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Abstract. The paper presents the method of network invariants for
verifying a wide spectrum of LTL properties, including liveness, of param-
eterized systems. This method can be applied to establish the validity
of the property over a system S(n) for every value of the parameter n.
The application of the method requires checking abstraction relations
between two finite-state systems. We present a proof rule, based on the
method of Abstraction Mapping by Abadi and Lamport, which has been
implemented on the TLV model checker and incorporates both history and
prophecy variables. The effectiveness of the network invariant method is
illustrated on several examples, including a deterministic and probabilis-
tic versions of the dining-philosophers problem.

1 Introduction

The emerging interest in embedded systems brought forth a surge of research
in automatic uniform verification of parameterized systems: Given a parameter-
ized system S(n) : Pi||---||P. and a property p, uniform verification attempts
to verify S(n) |= p for every n > 1. Verification of such systems is known to
be undecidable [2]; much of the recent research has been devoted to identify-
ing conditions that enable their automatic verification and abstraction tools to
facilitate the task (e.g., [7,6,19,21,24].)

One of the promising approaches to the uniform verification of parameterized
systems is the method of network invariants, first mentioned in [3,25], further
developed in [27] (who also coined the name “network invariant”), and elabo-
rated in [13] into a working method. The formulation here follows [10], which
is somewhat akin in spirit to both [27] and [13]. A significant improvement of
our approach over [27] and [13] and most other works that use abstraction for
verification is that our notion of abstraction takes into account the fairness prop-
erties of the compared systems. Consequently, our abstraction can support and
simplify proofs of liveness properties as well as any other property expressible

by LTL.
The main idea of the method is to abstract n—1 of the processes, say the com-
position Py || --- || P, into a single finite-state process Z, independent of n. We
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refer to 7 as the network invariant. If possible, this reduces the parameterized
verification problem (P || --- || P.) [ p into the fixed-size verification problem
(P1 || Z) = p. In order to show that 7 is a correct abstraction of any number
of processes (assuming that P, ..., P, are all identical except for renaming),
it is sufficient to apply an inductive argument, using P C 7 as the induction
base, and (P || Z) CE Z as the induction step. These two abstraction proof obli-
gations compare two finite-state systems and can, in principle, be performed
algorithmically by a model checker.

Unfortunately this approach is intractable. The obvious way to establish al-
gorithmically that a concrete system S, is abstracted by the abstract system
S, is by showing that S. N S, admits no computations, where S, is the com-
plement of S,. Since fair systems are equivalent to Streett automata, the set
of states obtained by complementing S, is usually prohibitively large. Conse-
quently, abstraction is accomplished by establishing a step-by-step simulation
relation between a concrete computation and an abstract one, following the
abstraction mapping method of Abadi and Lamport [1]. This approach has been
implemented on the Weizmann Institute Temporal Logic Verifier TLV.

In this paper we present our theory of abstraction which can be used for
the verification of arbitrary LTL formulas (including liveness). We introduce the
method of network invariants and the abstraction proof rule used for discharging
the abstraction proof obligations. The method is then illustrated over several
examples of parameterized systems for which we uniformly verify their essential
safety and liveness properties.

The two examples we study deal with a solution to the dining philosophers
problem. In the first example, we consider the case in which each of the philoso-
phers follows a deterministic protocol. The property we establish is individual
accessibility, that is, every hungry philosopher eventually eats. We present two
network invariants for this problem. The first invariant is a carefully designed
abstraction of the two end processes in a string of philosophers. While the de-
sign of this invariant took a long time to develop, its proof obligations were very
straightforward to establish. At the other end of the spectrum, we present a very
natural invariant, which is just a string of 3 philosophers. The main proof obliga-
tion here was to show that a string of 4 philosophers is abstracted by a string of
3. This required an abstraction mapping which uses prophecy variables. We then
turn to a solution of the dining philosophers which is a variant of the probabilistic
“Courteous Philosophers” protocol of [14]. For this protocol, we also succeeded
in automatically verifying individual accessibility using a two-halves abstrac-
tion. As a third example, we considered the distributed termination algorithm
of [5]. This algorithm also considers a ring of processes. However, unlike the two
preceding cases, in addition to the communication with its two close neighbors,
a process also maintains a communication of a different kind with (potentially)
every other process. In order to make this problem amenable to treatment by the
network-invariants method, we had first to abstract this “unconstrained” model



of communication into a simpler representation. Details about the successful and
effective application of the method to this case study are provided in [12]. !

The variety of examples of application of the network invariant method to au-
tomatic verification of liveness properties of parameterized system, demonstrates
the power of the methodology and the wide range of its applicability.

Many methods have been proposed for the uniform verification of param-
eterized systems. These include methods based on explicit induction ([26,24])
network invariants that can be viewed as implicit induction ([13], [27], [8], [15]),
methods that can be viewed as abstraction and approximation of network invari-
ants ([3], [25], [4]), and other methods that can be viewed as based on abstraction
(19, [7)

Our approach to verification by network invariants has been presented first
in [10]. The work in [10] was based on a significantly weaker proof rule than
the one we present here. For example, the proof rule presented there could not
handle prophecy variables and was therefore inherently incomplete. Also, some
of the solutions presented in [10] used the construct of chaos in cases where it
was not necessary, leading to overly cumbersome abstractions. Relative to [10],
this paper presents a more powerful rule and additional interesting examples,
such as the verification of a probabilistic protocol.

2 Fair Discrete Systems

As a computational model for reactive systems we take the model of fair discrete
systems (FDS) [10], which is a slight variation on the model of fair transition
system [18]. Under this model, a system D:(V,O,W, 0, p,J,C) consists of the
following components:

e V: A finite set of typed system variables, containing data and control vari-
ables. A state s is an assignment of type-compatible values to the system
variables V. For a set of variables U C V, we denote by s[U] the values
assigned by state s to the variables U. The set of states over V is denoted
by X. In this paper, we assume that X is finite.

e O C V: A subset of observable variables. These are the variables which can
be externally observed.

e W C V: A subset of owned variables. These are variables which only the
system itself can modify. All other variables can also be modified by steps
of the environment,.

e O: The initial condition — an assertion (first-order state formula) character-
izing the initial states.

e p: A transition relation — an assertion p(V, V'), relating the values V of the
variables in state s € X to the values V' in a p-successor state s’ € X.

e J: A set of justice (weak fairness) requirements. Each justice requirement
J € J is an assertion, intended to guarantee that every computation contains
infinitely many J-states (states satisfying J.)

! The TLv code of all examples presented in this paper can be found in
www.wisdom.weizmann.ac.il/ verify/publications/2002/KPZ02.html#explanation.



o C: A set of compassion (strong fairness) requirements. Each compassion
requirement is a pair (p,q) € C of assertions, intended to guarantee that
every computation containing infinitely many p-states also contains infinitely
many g-states.

We require that every state s € X has at least one p-successor. This is often
ensured by including in p the idling disjunct V' = V' (also called the stuttering
step). In such cases, every state s is its own p-successor. A system is said to
be closed if W =V, i.e., all variables are owned by the system. Otherwise, the
system is said to be open. Let o: s, 81, S2, ..., be an infinite sequence of states,
¢ be an assertion and j > 0 be a natural number. We say that s; is a ¢-state if
it satisfies ¢, and we say that j is a yp-position of o if s; is a ¢-state.

Let D be an FDS as above. We define an (open) run of D to be an infinite
sequence of states o: sg, 81, 82, ..., satisfying the following requirements:

o Initiality: 8o is initial, i.e., s¢ = ©.
e Consecution: For each  =0,1,...,
m 59,41 [W] = s2;[W]. That is, saj+1 and sa; agree on the interpretation of the
owned variables W.
m 53,42 is a p-successor of soj41.

Thus, an open run of a system consists of a strict interleaving of system with
environment actions, where the system action has to satisfy the transition re-
lation p, while the environment step is only required to preserve the values of
the owned variables. We say that a run of D is a computation if it satisfies the
following requirements:

o Justice: For each J € J, o contains infinitely many J-positions
o Compassion: For each (p,q) € C, if o contains infinitely many p-positions,
it must also contain infinitely many g-positions.

We denote by Comp(D) the set of all computations of D.

Systems Dy and D are compatible if their sets of owned variables are disjoint,
and the intersection of their variables is observable in both systems. For com-
patible systems D; and D,, we define their asynchronous parallel composition,
denoted by Di||D2, as the FDS whose sets of variables, observable variables,
owned variables, justice, and compassion sets are the unions of the correspond-
ing sets in the two systems, whose initial condition is the conjunction of the
initial conditions, and whose transition relation is the disjunction of the two
transition relations. Thus, a step in an execution of the composed system is a
step of system D;, or a step of system D,, or an environment step. We also
provide a restriction operation, which moves a specified variable to the category
of owned variables and makes it non-observable. We denote by [restrict z in D]
the system obtained by restricting variable x in system D.

An observation of D is a projection of a D-computation onto O. We denote
by Obs(D) the set of all observations of D. Systems D¢ and D4 are said to be
comparable if they have the same sets of observable variables, i.e., O, = O, or,



alternatively, if there is a 1-1 correspondence between O, and O,. System Dy
is said to be an abstraction of the comparable system D¢, denoted Do C Dy,
if Obs(Dc) C Obs(Da). The abstraction relation is reflexive, transitive, and
compositional, that is, whenever Do E Dy then (D¢l||Q) C (Da|Q)- Tt is also
property restricting. That is, if Do € D4 then Dy = p implies that Do = p (see
[10] for more details).

All our concrete examples are given in SPL (Simple Programming Language),
which is used to represent concurrent programs (e.g., [18,16]). Every SPL pro-
gram can be compiled into an FDS in a straightforward manner. In particular,
every statement in an SPL program contributes a disjunct to the transition rela-
tion. For example, the assignment statement “ly:y := = + 1; ¢1:” contributes to
p the disjunct

peo: at by AN at by ANy =xz+1 A2 =1

The predicates at_fy, and at_¢] stand, respectively, for the assertions m; = 0
and 7, = 1, where 7; is the control variable denoting the current location within
the process to which the statement belongs. Every variable declared in an SPL
program is specified as having one of the modes in, out, in-out, or local. All but
the local variables are observable. The non-input (out and local) variables are
owned, while the input variables (in and in-out) are not owned.

Properties are specified in propositional linear time temporal logic (LTL) over
the states of D (see [17], [18] for LTL). A property ¢ is valid over D if o |= ¢ for
every o € Comp(D).

3 Verification by Abstract Network Invariants

We define a binary process Q(Z;¥) to be a process with two ordered sequences
of observable variables Z and §. When & and ¢ consist of a single variable we use
the notation Q(z;y). Two binary processes @ and R can be composed to yield
another binary process, using the modular composition operator o defined by

(QoR)(#;7) = [restrict § in Q(Z;9) || R(¥; Z)]

Binary processes P, . .., Py, can be composed into a closed ring structure (having
no observables) defined by

(Pyo---0P,0) = [restrict Z1,...,Tm in P (Z1;%2) || - || Pm(Zm; Z1)]

The dangling o denotes that process P,, is composed with P;. In this work we
deal with parameterized systems of the form P(n) = (P o---o P, o), where each
P; is a finite state binary process. Such a system represents an infinite family
of systems (one for each value of n). Our objective is to verify uniformly (i.e.,
for every value of n > 1) that property p is valid. For simplicity of presentation,
assume that the property p only refers to the observable variables of P; and that
processes Py, ..., P,_; areidentical (up to renaming) and can be represented by
the generic binary process Q. That is, Pi(Z;¥%) = --- = Pa_1(T;9) = Q(T;79)-
The network invariants method can be summarized as follows:



1. Devise a network invariant T = Z(Z,¥) which is an FDs intended to provide
an abstraction for the (open) modular composition Q¥ = Qo---0Q for any
k> 2. Y

2. Confirm that 7 is indeed a network invariant, by establishing that Q C 7
and (QoZ) C T.

3. Model check (P,oZ o P,0) |= p.

As presented here, the rule is adequate for proving properties of P;. Another
typical situation is when we wish to prove properties of a generic P; for j < n.
In this case, we model check in step 3 that (ZoPoZo P, o) Ep.

Verification by the network invariants method entails model checking (step
3) and verifying abstraction (step 2). Most of the available computer aided ver-
ification (CAV) tools for LTL are designed to support verification tasks: They
accept a system and an LTL formula as input, and check whether the formula is
valid over the system.

Based on the abstraction mapping of [1], we present in Fig. 1 a proof rule
that reduces the abstraction problem into a verification problem. There, we
assume two comparable FDS’s, a concrete D, : (V,,0,,W,,0,,p.,T,Cs)
and an abstract D, : (V,,0,,W,,0,,p,,T,,C,), and we wish to establish
that D, C D,. Without loss of generality, we assume that V, NV, = 0, and
that there exists a 1-1 correspondence between the concrete observables O, and
the abstract observables O, .

The method assumes the identification of an abstraction mapping a : (U =
E4(V,)) which assigns expressions over the concrete variables to some of the
abstract variables U C V,. For an abstract assertion ¢, we denote by ¢[a] the
assertion obtained by replacing the variables in U by their concrete expressions.
We say that the abstract state S is an a-image of the concrete state s if the
values of £, in s equal the values of the variables U in S.

Al.9, -3V, :0,[q]

A2.D; E O(pe  — 3V, :p,ula]le'])

A3.D, E (e — O, =0,)

A4.D, E O J[o], for every J € J,

A5.D, E OOpl] — OOglal,  for every (p,q) €C,
D, ED,

Fig. 1. Rule AL-ABS.

Premise A1l of the rule states that for every initial concrete state s, it is
possible to find an initial abstract state S = @, such that (s, S) = a. The exis-
tential quantification allows to choose arbitrary values for the abstract variables
not mapped by a, i.e. the variables in V, — U.

Premise A2 states that for every pair of concrete states, s; and sz, such that
s2 is a p,-successor of s, and an abstract state S; which is a a-image of s1,



it is possible to find an abstract state Sz such that Ss is an a-image of s5 and
is also a p,-successor of S;. Together, A1l and A2 guarantee that, for every run
80,81, - .. of D, there exists a run Sy, S1,... of D,, such that S; is an a-image
of s; for every j > 0. Premise A3 states that whenever an abstract state S is an
a-image of a concrete state s, then the values of the corresponding observables
in the two states match. Premises A4 and A5 ensure that the abstract fairness
requirements (justice and compassion, respectively) hold in any abstract state
sequence which is a (point-wise) a-image of a concrete computation. It follows
that every a-image of a concrete computation o obtained by applications of
premises Al and A2 is an abstract computation whose observables match the
observables of o. This leads to the following claim:

Claim 1. If the premises of rule AL-ABS are valid for some choice of o, then
D, is an abstraction of D, .

Rule AL-ABS has been implemented in the current TLV-BASIC implementation of
the abstraction checker within TLV [20].

As explained in [1], a rule such as AL-ABS cannot be complete unless we allow
the mapping at position j to refer to concrete states at positions other than j.
This is handled in [1] by augmenting the concrete system by history and prophecy
variables. Following this recommendation, we allow the concrete system to be
augmented with a set V,, of history variables and a set V,, of prophecy variables.
We assume that the three sets, V., V},, and V,,, are pairwise disjoint. The result
is an augmented concrete system D : (VX,0,W}, 0% ,p%,J.,C.), where

V=V, uV,uVvy, wr = WuVv,
@Z =06, A /\zEVH (z=fa(Ve,V2))
i = b N A, @ = VA VAV A ey, v = 2u(Ve)

In these definitions, each f, and g, are state functions, while each ¢,(V,) is
a future temporal formula referring only to the variables in V. Thus, unlike
[1], we use transition relations to define the values of history variables, and
future LTL formulas to define the values of prophecy variables. The clause y =
y(V,) added to the transition relation implies that at any position j > 0, the
value of the boolean variable y is 1 iff the formula ¢, (V) holds at this position.

It is not difficult to see that the augmentation scheme proposed above is
non-constraining. Namely, for every computation o of the original concrete sys-
tem D, there exists a computation ¢* of D}, such that o and o™ agree on the
values of the variables in V... It follows that rule AL-ABS can be applied to D7,
an arbitrary non-constraining augmentation of D and if the premises are valid,
then so is the conclusion. This extended version of the rule has been implemented
within the TLV model checker. Handling of the prophecy variables definitions is
performed by constructing an appropriate temporal tester [11] for each of the
future temporal formulas appearing in the prophecy schemes, and composing it
with the concrete system.



The presented version of the rule is formulated for the case that the ab-
straction mapping is a function. We do have extensions of the rule for the more
general case that « is a relation rather than a function.

4 Deterministic Dining Philosophers

As a first example, we apply the network invariant method to a deterministic
solution to the dining philosophers problem (DDP). As originally described by
Dijkstra, n philosophers are seated at a round table, with a fork placed in be-
tween each two neighbors. Each philosopher alternates between a thinking phase
and a phase in which he becomes hungry and wishes to eat. In order to eat, a
philosopher needs to acquire the forks on both its sides. A solution to the problem
consists of protocols to the philosophers (and, possibly, forks) that guarantees
that no two adjacent philosophers eat at the same time (mutual exclusion) and
that every hungry philosopher eventually gets to eat (individual accessibility).
It is well known that there are no symmetric deterministic solutions to the prob-
lem. In this section we explore a deterministic asymmetric solution. In the next
section we explore a non-deterministic symmetric solution.

A deterministic solution to the problem that uses semaphores for forks,
is given by a modular composition (Q™ ! oC o), where the binary processes
Q(left; right) and C(left; right) are presented in Fig. 2. In this program, n — 1
philosophers reach first for the fork on their left, and then for their right fork.
One philosopher, C, is a contrary philosopher, reaching first for its right fork
and only later for its left fork.

(Q""'oCo) where
Q(left; right) = C(left; right) =

[ loop forever do ] [loop forever do i
£y : NonCritical £y : NonCritical
{1 : request left {1 : request right
{2 : request right 42 : request left
{3 : Critical {3 : Critical
44 : release left 44 : release right
U5 : release right U5 : release left

Fig. 2. Program DINE-CONTR: solution with one contrary philosopher.

Our goal is to prove the liveness property of individual accessibility (starva-
tion freedom), specified by the formula ¢ : at_li[j]] = < at_L3]j], for
every philosopher j = 1,...,n. Our strategy is to construct a network invari-
ant Z(left; right) that abstracts a philosophers chain Q* for any k > 2. In the
following we present two such network invariants.



The “Two-Halves” Abstraction

The first network invariant Z(left; right) is presented in Fig. 3 and can be viewed
as the parallel composition of two “one-sided” philosophers. The compassion
requirement reflects the fact that 7 can deadlock at location ¢; only if, from
some point on, the fork on the right (right) remains continuously unavailable.

Z(left; right) ::

loop forever do loop forever do
{o : request left [ myo : request right
{1 : release left my : release right

J :—at-my  C: (right,—at_{;)

Fig. 3. The Two-Halves Network Invariant

To establish that 7 is a network invariant, we use rule AL-ABS to verify (Q o Q) C
7 and (Q oZ) C Z, using an obvious abstraction mapping with no augmentation
of the concrete system. To show that an arbitrary regular philosopher never
starves, we model check

(ZoQoIToCo) [ afhlQ = at_l3[Q)]

where C' is a contrary philosopher.

In [10] we presented a similar two-halves abstraction, that contained a spe-
cial chaos state, used as an escape state for both components of the abstraction,
whenever an environment fault is detected. As can be seen by the current ab-
straction, the use of chaos is unnecessary.

The “Four-by-Three” Abstraction with Prophecy

An alternative network invariant is obtained by taking Z = @Q3, i.e. a chain of 3
philosophers. To prove that this is an invariant, it is sufficient to establish the
abstraction Q* C @3, that is, to prove that 3 philosophers can faithfully emulate
4 philosophers.

Let Q1 0Q20Q30 Q4 and Q5 0 Qg 0 Q7 be the modular composition of four
and three regular philosophers. The abstraction mapping is defined such that Q5
mimics Q1 and Q7 mimics Q4. As to Qg, it remains idle until Q1 0 Q2 0 Q30 Q4
reaches a deadlock (Q1,-..,Q4 all remain at location £ with their right forks
being used), at which point Qg joins @5 and Q7 to form a similar deadlock at the
abstract level. To sense a guaranteed deadlock, we augment the concrete system
with a prophecy variable v € Vp and associate v with the temporal formula
9 : [ deadlock. Namely, v is true in all states of the concrete system which
satisfy ¢. The new variable v is then used in the definition of the abstraction

mapping.



5 Probabilistic Courteous Philosophers

As a second example, we consider Lehman and Rabin’s courteous philosophers
protocol [14]. The protocol gives a symmetric, distributed solution to the dining
philosophers problem, by introducing probabilistic transitions. An SPL code of
the protocol is presented in Fig. 4.2 In this protocol, the forks (represented by
the array y[l1..n]) are shared variables that are reset when held and set when
on the table. In addition to the forks, adjacent philosophers P[i] and P[i & 1]
share a last[i & 1] variable which indicates whether P[i] is the last to have eaten
between the two. Each philosopher P[i] has two additional variables signL[i] and
signR[i] that signal its wish to eat to its left and right neighbors. In order to
choose the first fork to be picked, a philosopher flips a coin, represented by the
probabilistic statement goto {0.5 : £3; 0.5 : £5} at location ¢;. A philosopher can
pick its first fork (¢2 and £5) only when the neighbor with whom it shares the
fork is either not hungry or is the last to have eaten between the two. Once it
gains the first fork, the philosopher checks whether its second fork is available. If
it is, it proceeds to eat (£g). Else, it returns the first fork (¢4 and £7) and returns
to flipping the coin (¢1). The justice requirements of the system are the obvious
ones, and there are no compassion requirements.

In [14], the protocol is claimed to satisfy individual accessibility to £g with

probability 1, under the obvious justice requirements and appropriate assump-
tions about the probabilistic choices. To provide an automatic proof, we perform
the following transformations. First, as we prove in [28], in order to prove the
accessibility property of the protocol, it suffices to consider a non-probabilistic
version of it, where the coin flips in location #; are replaced by non-deterministic
choices, and compassion requirements are added to capture the fairness required
of the coin flips. Next, we reduce the state space by eliminating the variables
yli], signL[i] and signR[i], whose values can be uniquely determined by the loca-
tions of the relevant processes.
The result is program DINE presented in Fig. 5. Process @ has the interface list
(lloc, last, loc; loc, rlast, rloc) in which loc (appearing twice) is the process own
program counter (location) and last is the variable declared within the process.
Variables lloc and rloc are the locations of the left and right neighbors of @,
respectively, while rlast is the last variable declared in the right neighbor of Q.
Every process in the program is associated with a set of justice requirements
and a set of compassion requirements. The justice requirements are

{loc #1, loc #3, loc#4, loc#6, loc#7, loc#8,
=(loc =2 A (lloc =0 Vv lloc € {0..5} A last # 0)),
=(loc =5 A (rloc =0 V rloc € {1,2,5..7} A rlast # 1))}

2 In the protocol, as presented in [14], the instructions appearing at location 8 are
not atomic. Making them atomic, as we did in our presentation, does not impair the
proof since none of these non-atomic assignments are observable to a single process.
It does, however, reduce state space for model-checking.

3 We define i®1 = (i modn)+1and i©1 = (i —2 modn)+1, so that n@®1 =1 and
1lel=n.



in n: integer where n > 2

local y : array [1..n] of boolean init 1
local signL, signR : array [l1..n] of boolean init 0
local last : array [1..n] of {—1,0,1} init —1

[loop forever do

£y : non-critical
£y : signL[i] := 1; signR][i] := 1;goto {0.5: £2;0.5: ¢5}
£y r await y[i] A (—signR[iS 1] V last[i] = 1)
and then y[i] :=0
L3 Ifylidl] =1
then y[i @ 1] := 0; goto /g
7, P[] = £y 1 y[i] :==1; goto £,
ls :await yi D 1] A (-signL[i @ 1] V last[i ® 1] = 0)
and then y[i @ 1] :=0
Lo : If y[i] =1
then y[i] := 0; goto {3
L7 1 y[i ®1] :=1; goto £y
e - <Critical; signL[i] := 0; signR[i] := 0 >
8\ last[i] == 0;last[i ® 1] :=1; y[i] :=Lyli®1]:=1

Fig. 4. The Courteous Philosophers

Q" where
Q(lloc, last, loc; loc, rlast, rloc) ::
[local last: [—1..1] init —1 T
loop forever do
[ £o: Think T
612 go to {22, £5}
£y: await lloc =0 V lloc € {0..5} Alast #0
£3: if rloc € {0..2,5..7} then go to {3
ly: go to ¢y
L5 await rloc =0 V rloc € {1,2,5..7} Arlast #1
Lg:  if lloc € {0..5} then go to ¢
7 go to ¢y
ls: Eat; last:=0; rlast:=1

Fig. 5. Program DINE: Location-based Courteous Philosophers

The justice requirements guarantee that no process can get stuck forever at any
of the locations #1, 43,44, ¥, l7, lg or at locations £, £5 when their exit conditions
are continuously true.



The role of the compassion requirements is to emulate the probabilistic choice
at location £;. The compassion requirements are:

{(entered_Lly5 A cond, entered_fs A cond),
(entered_fy5 A cond, entered_fs A cond)}

for each choice of cond taken from the following set:

{rloc € {0,8}, rloc € {2, 3}, rloc = 4, rloc € {5,6}, rloc =7,
lloc € {0,8}, lloc € {2,3}, lloc = 4, lloc € {5,6}, lloc =7}

For a location ¢;, the predicate entered_/; characterizes all states in which control
has just entered £;. The above requirements guarantee, for each of the conditions
cond, that if the choice at location ¢; is taken infinitely many times while cond
holds, then the computation proceeds infinitely many times from #; to £5 while
cond holds and infinitely many times from ¢; to 5 while cond holds.

Our goal is to establish the accessibility property for the protocol, specified
by: at_£1[i] = <> at_{Lg[i] for every n > 2 and every i = 1,...,n The proof
proceeds in several steps, described below.

No Process Can Get Stuck at Either £, or /5
Consider the closed ring (Q™ o) = (Q10---0Q,, o). First, we establish
O(loc =5) = < O(rloe=5 A rlast =1) (1)

for every @); within the ring. To establish this property, we consider the open
composition Q2 = Q;0(Q- consisting of two composed processes in an unre-
stricted environment and model check property (1) for @; within Q2. From
property (1) we conclude by induction the property

Oatlsli] = Vj:[ln]: <O Oat_bs[i] A lastj] = 1), 2)

claiming that if process @; get stuck at 5 then, eventually all processes get stuck
at £y with last[l] = - -- = last[n] = 1. We proceed to show that such a situation
is impossible. This is due to the invariance of the assertion

lasti] # -1 — 3Jj#k:last]jl]=0 A lastlk] =1 (3)

The invariance of this assertion follows from the observation that the only tran-
sition which can modify the values of last[i] is the exit from £g and any execution
of this transition sets last[i] = Q;.last to 0 and last[i ® 1] = Q;,.rlast to 1. We
conclude that no process can ever get stuck at Z;. In a completely symmetric
way we show that no process can ever get stuck at Z». This allows us to replace
binary process @ by a process R which is identical to @), except that the justice
requirements associated with locations ¢ and /5 are, respectively, loc # 2 and
loc # 5.



Proving Accessibility for (R™ o)

We can now prove accessibility for the parametric system (R; o --- o R,0),
using the network invariants method.

For the network invariant we use a Two-Halves abstraction Z = Left o Right,
where process Left = Left(lloc, last, loc; loc, rloc) is presented in Fig. 6. Pro-
cess Right = Right(lloc, loc; loc, rlast, rloc) is a mirror image of Left (see [12]),
communicating with its right neighbor wherever Left communicates with its left
neighbor. Process Left behaves like a regular philosopher with respect to its
left fork, but its behavior with respect to the right fork is abstracted by non-
deterministic steps (¢35 and £5). To compensate for the non-determinism and
ensure accessibility, the following compassion requirement is added to the pro-
cess:

(loc € {2..4} A rloc € {5..7}, loc =8 V rloc =38)

Process Right is defined symmetrically.

Left(lloc, last, loc; loc, rloc) ::
[local last: [—1..1] init —1
loop forever do

[¢o: Think 1
£1: go to {l2, 05}

ly: await lloc =0 V lloc € {0..5} Alast # 0
€3: go to {34, fs}

ly: go to ¢y

£5Z go to {£5, Zﬁ}

Ls: if lloc € {0..5} then go to {s

7 go to ¢

ls: Eat; last:=0;

JUSTICE

loc # 1, loc # 2, loc # 3, loc # 4,

loc #£5, loc # 6, loc # 7, loc # 8

COMPASSION

(loc € {2.4} A rloc € {5..7}, loc =8 V rloc =8),
(entered_La 5 A cond, entered_{€y A cond)

(entered_La s A cond, entered_£s A cond)
Lfor cond € {lloc € {0,8}, lloc € {2,3}, lloc = 4, lloc € {5,6}, lloc = 7}]

Fig. 6. Process Left



For the first step of establishing that 7 is a network invariant, we show that
(Ry 0 RyoRy) C Left o Right. We use the abstraction mapping « given by

Left.lloc = R, .lloc, Left.last = R, .last, Left.loc = R;.loc,
Right.last = R3.last,
Right.loc = R3.loc, Right.rlast = Rs.rlast, Right.rloc = R3.rloc

With this abstraction mapping, it is not difficult to check that premises A1, A2
and A3 hold. In particular, the concrete processes have tests for the statements
at locations £s,¢3, £5, s which some of the abstract versions transform into non-
deterministic choices. Most of the instances of premises A4 and A5 need not
be checked because they are equivalent to their concrete counterparts. The only
exception is the abstract compassion requirement
(Left.loc € {2..4} A Right.loc € {5..7}, Left.loc =8 V Left.loc = 8)

which has no concrete counterpart. Consequently, we model check that the sys-
tem (R; o Ry o R3) satisfies

O <(Ry.loc € {2..4} A Rg.loc € {5..7}) — [0 <(Ry.loc =8V Ry.loc = 8)

Next, we have to show that (RoZ) C Z. This task calls for establishing that
(Ro Left o Right) T (Left o Right). The proof of this abstraction is similar to
the previous one, using a similar abstraction mapping.

Finally, we conclude the verification by model checking the accessibility prop-
erty

(Ro Lefto Righto) [ (R.doc=1) = {(R.loc =8).
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