add(1) w(2) 1d(3)

cycle 4 | st(1) add(2) w(3) ld(4)

cycle 5 st(2) add(3) w(4) 1d(5)

cycle 6 st(8) add(4) w(5) 1d(6)
cycle 7 st(4) add(5) w(6)
cycle 8 st(5) add(6)
cycle 9 st(6)

Figure 6: Loop pipeline schedule

the target loop, whose body is composed of the operations of the pipeline when it is in its
steady state, as are cycles 4,5,6. This operations are also called the loop kernel. Cycles 1,2,3
are the ramping up cycles, prolog, while cycles 7,8,9 are the ramping down, epilog. One
iteration is completed at each cycle. The number of target iterations is N+sc-1=9.

After allocating registers, using the rotating register file, the target code is the one
presented in Fig. 7, or equivalently, by the IA-64 assembly code in Fig. 10 of the appendix.

p = 0°1V03;
for(le:=0;lc< N+3; lc:=lc+1){

if (pllc]) then aliy] :=to; iy =41 + 1; —Stage 4

if (plle + 1)) then ty :=1t4 + 5; ~Stage 3

if (pllc + 3]) then ty :=blis]; is := 145 +1; —Stage 1

(ty == t3 1=ty :=11); —Register rotation
}

Figure 7: Target pipelined loop

5 Validation of Software Pipelining Optimization

In this section we describe a method to validate software pipelining loop optimization. This
method needs only a minor use of heuristics, which are based on information printed by
the compiler upon user request. In many cases software pipline optimization is preceded by
loop unrolling pass. The method of proving the validity of loop unrolling transformation is
described in [ZPLO1].

5.1 A General Software Pipelining Representation

Consider a C loop of the general form as in the left side of Fig. 8, and its target pipelined
code presented on the right side of this figure. sc is the number of stages the optimizing
compiler chooses for this loop, s; is one or more operations whose execution conditionally
depends on the value of p[lc + ¢;], t1, .., t; are the rotating registers used for this loop.

p = Osc—llNosc—l;
for(le := 0; le < N + s¢; le:= le+ 1){
if p[le + c1]then sq;
for(I:=0; I < N; I++) if pllc + o] then sq;
{B} if p[le + ci|then si;
(=t = :=1)

— — Source — — — — Target — —

Figure 8: General form of a pipelined loop

All s; which depend on the same predicate register, belong to the same pipeline stage.
¢; = ¢; is possible. Also Vj € [1..k] : 0 < ¢; < sc. By is the body of the pipelined loop,
as shown in Fig. 8. The number of target iterations is NV + sc — 1. We are interested in
the special iteratios of the prolog and epilog. In these iterations not all the instructions in
the loop body are executed, due to the values of the corresponding predicate registers. We
get the list of machine instructions that are executed in these iterations, by deleting the
instructions whose predicate register value is 0.

We define Br(i) fori € [1.sc— 1] and i € [N +1..N + sc — 2|

Br(i) - The list of instructions that are executed at iteration i € [1..sc — 1] of the loop
(a prolog iteration).

Br(N +1) - The list of instructions that are executed at iteration N+ : 4 € [1..sc — 2]
of the loop (an epilog iteration)

For example, we introduce Br(i) of the program in Fig. 7. In the figure, instructions are
marked by their pipeline stage number.
Prolog iterations:

Br(1): stage 1; register rotation.

Br(2): stage 1; (empty stage 2); register rotation.

Br(3): stage 3; stage 1; (empty stage 2); register rotation.
Epilog iterations:

Br(N +1): stage 4; stage 3; (empty stage 2); register rotation

Br(N + 2): stage 4; stage 3; register rotation

5.2 The General Idea

Let p° and p” stand for the transition relations representing the loop body of the source and
target systems respectivly, and o be the data abstraction. We want to produce an invariant
©, to be used in the procedure VALIDATE. We first note that while the source loop iterates
N times, the target loop iterates N + sc — 1 times. We handle this by choosing the idle
source transition to emulate the first sc — 1 target iteration. Next we want to produce the
invariant ¢ such that a A p" Ap A — p A .

In the following subsections, we describe a method for producing the ¢ invariants.

5.2.1 Producing ¢

Upon completion of iteration ¢ + sc — 1 of the target system, the target system state is
equivalent to the source system state after completion of iteration ¢ and parts of iterations
1+ 1,..,7 4 sc — 1. For example iteration ¢ 4+ 1 of the source is done up to stage sc — 1. The
invariant assertion ¢ should express this fact, as well as hiding target observable variables
that are changed before those of the source system. We use the notion of symbolic evaluation
and symbolic evaluation state as defined in [Nec00], but in a more restricted way.

Definition 1 Symbolic State - Is an assertion @, of the form ¢ : Nv; = Exp(V'), where
v; €'V are target system variables.

Definition 2 Symbolic Evaluation- Let v; € V be a set of variables, and v; € V~ denote
the values of these variables before the transition is taken. The symbolic state resulting from
the application of an assignment [x := Exp(V')| to the symbolic state described by ¢ is given
by:

golr:=FExp(V)] 23V~ :¢p” Az = Exzp(V"™)

We use the operator o to denote the symbolic evaluation. The definition can easily be extended
to a list of assignments.

The algorithm in Fig. 9 computes 2 x sc — 3 different assertions, by symbolically applying
the program [Br(%); lc := lc+ 1] to the previous state. Given that ¢y is valid before the first
iteration, one of each (1, ..., @1 is valid at the end of one prolog iteration. The assertion
@wsc—1 18 valid for the loop steady state while the assertions ¢y 1,...,¥N1sc_2 are valid at
the end of the corresponding epilog iterations.

10

for; (i:=1;i<sc—1;i:=i+1){
©; t i1 0 [Br(3); le:=lc+1]
}

PN = Pse—1;
for; (i:=1; i<sc—2; i:=i+1){

©Nti PN4i—1© [BT(N + Z), lc:= lC+ 1]
}

@
le=0— @A
le=1—- oA

sc—1<Ilc<N — g 1N
lC:N+1—>g0N+1/\
lC:N+2—>g0N+2/\

le = N+sc—2— YN4sc—2

Figure 9: Algorithm for computing ¢

We illustrate this algorithm on the running example:

Yo ! s =IlcANi =lc

V1 oo [te :=Dblis]; G2 =i+ 1; (ta:=t3: =ty :=11); lc:=1lc+1)] =
t3=b[l0—1]Ai2=l0Ai1=lC—1

Py : w10 [ty =blig]; dp =i+ 1; (ty:=t3: =ty :=11); lc:=lc+1)] =
t4:b[l0—2]/\’62:lC/\lelC—Q/\t:;:b[lC—l]

pg o[ty i =14+ 5; tg:=blig]; ta:=da+1; (tg :=1t3:=ty :=t1); le:=lc+ 1] =

t3=b[l0—1]/\t2Ib[l0—3]+5/\t4Ib[lC—Q]Ai12l0—3Ai2=lC

PN : ¥3

ON31: pnofir =i+ Lt =t +5; (ty:=t3 1=ty :=11); le:=lc+1] =
tz:b[l0—3]+5/\t4:b[l0—21/\’61:lC—3

ONy2: pnprofin =i+ 1t =t +5(tg :=t3 1=ty :=11); le:=1lc+ 1] =
tzzb[l0—3]+5/\i1=l0—3

We conclude with :

Q:

Vj e {0,1,2}c=7 — ;A

(le 2 3)A(lc <= N) = p3)A

(le=N+1—- @) A

(le=N+2 - ys)

Let a:lc>=3—>I=Ilc—3ANlc<3—>1=0and k:pc=rm.
The verification condition for the loop steady state is:
a:{I=Ilc—3Apc=7A
o {I'=1d —3Apd =7'A

11

o :{ts=0bllc—1|Ata=0bllc—3]|+5ANts=b[lc— 2| ANi1x =lc— 3 Nip = lcA

Vk € [0.N —1]: (iy = k A d'[in] =t V d'[k] = alk])A
pris =l + 1A=t + 1Aty =0blixs]) Ath=1t,+5AT =14 +5 AT =13A
Id=lc+1Apd =pcAlc< N+3Alc+1<N+3

[(k€ [0.N—1]: (k=) Ad[k] = bk] + 3) V (@'[K] = a[k]))A
ps'{ I'=sI+1AT =n AI<NAI+1<NA

O {th =blld — 1Aty =b[lc =3 +5Ata=b[ld =2 ANy =1d —=3Nih =1
This verification condition was verified by sTep[BBC*98] .

5.3 Validating the Verification Conditions

The verification conditions are of first order logic. Quantifiers are produced when handling
memory variables, arrays in particular. Consider a verification condition transformed to a
sequent Avy; — V&;. Universal quantifies may appear on the left side, as a result of the «
mapping (we assume that the verification conditions are without the existential quantifier,
and we have both « and o on the left side of the implication).

An array update that appears in the consequent part, such as: a[i] = FEzp is replaced
by the following equivalent function definition (skolemization, and the duality of arrays and
functions): if (i = j) d/(i) = FEzp else a/(i) = a(i) These manipulations produce verifica-
tion conditions that are Pressburger formulae without quantifiers, and with uninterpreted
functions.

References

[AJLA95] V.N. Allan, R.B Jones, R.M. Lee, and S.J. Allan. Software pipelining. ACM
Computing Surveys, 27(3):368-432, September 1995.

[BBC*98] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, M. Pichoraand H. B.
Simpa, and T.E Uribe. sTep The Stanford Temporal Prover Educational Release.
Computer Science Department, Stanford University, July 1998.

[Huf93] R. Huff. Lifetime-sensitive modulu scheduling. In Programming Language Design
and Implementation. SIGPLAN, 1993.

[Nec00] George C. Necula. Translation validation for an optimizing compiler. In ACM
Press, editor, Proceedings of the ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI, pages 83-95, 2000.

[RST92] B.R. Rau, M.S. Schlansker, and P.P. Tirumalai. Code generation schemas for
modulo scheduling loops. In Proc. 25th annual international symposium on mi-
croarchitectur, pages 158-169, 1992.

12

[SSP98] M. Siegel, E. Singerman, and A. Pnueli. Translation validation. In Intl. conference
on tools and algorithms for the construction and analysis of systems, volume 1384
of tacas, pages 151-166. Springer-Verlag, 98.

[ZPLO1] L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizating compilers.
Technical report, Weizmann Institute of Science, New York University, 2001.

A SGI PRO64 produced target code

L1:
(p19) st [r3] = 35,4 //[Staged]
(p18) add r34 =5,r37 //[Stage3|
(p18) nop //[Stage3]
(p16) Id r35 =[r2],4 //[Stagel]
(p16) nop //[Stagel]
br.ctop L1;;

Figure 10: TIA-64 assembly code
r3, 12 are general purpose register, 734, r35, 737 are in the rotating register file, and p16, p18, p19

are predicate registers. br.ctop is a special branch instruction that updates and checks the
loop count, rotates the registers, and update the predicate registers.

13

