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Abstract

The paper considers the problem of checking abstraction between two finite-state fair discrete systems.
In automata-theoretic terms this is trace inclusion between two Streett automata. We propose to reduce
this problem to an algorithm for checking fair simulation between two generalized Biichi automata. For
solving this question we present a new triply nested p-calculus formula which can be implemented by
symbolic methods.

We then show that every trace inclusion of this type can be solved by fair simulation, provided
we augment the concrete system (the contained automaton) by appropriate auxiliary variables. This
establishes that fair simulation offers a complete method for checking trace inclusion.

We illustrate the feasibility of the approach by algorithmically checking abstraction between systems
whose abstraction could only be verified by deductive methods up to now.
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1 Introduction

A frequently occurring problem in verification of reactive systems is the problem of abstraction (symmetri-
cally refinement) in which we are given a concrete reactive system C' and an abstract reactive system A and
are asked to check whether A abstracts C, denoted C' C A. In the linear-semantics framework this question
calls for checking whether any observation of C is also an observation of A. For the case that both C' and
A are finite-state systems which admit both weak and strong fairness this problem can be reduced to the
problem of language inclusion between two Streett automata (e.g., [Var91]).

In theory, this problem has an exponential-time algorithmic solution based on the complementation of
the automaton representing the abstract system A [Saf92]. However, the complexity of this algorithm makes
its application prohibitively expensive. For example, our own interest in the finite-state abstraction problem
stems from applications of the verification method of network invariants ([KPSZ02],[WL89]). In a typical
application of this method, we are asked to verify the abstraction Py || P, || Ps | Py C Ps || Ps || Py, claiming
that 3 parallel copies of the dining philosophers process abstract a system of 4 parallel copies of the same
process. The system on the right has about 1800 states. Obviously, to complement a Streett automaton of
1800 states is hopelessly expensive.

A partial but more effective solution to the problem of checking abstraction between systems (trace
inclusion between automata) is provided by the notion of simulation. Introduced first by Milner [Mil71], we
say that system A simulates system C, denoted C' < A, if there exists a simulation relation R between the
states of C and the states of A. It is required that if (s,,s,) € R and system C can move from state s, to
state s'C, then system A can move from s , to some s, such that (s'c, s' ) € R. Additional requirements on
R are that if (s.,,s,) € Rthen s, and s, agree on the values of their observables, and for every s, initial
in C there exists s, initial in A such that (s, s,) € R. It is obvious that C' < A is a sufficient condition
for C C A. For finite-state systems, we can check C < A in time proportional to (|| - | ,])? where
and X, are the sets of states of A and C respectively [BR96, HHK95].

While being a sufficient condition, simulation is definitely not a necessary condition for abstraction.
This is illustrated by the two systems presented in Fig. 1
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Figure 1: Systems EARLY and LATE

LATE

The labels in these two systems consist of a local state name (a—e, A—E) and an observable value. Clearly
these two systems are (observation)-equivalent because they each have the two possible observations 012« +
013%. Thus, each of them abstracts the other. However, when we examine their simulation relation, we find
that EARLY < LATE but LATE A EARLY. This example illustrates that, in some cases we can use simulation
in order to establish abstraction (trace inclusion) but this method is not complete.

The above discussion only covered the case that C and A did not have any fairness requirements asso-
ciated with them. There were many suggestions about how to enhance the notion of simulation in order to
account for fairness [GL94, LT87, HKR97, HR00]. The one we found most useful for our purposes is the
definition of fair simulation from [HKR97]. Henzinger et al. proposed a game-based view of simulation.
As in the unfair case, the definition assumes an underlying simulation relation R which implies equality



of the observables. However, in the presence of fairness, it is not sufficient to guarantee that every step of
the concrete system can be matched by an abstract step with corresponding observables. Here we require
that the abstract system has a strategy such that any joint run of the two systems, where the abstract player
follows this strategy will either satisfy the fairness requirements of the abstract system or fail to satisfy one
of the fairness requirements of the concrete system. This guarantees that every concrete observation has a
corresponding abstract observation with matching values of the observables.

Algorithmic Considerations

In order to determine whether one system fairly simulates another (solve fair simulation) we have to solve
games [HKR97]. When the two systems in question are reactive systems with strong fairness (Streett), the
winning condition of the resulting game is an implication between two Streett conditions (fsim-games). In
[HKR97] the solution of fsim-games is reduced to the solution of Streett games. In [KV98] an algorithm for
solving Streett games is presented. The time complexity of this approach is (|, |5, |- (34 + k) 2FatFo .
(2k, + k,)! where k, and k, denote the number of Streett pairs of C' and A respectively. Obviously, the
complexity of this approach is too high. It is also not obvious whether this algorithm can be transformed
into a symbolic one.

In the context of fair simulation, Streett systems cannot be reduced to simpler systems [KPV00]. That
is, in order to solve the question of fair simulation between Streett systems we have to solve fsim-games in
their full generality. However, we are only interested in fair simulation as a precondition for trace inclusion.
In the context of trace inclusion we can reduce the problem of two reactive systems with strong fairness
to an equivalent problem with weak fairness. Formally, for the reactive systems C and A with Streett
fairness requirements, we construct C' ? and A” with generalized Biichi requirements, such that C' C A iff
c’cA”. Solving fair simulation between C ?and A” is simpler. The winning condition of the resulting
game is an implication between two generalized Biichi conditions (generalized Streett[1]).

In [dAHMO1], a solution for games with winning condition expressed as a general LTL formula is
presented. The algorithm in [dAHMO1] constructs a deterministic parity word automaton for the winning
condition. The automaton is then converted into a u-calculus formula that evaluates the set of winning states
for the relevant player.

In [EL86], Emerson and Lei show that a p-calculus formula is in fact a recipe for symbolic model
checking !. The main factor in the complexity of p-calculus model checking is the alternation depth of the
formula. The symbolic algorithm for model checking a u-calculus formula of alternation depth & takes time
proportional to (mn)* where m is the size of the formula and 7 is the size of the model [EL86].

In fsim-games the winning condition is an implication between two Streett conditions. A deterministic
Streett automaton for such a winning condition has 3%4 -k, states and index 2k , +k . A deterministic parity
automaton for the same condition has 3%4 - k, - (2k, + k,)! states and index 4k, + 2k. The p-calculus
formula constructed by [{AHMOLI] is thus of alternation depth 4k, + 2k, and its size is proportional to
3kc . k. - (2k, + k. )!. We can therefore conclude that, in the case of fsim-games, there is no advantage in
using [{AHMOL1].

In the case of generalized Streett[1] games, a deterministic parity automaton for the winning condition
has |.J,,| - |.J,, | states and index 3, where |.J,,| and |.J, | denote the number of Biichi sets in the fairness of C'”
and A” respectively. The py-calculus formula of [dAAHMO1] is proportional to 3|.J,|-|.J, | and has alternation
depth 3.

We present an alternative p-calculus formula for solving generalized Streett[1] games. Our formula is
also of alternation depth 3 but its length is proportional to 2|J . |-|.J, | and it is simpler than that of [dAHMO1].

!There are more efficient algorithms for p-calculus model checking [Jur00]. However, Jurdzinski’s algorithm cannot be imple-
mented symbolically and we do not use it.



Obviously, our algorithm is tailored for the case of generalized-Streett[1] games while [dAHMO1] give a
generic solution for any LTL game 2. The time complexity of solving fair simulation between two reactive
systems after converting them to systems with generalized Biichi fairness requirements is (|3 ,| - [3,] -
2katke . (lJAl + |JC‘ + kA + kc))g-

Making the Method Complete

Even if we succeed to present a complexity-acceptable algorithm for checking fair simulation between
generalized-Biichi systems, there is still a major drawback to this approach which is its incompleteness. As
shown by the example of Fig. 1, there are (trivially simple) systems C and A such that C C A but this
abstraction cannot be proven using fair simulation. Fortunately, we are not the first to be concerned by the
incompleteness of simulation as a method for proving abstraction. In the context of infinite-state system
verification, Abadi and Lamport studied the method of simulation using an abstraction mapping [AL91].
It is not difficult to see that this notion of simulation is the infinite-state counterpart of the fair simulation
as defined in [HKR97] but restricted to the use of memory-less strategies. However, [AL91] did not stop
there but proceeded to show that if we are allowed to add to the concrete system auxiliary history and
prophecy variables, then the simulation method becomes complete. That is, with appropriate augmentation
by auxiliary variables, every abstraction relation can be proven using fair simulation. History variables
remove the restriction to memory-less strategies, while prophecy variables allow to predict the future and
use fair simulation to establish, for example, the abstraction LATE C EARLY.

The application of Abadi-Lamport, being deductive in nature, requires the users to decide on the appro-
priate history and prophecy variables, and then design their abstraction mapping which makes use of these
auxiliary variables. Implementing these ideas in the finite-state (and therefore algorithmic) world, we expect
the strategy (corresponding to the abstraction mapping) to be computed fully automatically. Thus, in our
implementation, the user is still expected to identify the necessary auxiliary history or prophecy variables,
but following that, the rest of the process is automatic. For example, wishing to apply our algorithm in order
to check the abstraction LATE C EARLY, the user has to specify the augmentation of the concrete system by
a temporal tester for the LTL formula <>(z = 2). Using this augmentation, the algorithm manages to prove
that the augmented system (LATE +tester) is fairly simulated (hence abstracted) by EARLY.

In summary, the contributions of this paper are:

1. Showing how to reduce the problem of checking fair simulation between two reactive systems (Streett
automata) into a game with generalized-Street[1] acceptance condition.

2. Providing a new (and more efficient) u-calculus formula and its implementation by symbolic model-
checking tools for solving the fair simulation between two reactive systems.

3. Claiming and demonstrating the completeness of the fair-simulation method for proving abstraction
between two systems, at the price of augmenting the concrete system by appropriately chosen “ob-
servers” and “testers”.

2 The Computational Model

As a computational model, we take the model of fair discrete system (FDS) [KP0O]. An DS D:(V, 0,0, p, J,C)
consists of the following components.

2One may ask why not take one step further and convert the original reactive systems to Biichi systems (with one fairness set
each). In this case, the induced game is a parity[3] game and there is a simple algorithm for solving it. We also tried to implement
this approach. Although both algorithms work in cubic time, the latter performed much worse than the one described above.



o V = {uy,...,u,} : A finite set of typed state variables over possibly infinite domains. We define a
state s to be a type-consistent interpretation of V', assigning to each variable u € V a value s[u] in its
domain. We denote by ¥ the set of all states. In this paper we assume that 3 is finite.

e O C V : A subset of observable variables. These are the variables which can be externally observed.

e O : The initial condition. This is an assertion characterizing all the initial states of the FDS. A state is
called initial if it satisfies ©.

e p: A transition relation. This is an assertion p(V, V'), relating a state s € 3 to its D-successor
s’ € X by referring to both unprimed and primed versions of the state variables. The transition
relation p(V, V') identifies state s’ as a D-successor of state s if (s, s’) = p(V, V'), where (s, s') is
the joint interpretation which interprets z € V as s[z], and z’ as s'[z].

o J ={Ji,...,Jx} : A setof assertions expressing the justice (weak fairness) requirements. Inten-
tionally, the justice requirement J € J stipulates that every computation contains infinitely many
J-states (states satisfying J).

e C = {(p1,q1),---(Pn,qn)} : A set of assertions expressing the compassion (strong fairness) re-
quirements . Intentionally, the compassion requirement (p, g) € C stipulates that every computation
containing infinitely many p-states also contains infinitely many g¢-states.

We require that every state s € 3 has at least one D-successor. This is ensured by including in p the idling
disjunct V' = V (also called the stuttering step).
Leto : sg, s1, ..., be a sequence of states, ¢ be an assertion, and j > 0 be a natural number. We say that j is
a p-position of ¢ if s; is a p-state. Let D be an FDS for which the above components have been identified.
We define a run of D to be an infinite sequence of states o : sg, s, ..., satisfying the requirements of

e Initiality: sp is initial, i.e., so = ©.

e Consecution: Foreach j =0,1,..., the state s 1 is a D-successor of the state s;.

We denote by runs(D) the set of runs of D. A run of D is called a computation if it satisfies the following:

o Justice: For each J € J, o contains infinitely many J-positions
e Compassion: For each (p,q) € C, if o contains infinitely many p-positions,
it must also contain infinitely many g-positions.

We denote by Comp(D) the set of all computations of D.

Systems D; and Ds are compatible if the intersection of their variables is observable in both systems.
For compatible systems D; and Dy, we define their asynchronous parallel composition, denoted by D1 || Do,
as the FDS whose sets of variables, observable variables, justice, and compassion sets are the unions of the
corresponding sets in the two systems, whose initial condition is the conjunction of the initial conditions,
and whose transition relation is the disjunction of the two transition relations. Thus, the execution of the
combined system is the interleaved execution of D1 and Ds.

For compatible systems D; and Ds, we define their synchronous parallel composition, denoted by
D1 ||| D2, as the FDS whose sets of variables and initial condition are defined similarly to the asynchronous
composition, and whose transition relation is the conjunction of the two transition relations. Thus, a step in
an execution of the combined system is a joint step of systems D1 and D,. The primary use of synchronous
composition is for combining a system with a tester T',, for an LTL formula .

The observations of D are the projection D4}, of D-computations onto O. We denote by Obs(D) the set
of all observations of D. Systems D¢ and D 4 are said to be comparable if there is a one to one correspon-
dence between their observable variables. System D 4 is said to be an abstraction of the comparable system



Dc, denoted D¢ C Dy, if Obs(D¢e) C Obs(D ). The abstraction relation is reflexive and transitive. It is
also property restricting. That is, if Do T Dy then D4 |= p implies that D¢ = p for an LTL property p.
We say that two comparable FDS’s Dy and Ds are equivalent, denoted D1 ~ Ds if Obs(D1) = Obs(Ds).
For compatibility with automata terminology, we refer to the observations of D also as the traces of D.

All our concrete examples are given in SPL (Simple Programming Language), which is used to represent
concurrent programs (e.g., [MP95, MAB194]). Every SPL program can be compiled into an FDS in a
straightforward manner. In particular, every statement in an SPL program contributes a disjunct to the
transition relation. For example, the assignment statement “£g:y := x + 1; £1:” contributes to p the disjunct

pee: at_fy ANat b4 ANy =z+1 A2 =ux.

The predicates at_¢y and ar’_¢; stand, respectively, for the assertions 7; = 0 and 7; = 1, where m; is the
control variable denoting the current location within the process to which the statement belongs.

From FDS to JIDS

An FDS with no compassion requirements is called a just discrete system (JDS).
LetD: (V,0,0,p,J,C) be an FDS such that C = {(p1,41),---,(Pm,qgm)} and m > 0. We define a
ps D" (VB, 0°,0%,p", JB,(Z)) equivalent to D, as follows:

e V’ = V U {n_p;:boolean | (p;,q) € C} U {z.}. That is, for every compassion requirement
(pi,qi) € C,we add to V" aboolean variable n_p;. Variable n_p; is a prediction variable intended to
turn true at a point in a computation from which the assertion p; remains false forever. Variable z,
common to all compassion requirements, is intended to turn true at a point in a computation satisfying
Viti(p; A n_p;), which indicates an instance of mis-prediction.

« 0" =0.

OGB:G)/\J:c:O/\ /\ n_p; = 0.
(pi,ai)eC
That is, initially all the newly introduced boolean variables are set to zero.

° pB =p N pnp N pe Where

Pn_p - /\ (n—pi - ”—p;)
(pira:)€C
Pc : ‘T,c = |z V \/ (pi N n_pi)
(pi,a:)€C

The augmented transition relation allows each of the n_p; variables to change non-deterministically
from O to 1. Variable x. is set to 1 on the first occurrence of p; A n_p;, for some ¢, 1 < 7 < m. Once
set, it 1S never reset.

B
o J =JU{~az}U{npi vV ¢l (pia) €C}
The augmented justice set contains the additional justice requirement n_p; V g; for each (p;, ¢;) € C.

This requirement demands that either n_p; turns true sometime, implying that p; is continuously false
from that time on, or ¢; holds infinitely often.

The justice requirement —z. ensures that a run with one of the variables n _p; set prematurely, will not
be accepted as a computation.



The transformation of an FDS to a JDS follows the transformation of Streett automata to generalized Biichi
Automata (see [Cho74] for finite state automata and [Var91] for infinite state automata).

3 Simulation Games

Let D, :(V,,0.,0.,ps,J,,Cs) and D, : (V,,0,,0,,p,,7,,C,) be two comparable FDS’s. We de-
note by X, and X, the sets of states of D, and D, respectively. We define the simulation game structure
(SGS) associated with D, and D, to be the tuple G : (D_,D,). A state of G is a type-consistent interpre-
tation of the variables in V,, U V,. We denote by X the set of states of G. We say that a state s € X is a
correlated state, if s|O,] = s[O,]. We denote by X .,, C X the subset of correlated states of G .

For two states s and ¢ we say that ¢ is an A-successor of s if (s,t) = p, and s[V,,] = t[V,]. Similarly,
we say that ¢ is a C-successor of s if (s,t) = p, and s[V,] = ¢[V,]. A run of G is a maximal sequence of
states o : Sg, S1,. - . satisfying the following:

o (Consecution: Foreachj=0,...,
s (C-consecution: soj11 is a C-successor of so;.
s A-consecution: so; 9 is a A-successor of sgj1.
e C(Correlation:  Foreachj =0,...,
825 € Ycor

We say that a run is initialized if it satisfies
o [Initiality: so=©, N O,

Let G be an SGS and ¢ be a run of G. The run ¢ can be viewed as a two player game. Player C, represented
by D, taking p,, transitions from even numbered states and player A, represented by D ,, taking p, tran-
sitions from odd numbered states. The observations of the two players are correlated on all even numbered
states of a run.

A run o is winning for player A if it is infinite and either o UVC is not a computation of D, or o UVA is
a computation of D ,, namely if

ok=F,—F,

where for n € {A,C},

For NOOJIA A\ (OOp>O00)

J€Tn (»,9)eCy

Otherwise, o is winning for player C'.

Let D be some finite domain, intended to record facts about the past history of a computation (serve
as a memory). A strategy for player A is a partial function f, : D X X X Eg = D X X such
that if f,(d,s,s’) = (d',t) then ¢ is an A-successor of s'. A strategy for player C is a partial function
fo: D X Xgp — B¢ such thatif f(d, s) = (d', s") then s’ is a C-successor of s. Let f, be a strategy for
player A, and sg € Y. A 1un sg, s1,. .. is said to be compliant with strategy f, if there exists a sequence
of D-values dy, ds, . .. ,de, ... such that (d2j+2, 82j+2) = fA (dgj, 82j, 82j+1) for every 7 > 0. Strategy fA
is winning for player A from state s € X, if all s-runs (runs departing from s) which are compliant with
f, are winning for A. A winning strategy for player C is defined similarly. We denote by W , the set of
states from which there exists a winning strategy for player A. The set W, is defined similarly.

An SGS G is called determinate if the sets W, and W, define a partition on X ,,.. It is well known that
every SGS is determinate [GHS82].



3.1 p-calculus

We define p-calculus [Koz83] over game structures. Consider two FDS’s D, :(V,,,0,,0.,p,,T,,Ce),
D,:(V,,0,,0,,p,,7,,C,) and the SGS G : (D,,D,). For every variable v € V,, UV, the formula
v = 1 where 7 is a constant that is type consistent with v is an atomic formula (p). Let V = {X,Y,...}
be a set of relational variables. Each relational variable can be assigned a subset of ¥ ,,.. The p-calculus
formulas are constructed as follows.

pu=p|lp|X|eVelpAp| Op| O¢|pXe|vXp

A formula f is interpreted as the set of states in which f is true. We write such set of states as [[f]]& where
G is the SGs and e : V — 2¥<r is an environment. We denote by e[X < S] the environment such that
e[X + S|(X) = Sand e[X « S|(Y) = e(Y) for Y # X. The set [[f]]§ is defined inductively as
follows?.

o [[pllg ={s € Xeor | s = p}

[[-pllG = {s € Zeor | s I~ P}

[X1G = e(X)

(7 v glle = [[F11& v 9]l

[F A glle = (711G N Tl9llG-

[© f1IG = {s € Deor | V1, (5,8) = po = 35", (1) b= p, and 8" € [[f]IG}
[© /& = {s € Zeor | 3, (s,1) = po and Vs, (¢,) = p, = 5" € [[fllG}-

[[HXf]]eé = U;S; where Sy = ) and Siv1 = [[f]]gX(—&,]

o [vXfllg = N;S; where Sy = Yo and Sj1 = [[f]]gX<—5ﬂ

The alternation depth of a formula is the number of alternations in the nesting of least and greatest fixpoints.
A p-calculus formula defines a symbolic algorithm for computing [[f]] [EL86]. For a p-calculus formula of
alternation depth k, the run time of this algorithm is |¥ |*. For a full exposition of y-calculus we refer the
reader to [Eme97]. We often abuse notations and write a u-calculus formula f instead of the set [[f]].

4 Trace Inclusion and Fair Simulation

In the following, we summarize our solution to the problem of checking abstraction between two finite-state
fair discrete systems, or equivalently, trace inclusion between two Streett automata.

Let D, :(V,,0.,0.,p,,J,,C,) and D, :(V,,0,,0,,p,,T,,C,) be two comparable FDS’s. We
want to verify that D, abstracts D, (D, C D,). The best algorithm for solving abstraction is exponential
[Saf92]. We therefore advocate to verify fair simulation [HKR97] as a precondition for abstraction. We
adopt the definition of fair simulation presented in [HKR97]. Given D, and D,, we form the SGS G :
(D,,D,). We say that S C X, is a fair-simulation between D , and D, if there exists a strategy f, such
that every f,-compliant run o from a state s € S is winning for player A and every even state in o is in S.
We say that D, fairly-simulates D, denoted D, =; D,, if there exists a fair-simulation S such that for
every state s, € X, satisfying s, = ©,, there exists a state t € S such that t v, = s, andt = ©,,.

3Only for finite game structures.



Claim 1 [HKR97]If D, =y D, then D, E D ,. The reverse implication does not hold.

It is shown in [HKR97] that we can determine whether D, <; D, by computing the set W, C ¥, of
states which are winning for A in the SGS G. If for every state s, € 3, satisfying s, = ©,, there exists
some state ¢ € o such that ¢ Yy = s, and ¢ |= ©, then D, <y D,. Letk, = |C,| (number of

compassion requirements of D), k, = |C,|,n = || - |B,] - (3%¢ +k,),and f = 2k, + k,.
Theorem 2 [HKR97, KV98] We can solve fair simulation for D, and D, in time O(n?/+1 . f1).

Since we are interested in fair simulation only as a precondition for trace inclusion, we can take a more
economic approach. Given two FDS’s, we first convert the two to JDS’s using the construction in Section 2.
We then solve the simulation game for the two JDS’s.
. N B B B B B B B B B B B B
Consider the FDS’s D, and D,. Let D : (V. , 0,0 _,p., T, ,0)and D :(V ,0, ,0 ,p ,J, ,0)
. . B B L o .
be the JDS’s equivalent to D, and D,. Consider the game G : (D, D, ), the winning condition for this

game is
N Jo—= N L
JoeTl T, eT7
We call such games generalized Streett[1] games.
We claim that the formula in Fig. 2 evaluates the set W, of states winning for player A. Intuitively,
the greatest fixpoint vX evaluates the set of states from which player A can control the run to remain in
= kc states. The least fixpoint 4Y then evaluates the states from which player A in a finite number of steps

controls the run to avoid one of the justice conditions J ,CC . This represents the set H of all states from which
player A wins as a result of the run of ’Dﬁ violating justice. Finally, the outermost greatest fixpoint v Z; adds

to H the states from which player A can force the run to satisfy the fairness requirement of Di.

uY(\/uX(Jf/\@Zg vV OY V ﬁ,f/\@X))
k=

A "
Z MY<\/VX(J2A/\©23 VvV QY Vv ﬂ,f/\@X))
. k=1

- MY<\/VX(J;‘/\©21 VvV QY v ﬁ,f/\@X))
k=1 |

Figure 2: Algorithm for solving game simulation of two JDS’s

Claim 3 W, = [[¢]]

The proof of the claim is given in Appendix A.
Using the algorithm in [EL86] the set [[¢]] can be evaluated symbolically.

Theorem 4 The SGS G can be solved in time O((|S. |- S5 |- [T |- |T2)%).

To summarize, in order to use fair simulation as a precondition for trace inclusion we propose to convert the
FDS’s into JDS’s and use the formula in Fig. 2 to evaluate the winning set for player A.

Corollary 5 Given D, and D ,, we can determine whether Dg = Di in time O((|S,| - 2%c - |2, | - 2%a -
(ke + 1Tl + by +1T4D)%)-



5 Closing the Gap

As discussed in the introduction, fair simulation implies trace inclusion but not the other way around. In
[AL91], fair simulation is considered in the context of infinite-state systems. It is easy to see that the
definition of fair simulation given in [AL91], is the infinite-state counterpart of fair simulation as defined
in [HKR97], but restricted to memory-less strategies. As shown in [AL91], if we are allowed to add to the
concrete system auxiliary history and prophecy variables, then the fair simulation method becomes complete
for verifying trace inclusion.

Following [AL91], we allow the concrete system D, to be augmented with a set V,, of history variables
and a set V,, of prophecy variables. We assume that the three sets, V,,, V};, and V,,, are pairwise disjoint.
The result is an augmented concrete system D, : (V¥, 0%, %, J,C,), where

Vi o= V,UV, UV,
0 = O, A Neev, (v = Fo(Vo, V3))
by = PoMaev, ® = 8V VIV A Nyev, = 04(Ve)

In these definitions, each f, and g, are state functions, while each ¢, (V) is a future temporal formula
referring only to the variables in V,,. Thus, unlike [AL91], we use transition relations to define the values of
history variables, and future LTL formulas to define the values of prophecy variables. The clause y = ¢ (V,,)
added to the transition relation implies that at any position j > 0, the value of the boolean variable y is 1 iff
the formula ¢, (V,,) holds at this position.

It is not difficult to see that the augmentation scheme proposed above is non-constraining. Namely, for
every computation o of the original concrete system D, there exists a computation o* of D7, such that o
and o™ agree on the values of the variables in V.

Handling of the prophecy variables definitions is performed by constructing an appropriate temporal
tester [KPOO] for each of the future temporal formulas appearing in the prophecy schemes, and composing
it with the concrete system.

A similar augmentation of the concrete system has been used in [KPSZ02] in a deductive proof of
abstraction, based on [AL94] abstraction mapping.

Although fair simulation is verified algorithmically, user intervention is still needed for choosing the ap-
propriate temporal properties to be observed in order to ensure completeness with respect to trace inclusion.

6 Examples

Late and Early

As a first example we consider the two programs EARLY and LATE presented in Fig. 3 (a graphic represen-
tation for these two programs appeared in Fig. 1). The observable variables in these two programs are y
and z. Without loss of generality, assume that the initial values of all variables are 0. This is a well known
example showing the difference between trace inclusion and simulation. Indeed, the two systems have the
same set of traces. Either y assumes 1 or y assumes 2. On the other hand, it is simple to see that EARLY does
not simulate LATE. This is because we do not know whether state (£1, x:0, z:1) of system LATE should be
mapped to state (£, x:1, z:1) or state (¢1, z:2, z:1) of system EARLY. Our algorithm shows that EARLY
does not simulate LATE.

As mentioned EARLY and LATE have the same set of traces. Hence, we should be able to augment LATE
with history and prophecy variables that tell EARLY how to simulate it. In this case, we add a tester T',, for
the property ¢ : <>(y = 1). The tester introduces a new boolean variable z,, which is true at a state s iff
s = ¢. Whenever the tester for <>(y = 1) indicates that LATE will eventually choose £ = 1, EARLY can



by : z,z:={1,2},1 by: z:=1
EARLY :: | £1: z:=2 LATE :: | 41 : z,z:={1,2},2
by: y,z:=1u,3 by: y,z:=1x,3

Figure 3: Programs EARLY and LATE.

safely choose z = 1 in the first step. Whenever the tester for <>(y = 1) indicates that LATE will never
choose = 1, EARLY can safely choose z = 2 in the first step. Denote by LATE™ the combination of LATE
with the tester <>(y = 1). Applying our algorithm to LATE™ and EARLY, indicates that LATET =<y EARLY
implying that Obs(LATE) C Obs(EARLY).

Fair Discrete Modules and Open Computations

For the main application of our abstraction-checking technique, we need the notions of an open system and
open computations.

We define a fair discrete module (FDM) to be a system M : (V, O, W, ©, p, J,C) consisting of the same
components as an FDS plus the additional component:

e W C V: A subset of owned variables. These are variables which only the system itself can modify.
All other variables can also be modified by steps of the environment.

An (open) computation of an FDM M is an infinite sequence o : Sg, $1, . . . of V-states which satisfies the
requirements of initiality, justice, and compassion as any other FDS, and the requirement of consecution,
reformulated as follows:

e Consecution: Foreachj =0,1, ...,
n 59 11[W] = s9i[W]. Thatis, sgj41 and sp; agree on the interpretation of the
owned variables W.
®  S$9j491s a p-successor of s9;1.

Thus, an (open) computation of an FDM consists of a strict interleaving of system with environment actions,
where the system action has to satisfy the transition relation p, while the environment step is only required
to preserve the values of the owned variables.

Two FDM’s D; and Dy are compatible if W7 N Wy = () and V; N V5 = O1 N Oy. The asynchronous
parallel composition of two compatible FDM’s M = M || M> is defined similarly to the case of composition
of two FDS’s where, in addition, the owned variables of the newly formed module is obtained as the union
of Wiy, and Wyy,. Module M is said to be a modular abstraction of a comparable module M7, denoted
M, C,, My, if Obs(M;) C Obs(Ms). A unique feature of the modular abstraction relation is that it is
compositional. This means that My, C,, M, implies M; || M T,, My || M. This compositionality allows
us to replace a module M; in any context of parallel composition by another module M9 which forms a
modular abstraction of M and obtain an abstraction of the complete system, which explains why we need
modular abstraction for the application of the network invariants method.

It is straightforward to reduce the problem of checking modular abstraction between modules to check-
ing abstraction between FDS’s using the methods presented in this paper. This reduction is based on a trans-
formation which, for a given FbDM M : (V,O,W, 0, p, J,C), constructs an FDS D, : (17, 0,0,p, J,C),
such that the set of observations of M is equal to the set of observations of D,,. The new components of
D,, are given by:

V : VU{t:boolean}
© : OAt
P pAN-tANt VvV pres(W) At At

10



(@™) where

Q(left; right) =
[ loop forever do

£y : NonCritical

£y : request left

£y request right

f3 : Critical

£y : release left

U5 : release right

Figure 4: Program DINE: a chain of deterministic philosophers.

Thus, system D,, uses a fresh boolean variable ¢ to encode the turn taking between system and environment
transitions.

The Dinning Philosophers

As a second example, we consider a deterministic solution to the dinning philosophers problem (DDP). As
originally described by Dijkstra, n philosophers are seated at a round table, with a fork placed in between
each two neighbors. Each philosopher alternates between a thinking phase and a phase in which he becomes
hungry and wishes to eat. In order to eat, a philosopher needs to acquire the forks on both its sides. A
solution to the problem consists of protocols to the philosophers (and, possibly, forks) that guarantees that
no two adjacent philosophers eat at the same time (mutual exclusion) and that every hungry philosopher
eventually gets to eat (individual accessibility).

A deterministic solution to the dinning philosophers is presented in [KPSZ02], in terms of binary pro-
cesses. A binary process Q(Z; %) is an FDM with two observable variables  and y. Two binary processes @
and R can be composed to yield another binary process, using the modular composition operator o defined
by

(QoR)(z;2) = [restrictyin Q(z;y) || R(y; 2)]

where restrict y is an operator that removes variable y from the set of observable variables and places it in
the set of owned variables.

In Fig. 4 we present a chain of n deterministic philosophers, each represented by a binary process
Q(left; right). This solution is studied in [KPSZ02] as an example of parametric systems, for which we
seek a uniform verification (i.e. a single verification valid for any n). The uniform verification is presented
using the network invariant method, which calls for the identification of a network invariant Z which can
safely replace the chain Q™. The adequacy of the network invariant is verified using an inductive argument
which calls for the verification of abstractions. In [KPSZ02] we present a deductive proof to the dinning
philosophers, based on [AL94] abstraction mapping method, using two different network invariants.

In the current work, we consider the same invariants, and verify all the necessary abstractions using our
algorithm for fair simulation. In both cases, no auxiliary (history and prophecy) variables are needed.

The “Two-Halves” Abstraction

The first network invariant Z(left; right) is presented in Fig. 5 and can be viewed as the parallel composition
of two “one-sided” philosophers. The compassion requirement reflects the fact that Z can deadlock at
location £; only if, from some point on, the fork on the right (right) remains continuously unavailable.

11



Z(left; right) ::
loop forever do loop forever do
[ ly : request left ] | [ mo : request right ]

£y : release left my : release right

J :—at_my  C: (right,—at_£y)

Figure 5: The Two-Halves Network Invariant

To establish that 7 is a network invariant, we verify the abstractions (o Q) C,, Zand (QoZ) C,, Z using
the fair simulation algorithm.

The “Four-by-Three’” Abstraction

An alternative network invariant is obtained by taking Z = @3, i.e. a chain of 3 philosophers. To prove that
this is an invariant, it is sufficient to establish the abstraction Q* C M @3, that is, to prove that 3 philosophers
can faithfully emulate 4 philosophers.

Experimental Results

In our first implementation of the algorithm, we could not establish simulation between very simple ob-
viously correct examples. Player C' could always win in a finite number of steps. The problem was with
unfeasible states, namely states that do not participate in any computation. Player C would enter an unfea-
sible state and player A could not follow. To resolve this problem we remove all unfeasible states from both
systems. Thus, the first step evaluates the set of feasible states for each of the players.

Since player A can only move to correlated states, we reduce the number of variables by using a single
set of observable variables for both systems. Finally, we optimize by reducing the options of player A as
follows. Recall that fair simulation implies simulation [HKR97]. Namely, simulation is a precondition for
fair simulation. Let S C ¥, denote the maximal simulation relation. Instead of restricting player A’s steps
to X o We restrict it further to S.

After all these optimizations, the following table summarizes the running time for some of the experi-
ments we conducted.

(QoQ)C,, T | 44 secs.
(QoeI)C, T 6 secs.
Q* C. Q? 178 secs.
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A Solving Generalized Streett[1] Games

LetD,:(V,,0,,0.,p5, T, 0) and D, : (V,,0,,0 ,,p,,T,,0) be two comparable IDS’s where T, =
{(Jy . d yand T, = {J;,...,Jo}. Let G : (D,,D,) be an SGS. We use the notation 7 @ 1 for
(¢modn)+ 1. Let M = [1..m], N = [1..n], and IN denote the set of natural numbers.

The set W, C ¥ of winning states for player A is evaluated by the formula in equation (1).

uY(\/uX(Jf/\@ZQ VvV QY v ﬂ,f/\@X))

- - k=1
A m
Zy || wY [V vX(Jy A©Zs vV OY V ﬂ,fA@X))
Zin

- uY(\/uX(J;‘/\Qzl vV QY Vv ﬁ,f/\@X))
k=1

We introduce some notations. Let o be some run of G. The game g, is the restriction of ¢ to even
locations. When o is irrelevant or clear from the context we write g. Let f, and f, be strategies for
players C' and A respectively. Let o : sg, $1, - . . be the run compliant with both strategies and let dg , dg, .-

A A .
and d;,d, , ... be the matching sequences of memory values. Let the outcome o fooba be the sequence

(doc, dOA, 30), (dg , d; ,82), ... that consists of the memories of both strategies and the game g,. In case that
one of the strategies is not important we remove its memory values from the sequence. We often abuse
notations and confuse between g, and o Fonf s> WE also write g forfa instead of g,

Claim 3 W, = [[¢]]

Proof: We claim that W, = Z; at the end of the fixpoint evaluation.*

We start by proving soundness of the claim, namely, showing that for every state s € Z1, s is a winning
state for player A. We adopt Walukiewicz’ analysis of the u-calculus formula [Wal01]. From the evaluation
of the fixpoint formula in (1), we derive a ranking for the states in X ... We then use the ranking to define a
winning strategy for player A from states in Z;.

Based on the computation of the last iteration of the outermost fixpoint, we define a set of ranking
functions R : {r1,...,r,}. Forevery j € N,letr; : ¥¢or — D U oo where D = IN x M with the usual
lexicographic ordering. For simplicity we denote the minimal value in D by 1 instead of (1,1). Recall, that
a run winning for player A satisfies

(/\ D<>J,f) %(/\ D<>J;‘)

keM JEN

That is, for a run to be winning, it is sufficient that for some &k € M, J, ,f be visited only finitely often or
forall j € N, Jf has to be visited infinitely often. Intuitively, when r;(s) = (I, k) we know that currently,
player A is trying to force the run to stay within =J kC states. If she cannot do that, she can try and decrease

rj. When r; reaches 1 the state is a J; state. Thus, the strategy of player A consists of decreasing r; and
once reaching 1 moving to 7.

4 Actually, all Z;’s return the same set. This follows from the proof below. However, we do not use this fact in the proof.
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Let Z; denote the fixpoint value of variable Z;. We denote by in the sth iteration of Y associated with
Z;. Formally, let on = () and Yj" = Vi, XJZ:, » Where

X =vX(J AQZjgw V. OY ' Vv -J AOX).

We define the rankings as follows. For a state s € X, such that s ¢ Z; set rj(s) = oo. For a state
$ € Yeor such that s € JjA NQ Zjg1 setrj(s) = 1. For astate s € 3 such that s € X;’k \ Ur <k X]’:,k,
and s ¢ Z;_l set 7j(s) = (i, k) (that is, ; is set to the least value (%, k) for which s € X;,k).

Based on R, we define a strategy for player A. The memory used by the strategy is a value j € N.
Intuitively, when the memory of the strategy is j, player A tries to decrease r;. When r; reaches 1, player
A updates her memory to j @ 1 and moves to a state for which g1 is defined.

More formally, let f : N X ¥¢or X Eg = N X X be the strategy for player A. If 7j(s) = oo or
for a state ¢ which is not an C-successor of s then f(j,s,t) is undefined. Otherwise, if r;(s) = 1 then
f(4,s,t) = (j ®1,s") such that s’ is some A-successor of ¢ and g1 (s’) # co. In Claim 6 we show that
this is indeed possible. If r;(s) > 1 then f(j,s,t) = (j,s") such that s’ is an A-successor of ¢ and for every
A-successor u of ¢ we have 7j(s") < r;(u). In Claim 6 we show that such a successor state exists and that

rj(s) <rj(s).
Claim 6 Let s be a state in Xeop. If j(s) # 00 and f(j, s,t) = (4, 8') then rj(s') # oc.
Proof: For j € N, Z; is a fixpoint. Hence, there exists some value p > 1 such that Z; = Yjp = Yjp o1

follows that Z; = \/7*; Xik where Xik = J; ANOZjgwm V OZ; V —|ch A Xik. For every state

s € Zj, either s € J; ANQ Zjg1 or s € O Zj. In the first case, rj(s) = 1 and player A can control the
game to reach a successor state s’ such that s’ € Zjg implying rjg1(s’) # co. In the second case, player
A can control the game to reach a successor state s’ such that r;(s") # oc. o

Claim 7 Let s be a state in Y. If 7(3) # 00 and f(j,s,t) = (§', s") then one of the following holds:
1. ri(s) =1.
2. j=j"andri(s") < rj(s).

3. j=j"andrj(s") =r;(s), provided vj(s) = (I,k) and s }= —|ch.

Proof: Recall that Y/ = \/jL; X}, where X!, = VX(Jf ANOZijgt vV © in_l vVo-J, AOX).
Suppose s € in \ in_l. Then s € J; ANOZjg1 V @in_l Vo Vg, _|ch A @X]’:’k. If s €
Jf A Q Zjg1 then 7j(s) = 1 and we are done. If s € O in_l then player A can control the game to get
to a successor state s’ such that 7;(s’) < r;(s). Suppose s € X;’k \ (JjA ANO Zjgn V @infl) and
s ¢ (Up <k X;’k,). Then we know 7;(s) = (i,k) and s € —|Jko ANO X;’k. In particular player A can control

the game to get to a successor state s’ such that 7;(s") < r;(s) and s |= —J,S (the case of < follows in the
case that s’ € X s for some k' < k). a4

Let s be a state in Z.

Claim 8 Every s-run compliant with f is winning for player A.
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Proof: Letgs : (ng,so), (n1,51),-.. denote the outcome of f from state s (that is, all the states in g5 are
the correlated states in the s-run compliant with f). From Claim 6 we know that for every 4 > 0 we have
Tn;(8i) # 00. From Claim 7 it follows that either there are infinitely many ¢ > 0 such that rp,(s;) = 1 or
there exists a value 4 > 0 and j§ € N such that forall i’ > ¢ we have ny = 5. In the first case, whenever
gy Visits a location (n;, s;) such that ry;(s;) = 1then s; = J;:. and n;+1 = n; ® 1. Hence, g5 Jv, isa
computation of D, and player A wins. In the second case, we know from Claim 7 that forall [ > ¢ we have
7;(s1) < rj(si41). Then, there exists some p > ¢ such that forall p’ > p we have r;(sp) = (a, k) for some
a > 0and k € M. However, in this case forall p’ > p we have s,y |= ﬁJ,f and gf llvc is not a computation
of D,. Again player A wins. a

Next we prove completeness of claim 3, namely, showing that for every state s ¢ Z1, s is a winning
state for player C. It is quite simple to see that the following fixpoint is the complement of Equation 1.

] . ]
I/Y</\ uX(©2 Vv —~J AT, AQY V ﬂf‘A@X))
k=1
Zl ™ A C A
Zo || WY [ AN uX(©@Z3 VvV ~Jy AJyb AQY V. —J; AOX)

. k=1
p=po : @

uY<AuX(@Zl VvV -J AT AQY v ﬂJf/\@X))
k=1

Note that we replace QO with ©. Recall that both ¢ and @ allow player C to make the first choice.
However © demands that for every choice of player C there exist a choice of player A and @ demands
that there exists a choice of player C that is good enough forall choices of player A. As before, from the
evaluation of the fixpoint formula in 2 we derive a ranking for the states in X ... We then use the ranking to
define a winning strategy for player C.

For each of the Z;’s, let Y; denote the value of Y} at the last iteration of Y. The value of Y is defined
by a conjunction over m conjuncts. First we show that for every k, k" € [1..m] the k and k' conjuncts are
equal regardless of the value of Zg. Equation 3 is the fixpoint computing Y’;.

uyl/\ux(@Zj691 V. -J AT AQY —Jf/\@X)] 3)
k=1

For some value of Zq1 let Y; denote the outcome of Equation 3. We denote by :1:3-7 i, the ith iteration of the
kth conjunct in vY;. Formally, let X]Q,k = (), and X;-’k =072 V —Jf/\ch/\@) Y, v —J;/\@) X;;cl.

We say that a state s is i-far; j, if there exists a strategy f_ such that every s-run o : s, s1, ... compliant
with f satisfies all the following.

e There exists some [ < 7 such that so; € ch ANOY; V OZjer-
e Forall I' < | we have sop £ J;.
e Either s9; I# JJA orso € O Zje)l-

Claim 9 s € X, iff s is i-farj .
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Proof: Suppose s € X;yk\Xﬁl. If i = 1 then it must be the case that s € @ Zjg1  V —J;/\ch/\@ Y;.

Clearly, the claim follows. If 2 > 1 then it must be the case that s € =J ; NO X]ﬁcl, by induction the claim
follows.
Suppose that s is i-far; ;. We show by induction on 7 that s € X;k If ¢ = 1 then clearly s € X ]lk

Suppose ¢ > 1 then player C can force the game to state ¢ such that ¢ is (i —1)-far; ;. By induction ¢ € X;;Cl
and s € X7 ;. 4

_ i
Denote X = U X k-
i>0

Corollary 10 Forall k, k' € M we have X, = X .

Proof: Suppose s € Xj. Then s is i-far; ;, for some 4. Consider the strategy f, and the run o : sg, 51,...
compliant with f_. Suppose s9; € J,f NOQY; V ©OZjpi forsomel <. If sy € J,f A ©@Y;. Then
player C can force the game into some state s’ € X . It follows that s’ is #'-far; j» with some strategy f é
By combining the strategies f, and fé we show that s € X yr. a4

Based on the computation of the fixpoint, we define a set of ranking functions R : {ri,...,r,}. For
every j € N, letr; : Sor — D U {00} where D = IN ™", For d € D we denote by d[0] the first entry in
d and for k € M, d[k] is the k + 1 entry in d. Recall, that a run winning for player C satisfies

C A
ANOOTI A= ANOOY
keM jeN

That is, forevery k € M, J ,CC is visited infinitely often and for some j € N, J J-A is visited only finitely often.
Intuitively, when r;(s) = (I,11,...,l;) it means that currently, player C tries to avoid visiting J f . She

may still change her mind / times as to which J € J * she avoids. The number I  denotes the distance to a
ch state in case that player C' does not change her mind. Thus, player C' reduces first /; until a visit to ch
then reduces [5 and so on. The strategy of player C' consists of deciding which J € J * s visited finitely
often and then for each £ € M forcing a visit to J, .

Let ZJZ: denote the ith iteration of uZ;. Let X;:fc denote the Ith iteration of the kth conjunct in the
computation of Z; Formally, we have the following. Let Z jo =0,

m
Z;:Vyl/\ux(@zj@& Vo o A ABY ﬂf/\@X)]
k=1

For every state s € ZJZ: \ Z;_l we set 7;(s)[0] = 4. That is the first location in r;(s) stores the iteration of
wZ where s is first included in ZJZ Notice that from Corollary 10 it follows that for every k,

Zi=@Zigt v - A ANO®ZI vV - AOZ )
As above, let
X=0adXi=0Zg VvV -J AJAOZ VvV -J AOXI,
Notice that for every k € M we have ZJZ: = U0 X;:L For every state s € X;:L \ (X;.:L*l U Z]’:*I) we set

rj(s)[k] = l. Thatis, the kth entry in r;(s) stores the iteration of the kth conjunct in which s is first included
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in X . From Corollary 10 it follows that for every state s in Z} we have either r;(s)[0] < % or r;(s)[0] =i
and for every k € M, r;(s)[k] is set in the 7th stage.

Based on R, we define a strategy for player C. The memory used by the strategy is a value (j,k) €
N x M. That is, work with r; and with entry & in ;. Intuitively, when the memory of the strategy is (j, k),
player C tries to move to states for which g1 [0] is lower and updates her memory to (j & 1,1). If player
C cannot do that, she tries to decrease 7;[0] or ;[k]. When r;[k] reaches 1, we are ensured that we are in a
J, kc state and player C updates her memory to (4, (k mod m) + 1). More formally we have the following.

Let f: N X M X Y = N X M X 3¢ be the strategy for player C'. Let s be some state such that
r;j(s) = oo, then for every k € M, f(j, k, s) is undefined. Let s be some state such that r;(s) # oco. The
strategy f chooses the first possible option from the following.

1. If there exists a C-successor ¢ of s such that forall A-successors s’ of ¢ we have rjg1(s")[0] < r;(s)[0]
then f(j,k,s) = (j ®1,1,1).

2. If there exists a C-successor t of s such that forall A-successors s’ of ¢ we have r;(s")[0] < 7;(s)[0]
then f(j,k,s) = (j,1,1).

3. If rj(s)[k] = 1 and there exists a C-successor ¢ of s such that forall A-successors s’ of ¢ we have
rj(s")[0] = r;(s)[0] then f(j, k, s) = (j, (k mod m) + 1, ).

)
4. 1f
rj(s')

We show that this strategy is feasible and that it is a winning strategy for player C.

)[k] # 0 and there exists a C-successors ¢ of s such that forall A-successors s’ of ¢ we have
0] = 75(s)[0] and r;(s")[K] < rj(s)[k] then f(j, k, s) = (5, k).

[

Claim 11 Let s be a state in Ecop. If 7(8) # o0 and f(j, k, s) = (5", k', t) then forall A-successors s' of s,
i1 (s") # oo.

Proof: Letr;(s)[0] = 4. From Equation 4 it follows that there exists a C-successor ¢ of s such that either
forall A-successors s’ of t we have s’ € Z]’-G_ﬁ or forall A-successors s’ of t we have s’ € Z;. a

Claim 12 Let s be a state in X ¢op. If 7(8) # 00 and f(j,k,s) = (§', k', t) then one of the following holds
forall A-successors s' of t:

o T (s"H[0] < Tj(s)[O]

e 7;(s")[0] = r;(s)[0] and either s |= ch orri(s')[k] < r;(s)[k].

Proof: From Claim 11 we know that player C' can control the game so that forall s’ we have r7(s") #
oco. From Equation 4 we know that player C' can control the game so that r%(s")[0] < 7;(s)[0]. Suppose

7j(s)[0] =l and r;(s)[k] = 1. Then s € Xl],’llC Hence, either s € © Z;aﬁ ors € —J; A ch =) ZJZ In the
first case player C can control the game so that it reaches a location s’ such that rjg1(s")[0] < r;(s)[0]. In
the second case s |= —Jf A, kc and player C can control the game to reach a state s’ such that r;(s")[0] <

75(5)[0]. Suppose 7(s)[k] =a > 1thens € le,f \le;f—r Clearly, s |= —Jf and player C can control the
game so that it reaches a state s’ such that 7;(s")[k] < 7;(s)[]. a

Let s be a state in Z.

Claim 13 Every s-run compliant with f is winning for player C.
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Proof: Let g; : ((no,mao), So0), {(n1,m1), s1),- - denote the outcome of f from state s (that is, all the
states in g are the correlated states in the s-run compliant with f). From Claim 11 we know that for every
i > 0 we have rp, (s;) # oo. From Claim 12 we know that there exists some 4 such that forall i’ > 7 we have
ny = j for some j € N and r;(s;)[0] = [ for some [ € IN . Clearly, it cannot be the case that s, = J; for
i’ > i. Suppose by contradiction that there exists a point ¢ > 7 such that forall a’ > a we have sy [~ J,f .
We know that ;(s4)[mg] is defined. According to Claim 12 7(s,/)[m] decreases. There exists a point
a' > a such that rj(sq)[my] = 1, and mgy1 = (me mod m) + 1. Similarly, according to Claim 12
7 (8q47)[(mg mod m) + 1] decreases. So the game reaches some point where J kc holds in contradiction to

the assumption. We conclude that g ¢ UVA is not a computation (J f is visited finitely often) and that g ¢ llvc
is a computation. Hence, player C wins. o

O

20



