Complete Proof System for QPTL*

Yonit Kesten® Amir Pnuelit
February 20, 2001

Abstract. The paper presents an axiomatic system for quantified propositional tempo-
ral logic (QPTL), which is propositional temporal logic equipped with quantification over
propositions (boolean variables). The advantages of this extended temporal logic is that its
expressive power is strictly higher than that of the un-quantified version (PTL) and is equal
to that of S1S, as well as that of w-automata. Another important application of QPTL is
its use for formulating and verifying refinement relations between reactive systems. In fact,
the completeness proof is based on the reduction of a QPTL formula into a Biichi automa-
ton, and performing equivalence transformations on this automata, formally justifying these
transformations as a bi-directional refinement.

1 Introduction

For a long time, temporal logics have been mainly used for the specification and verification of
properties of reactive systems. According to this approach, a system is specified by a list of
properties, all of which should be satisfied by any acceptable implementation. As long as this was
the main use, quantifiers did not play an important role in temporal logic (TL). There were only
two places where the use of quantifiers was recommended:

1. Using quantification over rigid variables (variables that stay the same throughout the model)
to connect values of system variables at two different states. For example, the formula
Vu: z=u = O(y=1u?)

uses quantification over the rigid variable u to specify the property that every value which appears
in variable x at some state, appears squared in variable ¥ some later time. This may be used to
specify the behavior of a procedure with input x and output y, whose task is to square numbers.

However, very soon one realizes that this formula is valid over a set of program computations
iff the same formula without the universal quantification is valid. Therefore one may specify the
same property with the simpler formula:

*This research was supported in part by the Minerva Center for Verification of Reactive Systems and by a grant
from the U.S.-Israel Binational Science Foundatio

fContact author: Dept. of Communication Systems Engineering, Ben Gurion University, Israel,
ykesten@bgumail.bgu.ac.il

Dept. of Applied Mathematics and Computer Science, the Weizmann Institute of Science, Israel,
amir@wisdom.weizmann.ac.il

r=u = O(y=1u?).

2. Using quantification over flexible variables (variables that may change from one state to
another) in order to increase the expressive power of the logic. For example, it is a known
fact (see [Kam68], [GPSS80], and [MP71]) that unquantified (propositional) TL cannot count.
In particular, it is impossible to specify in (unquantified) PTL that p must hold on every even
position in the model. In QPTL, this is specified by the following formula:
It: t A O(Ot— —t) A Ot — p)

In this formula, the auxiliary (specification) variable ¢ is used as a counter modulo 2. It is true
at all even positions and false at all odd positions.

In spite of these two cases, quantification never played a central role in the use of TL for
specification and verification of properties. This changed drastically with the suggestion of using
TL for proving refinement (or implementation) between programs. This suggestion is extensively
discussed in the framework of TLA ([Lam94]), which freely interchanges formulas and programs,
and has also been studied under the framework of TL considered here [KMP94]. According to
this approach, to verify that system S; refines system S5, we have to prove the implication

(Elxlz semsl) — (Elxgz semsz) (1)

where sem,_ , ¢ =1,2, is a temporal formula called the temporal semantics of system S; ([MP83],
[MP91]), which characterizes all models that are computations of S;, and z;, i = 1,2, are the
internal variables of S;. This formula states that, for every oy, a computation of S;, there exists
09, a computation of Sy, such that oy and oy agree on the interpretation of all variables except
possibly the internal variables x; and x,. The assumption is that S; and S, do share some
observable variable y on which oy and ¢y must agree. Implication (1) is valid iff the following
implication is valid:

semg — Jdxy: semg (2)

S1

The main approach for establishing such an implication is to prove the implication

semg — semg [Ty By, (3)

where semg [z2 — 5] is obtained from semg by replacing all occurrences of x5 by the term 2,
which, in general, may be a function of z; and y. We can view ty(z1,y) as a Skolem function
mapping values of x; and y into values of x;. This corresponds to the well-known notion of
refinement mapping, establishing a mapping between states of S; and states of S;. Methods for
proving refinement by refinement mapping have been extensively discussed in the literature, e.g.,
[Lam83|, [LS84], [LT87], [Jon87|, and [ALI1].

An important question is how to define the Skolem function xs = t5(x1,y) in an effective way.
Observe that ¢, is a temporal function in the sense that the value of ¢, at position 7 of a model may
depend on the values of 21 and y at positions that either precede or succeed j. In [AL91], Abadi
and Lamport identify two definitional schemes for establishing the necessary temporal Skolem
function:

e A history scheme which can be defined by the forward inductive definition

u= f(Ou)

This scheme defines the value of u at position j as a function of u at position j — 1.

e A prophecy scheme which can be defined by the backward inductive definition
u= f(Ou)

This scheme defines the value of u at position j as a function of u at position j+1. In [AL91],
it is required that f has a finite range. Since we are dealing here with the propositional
case, this is always guaranteed.

While the history scheme always yields a unique solution, a prophecy scheme (under the finite
range assumption) may have one or more solutions. For example, the scheme y = = Oy has one
solution in which y = 0 at all even positions and another solution in which y = 1 at all even
positions. We describe this situation by saying that the prophecy scheme may yield one or more
applicable skolem functions. The two schemes correspond to the well-known methods of forward
and backward simulation. The claim that these schemes always define one (for history) or more
(for prophecy) temporal function can be formally stated by the following two theorems:

Ju: O = f(Ou) and Fu: O(u= f(Qu)) (4)

In view of this important application of quantification, it became apparent that every deductive
method for proving program refinement by TL should offer a repertoire of theorems and proof
rules for formally dealing with quantifiers. The usual question is how do we recognize that our
arsenal of axioms and inference rules is adequate. This is a standard question dealt with in logic
under the heading of completeness. Unfortunately, it has been shown that, unlike the predicate
calculus, full TL with quantifiers cannot be effectively axiomatized. In [Sza86| it has been shown
that FTL (first-order TL) admits no finite axiomatization, while [Aba89] showed that it cannot
have a recursive axiomatization. Related results were already presented in [ANST79].

Learning that there is no chance that true completeness can be established recursively, there
are two possible paths to follow. The first is to search for relative completeness in the sense
of Cook [Coo078]. A second possibility is to restrict the logic to a simpler fragment, where real
completeness is possible. Both directions strive for separation of concerns, trying to untangle
the interaction between the temporal operators (or the program dynamics aspects in the case of
[CooT78]) and the rich data structures.

In this paper we chose to follow the second path and consider quantified TL. where the variables
are restricted to range over fixed finite domains. Without loss of generality, we can restrict our
attention to boolean variables (propositions). In subsection 4.1 we justify this claim by showing
that boolean variables are sufficient to encode a logic over any fixed finite domain. This leads
to the version of the logic studied here: Quantified Propositional Temporal Logic. We were
encouraged to follow this path by the previous successful treatment of the propositional fragment
of unquantified TL (PTL) [GPSS80]. Another successful attempt in restricting the logic to achieve
real completeness is presented in [HWZ00, WZ00]. The resulting monodic fragment of first-
order TL, allows variables to range over infinite domain, however any subformula begining with a
temporal operator is restricted to a single free variable.

As shown in [SVW8T], the satisfiability problem for QPTL is decidable (which is a direct conse-
quence of [Buc62]), albeit with non-elementary complexity [MS73]. Therefore, one may justifiably
ask why do we bother to provide an axiomatic system for a decidable logic. Intellectual curiosity
aside, our main reason for studying this problem is not because of our interest in QPTL per se
but rather that, by studying QPTL, we can gain confidence that the set of axioms and rules we
propose are adequate in some restricted cases for reasoning in full QTL, and master techniques
for deductive proofs in the presence of quantifiers. The cases for which QPTL reasoning is ade-
quate are those in which we can use abstraction to separate the treatment of data within single
states from the dynamics of computations. In these cases, most of the assertions dealing with
unbounded data, such as integers and arrays, can be abstracted into propositions.

A source of inspiration for our work came from the monograph of Dirk Siefkes [Sie70], who
established completeness of an axiomatic system for S1S after the logic has been shown to be
decidable by Biichi. In the introduction, Siefkes explains that he considers Biichi’s decision
procedure, based on automata, to be semantical (model theoretic) while he was looking for a
syntactic (proof theoretic) approach to the same problem.

1.1 An Overview of the Completeness Proof

The full proof of completeness is long and detailed. However, in spite of this technical complexity,
the proof is based on a very simple principle. Assume that the temporal formula p is valid. We
wish to show that p is provable. Let us apply the algorithm proposed in [SVW87]| for checking
whether —p is satisfiable. The algorithm consists of the following steps applied to an arbitrary
formula ¢:

1. Construct a Biichi automaton A, which accepts precisely the models (infinite sequences)
satisfying .

2. Check whether A, is empty. Formula ¢ is satisfiable iff .4, is non-empty.

Applying this algorithm to the formula —p which is known to be unsatisfiable (since p is valid),
we will obtain an automaton A, which accepts the empty language. Our completeness proof
will mimic the decision algorithm by establishing (denoting provability in our axiomatic system

by F):

l.Fp & x 4y where x 4, 18 the characteristic formula of the automaton A, i.e., a formula
satisfied by all the sequences accepted by A,.

2. If A, is empty (i.e., accepts the empty language), then = x4, .

Since —p is unsatisfiable, A-, will be empty. Consequently, we can prove in our axiomatic system
F-p & x,_, followed by F —x,_ , from which we can infer - p.

We find it somewhat ironic that, starting with an attempt to establish a proof-theoretic ap-
proach to solving the QPTL-validity problem that can serve as an alternative to the automata-
theoretic approach initiated by Biichi, the best proof we managed to construct for the complete-
ness of the axiomatic approach is again based on reduction to automata.

Another surprise encountered in the completeness proof is that the history and prophecy the-
orems (4) which we consider central to a refinement proof need not be taken as axioms but can
be proven as theorems. This is one of the first results we obtained by translation of some of the
methods developed in [Sie70].

1.2 Comparison with Related Logics

The fact that PTL is strictly less expressive than S1S was established as soon as Kamp showed that
PTL is expressively equivalent to the first-order theory of linear order [Kam68]. Many proposals
have been made over the years for reasonable enhancements of PTL which will make it as expressive
as S1S. Wolper suggested in [Wol83| the logic ETL, introducing grammar operators which add
the expressive power of finite-state automata to the logic. Another interesting extension is to
add fiz-point operators to the language. This was considered first in [BB86] by Baniegbal and
Barringer, and later by Gabbay [Gab87| where he formulated the logic USF, combining past and
future temporal logic with fix-points operators over sequences. The USF logic has been shown to
have a complete axiomatization by Hodkinson in [Hod95].

In spite of having these alternative logics which have an expressive power equal to that of QPTL,
some of which even possessing complete axiomatic systems, we believe that there is an interest
in the study of QPTL and its axiomatization. The main motivation is that the syntax of QPTL
has a closer correspondence to the way programming systems are built and reasoned about. In
particular, existential quantification corresponds to the introduction of a new local variable which
is a very common construct in programming languages, and the addition of auxiliary variables as
part of a refinement proof is a long established practice.

2 QPTL: Syntax and Semantics

We assume a countable set of boolean variables (propositions) V. The flow of time considered in
this paper is isomorphic with the natural numbers (0,1,2,...). The syntax of QPTL formulas is
defined as follows:

e Every variable x € V is a formula. Each of the constants F and T is a formula.

e If p and ¢ are formulas, then so are

-p, pVgq, Op, pUq, @ p, and pSq

e If pis a formula and = € V is a variable then
Ve :p

is a formula.

Thus, as the set of basic operators we take =, V, O (next), U (until), @ (before, weak previous),
S (since), and V. Additional operators can be defined by:

pAg = —(=p V —q) p—q = —pVyq
peq = (p—q A (¢g—D)

Op = TUPp ©p = TSp
dp = 2O Hp = &)
pWq = pUq vV Op Op = "@™p
pByq = pSq V Ep

Op = O0p Bp = QOOp
P=q = d—9)

pEyq = O+ 9

dz: p(z) = —Vz: —p(z)

A formula that contains no temporal operators is called a propositional assertion or simply an
assertion.

2.1 Semantics

A state s is an interpretation of the variables in V), assigning to each variable x € V a truth
value. We denote by s[z] € {0,1} the value assigned to z by state s. We assume that all states
interprete F as 0 and T as 1. In the following we use T and F interchangeably for both formulas
and truth values. A model is an infinite sequence of states:

g S0y51,592, -+
Given a model ¢ and a temporal formula p, we present an inductive definition for the notion of
p holding at a position 7 > 0 in o, denoted by

(0,5) = p-
e For a variable x € V,

(o) < sfal=rt
For the boolean connectives,

(Uaj)):_'p <~ (U:j)):/pa i'e'7 not (0-7j)’:p
e (0,j) FpVqg <= (0j)Fpor(oj)Fq

For the temporal operators,

*(0,j))FOp = (0,j+1)Ep

e (0,j) EpUq <= forsomek, k> j, (0,k) E q, and for every i, j <i <k, (0,i) =Ep
*(0,j))F@p <= j=0 orj>0and(0,j—1)Fp

e (0,j) EpSq <= forsomek,0<k<j, (0,k)FE q, and for every i, k <i < j, (0,i) Ep

For a variable x € V, the model ¢’: s, s, ... is said to be an z-variant of model o: sy, s1, ... if,
for each 7 = 0,1,..., state s, agrees with s; on the interpretation of all variables, except possibly
on the interpretation of x.

For the quantifier V,

e (0,j)EVz:p < (d,j) [p, for every o', an x-variant of o

For a formula p and a position j > 0 such that (o, j) = p, we say that p holds at position j of o.
If (¢,0) | p, we say that p holds on o, and denote it by o = p.
A useful past formula is the formula first, defined as
first: @ F.
This formula characterizes the first position in any model. That is, it is false at all positions j > 0
and true for j = 0.

A temporal formula p is called satisfiable if it holds on some model. It is called valid, denoted
= p, if it holds on all models. Formulas p and ¢ are defined to be equivalent, denoted p ~ g,
if the formula p < ¢ is valid. Formulas p and ¢ are defined to be congruent, denoted p = gq, if
the formula [(J(p < ¢) (equivalently, p & ¢) is valid. Note that congruence is a stronger relation
then equivalence. For example, first and T are equivalent because both hold at the first position
of every model. Obviously, first and T are not congruent because first does not hold at the second
position of any model, but T does.

3 The Proof System

The axiomatic system for QPTL is presented in table 1. Axioms rO-¥7 deal with the future
operators, while axioms P1-pP5 deal with the past. Axiom F5 represents the induction principle.
Axiom M8 is a muzed axiom, containing both future and past operators.

Axioms Q1 and Q2 deal with the quantifiers. Axiom Q1 states that V commutes with O. Axiom
Q2 stipulates that ¢ be admissible for p(z), which we take to mean that the sets of variables in
¢ and p(z) are disjoint. For inference rules, we take TAU, MP and V-GEN.

The system consisting of axioms rFO0-¥7, P1-P5, the mixed axiom M8 and rules Tau and mP,
is shown in [LPO00] to be complete for propositional temporal logic (PTL), i.e., the unquantified
fragment of QPTL. This is based on [LPZ85] and [Lic91] with a modification of the proof from
the floating notion of temporal validity to the anchored notion of validity. We use this partial
completeness result to simplify major portions of our completeness proof, by assuming that every
valid PTL formula can be proven by the axiomatic system presented in [LP00].

The completeness proof uses many theorems and derived inference rules. Here we list only
some of them. For example, the following theorems can be proven:

-dz: p & Vr: —p

-Vr: p & dx: —p
d—com—0© dr:QOp & Odzr:p
QT p(¢) = Fz: p(x), provided ¢ is admissible for z in p(zx).
NFX5 (@p=¢) — O

The last theorem is a derived version of the induction axiom.
Axiom Q1 states that V commutes with . Additional theorems claim that V commutes with
0, ®, ©, and [E; and that 4 commutes with O, &, @, ©, and &.

Q2.

TAU.

Axioms:

FO. Op — p

Fl. O & ~0Op pl. Op = 0Qp

2, Op—14q) = (Op— 09 P2. Op—4q9 = (Op— Q4

F3. OrP—q = (Orp—009 3. Op — OOP

el Op — OOp pd. (pSq) © gV (p A O(pSq))
F5. (p=0Op)— (p=0p) P5. QF

FG. (pUq) < gV (p AN OpUY)

F7. pUqg= g M8. =00

Ql. Ver: Op & OV :p

Inference Rules:

MP. p—q, p F g
V-GEN. p = ¢(z) F p = Vz: ¢(x), provided p does not refer to x.

Axiomatic System Qx

Vz : p(x) = p(p), where ¢ is a formula admissible for z in p(z).

for every p, a temporal instantiation of a propositional tautology, - [Op

Table 1: The axiomatic system for QPTL.

Some of the derived inference rules are:

INST p(z) F p(p), provided ¢ is admissible for z in p(z)
J-INTR p(z) = ¢ dz : p(zr) = ¢, provided x does not occur in q
V-INTR p = q(z) p = Vz: q(z), provided z does not occur in p

SUBST

Note that it
equals.”

To abbrevi
using the foll

Vi : p(x) = Vo : q(x)
Vi : p(x) & Vo : q(x)
dz @ p(x) = Fz : q(v)
dz: p(z) & Jz: q(x)
©(p) < ¢(q), provided p and ¢ are admissible for z in ¢(x).

T T T T T T T

is congruence, rather than equivalence, which supports “substitution of equals for

ate some of our detailed proofs, we sometimes group several steps into a single step,
owing justifications.

e PR - Propositional reasoning. If the current proof line can be established from the previous
proof lines ny, ..., ng, using propositional reasoning, we affix the justification PR, ny, ..., ng

to the current line. Let pq,...,p, be the formulas at lines n4,...,n; and ¢ be the formula
at the current line. The inference of ¢ from py,...,pr by PR implies that the formula

PLADP2 A ... ADEL—(q

is a propositional tautology or a temporal instantiation of a propositional tautology in which
some propositions have been replaced by QpPTL formulas.

e TR - Temporal Reasoning. A proof line ¢ can be derived from lines p1,...,pr by the TR
proof principle if

SWARERRAY]

is a (quantifier free) temporal propositional tautology or an instantiation of a temporal
tautology in which some propositions have been replaced by QPTL formulas. By [LP00],
all temporal propositional tautologies can be derived within Qx which is a superset of the
axiomatic system used in [LP00].

® QR - Quantifier Reasoning. We use this proof principle to abbreviate proof steps which
involve simple and obvious applications of the quantifier axioms Ql, Q2 and the quantifier
rule V-GEN.

Let ¢ be a QPTL formula. We use the notation

o

to denote that ¢ is provable within the axiomatic system Qx.
Claim 1 (Soundness) The aziomatic system Qx is sound. That is, if = ¢ then E ¢.

The claim can be established by showing that all the axioms in Qx are valid, and that the inference
rules infer valid consequence from valid premises.

4 History and Prophecy Schemes

In this section, we establish several theorems leading to the proofs of the history and prophecy
schemes, within the proof system Qx.

As explained in the introduction, one of our motivations for the study of QPTL was to provide
a logic-oriented formulation of the complete method proposed in [AL91] for proving that one
system refines another. The notions of history and prophecy schemes are central to their proof
method and can be shown to correspond, respectively, to the notions of forward and backward
simulation which were previously used for establishing refinement relations between two reactive
systems. In our preliminary studies we conjectured that it will be necessary to introduce two
axioms which will represent these two fundamental concepts. Later, we realized that these two

concepts can actually be established as theorems of our proof system. These theorems are the
topic of this section.

Both schemes use a recursive definition of a function. The history (forward) scheme can be
represented by the recursive definition y = f(© y)! which defines the current value of the temporal
variable y in terms of its previous value. In a symmetric way, the prophecy (backward) scheme
can be represented by y = g(Qy), defining the current value of y in terms of its next value.
The scheme theorems state that for any f and g the two schemes have a solution. This can be
represented by the two theorems:

History Jy: 0O = f(©y))
Prophecy 3Jy:O(y =9(Qvy))
4.1 Variables over Fixed Finite Domains

The basic logic introduced above allows only boolean variables. In order to express the behaviors
of automata, it is convenient to consider variables which range over an arbitrary fixed finite

domain D. Without loss of generality, we can take D to be a segment of the integers {1,...,n}
where we may assume that n = 2" for some r > 0. Consequently, we may extend the basic logical
language by a vocabulary V, of D-variables, D-expressions, and D-constants: IC: {ki,..., kn}.

To the syntactical definition of QPTL, we add the following clauses:
e Every D-variable y € V,, and every D-constant k£ € K are D-expressions.

o If e is a D-expression, then so are O e and © e, intended to represent the value of e at the
next and previous positions of the model, respectively. If © e is evaluated at position 0, it
yields the default value k;.

e If p is a formula and e; and ey are (D)-expressions, then
if p then e; else ey

is an expression whose intended meaning is that it evaluates to the value of e; if p holds,
otherwise, its value is that of es.

e If e; and ey are expressions, then e; = ey is an (atomic) formula.

This generalization is not a real extension since D-variables, D-expressions and D-constants can
be encoded by r-tuples of boolean variables, r-tuples of boolean formulas, and r-tuples of the
boolean constants, ranging over T and F. This is done as follows:

The D-variable y can be encoded by the boolean variables x1, ..., z,, each representing a bit in
the binary representation of y. An expression will be represented by a tuple of formulas ¢, ..., ¢,.
For example, if ¢4, ..., ¢, is the tuple representation of expression e; and 1, ..., 1, is the tuple

!Here and until the end of this paragraph, a scheme such as y = f(©) is an abbreviation for the conjunction

1o 1O, OUn) Ao . Ay = [r(Ow1,...,Oyr), where y1,...,y, are boolean variables. A more precise
definition of this shorthand notation is given in the next subsection.

10

representation of expression e,, then the tuple representations of the expressions O e;, @ e; and
if p then e; else ey, and the representation of the formula e; = ey are given by:

Oel - (OQD17"'7O()0'I")
Oe —— (©¢1,-..,0¢)

if pthen e;elsees —— (PpAY)V(DAYL),...,(PA @)V (=D AY))
e1 = € —— 1o YA AN oYy

It is not difficult to see that all the axioms, theorems, and rules presented in section 3 can be
extended to cover D-variables and expressions. We refer to expressions also as functions.

The two-branch conditional statement if p then e; else e; can be extended to an m + 1-
branch conditional as follows:

Let p1,...,pm be QPTL formulas and ey, ..., e,+1 be expressions. Then

if p; then e; else-if p, then e, else-if ... else-if p,, then e, else e,,.,

is an m + 1-branch conditional expression. It can be defined as an m + 1 nesting of two-branch
conditionals.
We let min u.¢(u) be a shorthand notation for

if Ju: p(u) A u=k; then k
else-if Ju: p(u) A u=ky then k,

else-if 3Ju: p(u) A u =k, then £k,
else ky

Note the convention by which the scope of quantifiers extends as far to the right as possible.
Obviously, if there exists a u such that ¢(u) holds, then min u . (u) yields the constant k; with
the smallest index such that ¢(u) Au = k; holds. If there does not exist such a u, then min u . p(u)
return the default value k. Note that minimization is only applied to the value of u at the current
position, but © may have arbitrary different values at different positions.

4.2 Extensible Formulas
A QPTL formula ¢(y) is called (y—)past dependent if
F B =2)=0) < o(2)

Thus, a (y—)past-dependent formula ¢(y), depends only on the past and present values of variable
y, and this restricted dependency is provable in @x. Note that ¢(y) may depend on both past
and future values of any other variables which are free in (y).

A past-dependent formula ¢(y) is called extensible if

F@e(y)=3z: p(2) A By = 2)

11

This provable entailment requires that if ¢(y) holds at the previous position, we can always find
a sequence, represented by z, which agrees with y on all preceding positions and causes ¢ to hold
at the present position. It allows provability of the validity of ¢ to be extended from the previous
to the current position, by appropriate extension of ¥ into z.

An extensible formula ¢(y) is called uniquely extensible if both

Fo(y) A p(z)=(y=2) and Fo(y) & Bey)

The first formula states that ¢(y) uniquely determines the value of y at the current position. The
second formula implies that if ¢ holds now, it must have held at all preceding positions. Unique
extensibility requires the provability of both these properties. Thus, it is provable in Qx that
a uniquely extensible ¢(y) uniquely determines the value of y at the current and all preceding
positions.

The proofs of the following Lemmas, Claims and Theorems can be found in the appendix.

Lemma 2 Let p(y) be a QPTL formula. Then
Fo(y)=3z: (p(2) A z=min u.p(u))

This lemma claims that the following is provable in Qx: If ¢ is satisfied by some y then it is also
satisfied by some z whose current value (value at the current position) is minimal. The lemma
gives a closed form expression for the value of z at the current position, but not at any other
position.

To illustrate the relevant concepts, consider the formula
¢'(y):y Vv By

Clearly, ¢'(y) holds at position j if either y[j] = T or y[k] = T, for all k, 0 < k < j. Formula ¢'(u
is extensible, because given any y and position j > 0, we can always pick a z such that z[j] =T
and z[k] = y[k] for all k, 0 < k < j. Such a z will satisfy ¢’ at position j.

Lemma 1 holds for ¢'. First, we observe that minu . ¢'(u) = F (assuming the ordering F < T).
This is because w which is F at position j and T elsewhere satisfies ¢'(u) and has the minimal
value F at position j. We can take z = u (at all positions) to satisfy Lemma 1.

Note that ¢ is not uniquely extensible, because ¢'(F) and ¢'(T) both hold at position 0, yet

F # T.
Lemma 3 Let ¢(y) be an extensible formula. Then
O3y e(y)

This lemma claims that, for every position j, we can provably find a sequence y such that ¢(y)
holds at j.

Claim 4 Let ¢(y) be a uniquely extensible formula. Then

= o(y) = (y = min u. p(u))

12

This claim states that at any position where ¢(y) holds, y has provably a locally minimal value
among all sequences satisfying (. This is not surprising, since there is provably only one unique
y (over all past positions) that can satisfy ¢, due to the unique extensibility of .

Claim 5 Let ¢(y) be uniquely extensible. Then
= o(y) = p(min u. o(u))

This claim states that if ¢ is satisfiable, it is provably satisfiable by a sequence y which is locally
minimal among all p-satisfying sequences, at all positions. This follows from unique extensibility,
claiming that at any position, there is only one way to extend y to satisfy ¢.

The assumption of unique extensibility is essential for Claim 5. Consider the formula

¢ tyVv >y

which has been shown to be extensible but not uniquely extensible. As shown above, minu . ¢'(u) =
F. However, ¢/(F) holds at no position, except for position 0.

The importance of Claim 5 is not so much in that we found a sequence satisfying ¢ but in
the fact that we have a syntactic representation min u . @(u) for this satisfying sequence. Once
we have a closed-form expression for this, we can apply theorem QT as is done in the following
Lemma.

Lemma 6 Let ¢(y) be uniquely extensible. Then
=3y Oe(y)

This lemma combines Lemma 3, Claim 5, and Theorem QT, to obtain the provable existence of y
satisfying ¢ at all positions.
Let ¢(y) be extensible. Define

seaty(y) : p(y) A (y = minu. (p(u) A B(u=1y)))
This formula requires a y that satisfies ¢ and that is locally minimal among all sequences satisfying
¢ and agreeing with y on all preceding positions. The idea is to convert an arbitrary extensible
formula into a uniquely extensible one, as shown in the following lemma:
Lemma 7 Let ¢(y) be an extensible formula. Then

B sext,(y)

15 provably a uniquely extensible formula.

Lemma 8 Let ¢(y) be an extensible formula. Then

F3y: Oe(y)

13

This theorem claims that if ¢ is an extensible formula, then it is provable in Qx that there exists
a sequence y satisfying ¢ at all positions. It extends the statement made in lemma 6 for the more
restricted class of uniquely-extensible formulas. Lemma 8, together with claims 9 and 10 below,
are the basis for showing provability of both the history and the prophecy schemes, as shown in
the next subsection.

Let step(t) represent the following QPTL formula

step(t) : @t A Ot

The formula step(t) characterizes t as a step function, being true up to (and including) the
present position, and false from the next position on. Such sequences are used to mark the
current position.

Claim 9 F 3t step(t)

This claim states that, for every position j, there provably exists a step function marking the
position.

Let g1, g2, and g3 be three expressions, and z be a variable that does not occur free in any of
these expressions. Then,

Claim 10 FO3z: (B(z=g) A (z=¢) ATE=g))

This claim states the following provability. We can always patch together three expressions and
claim the existence of a sequence z whose value equals g; at all positions preceding the current
one, z equals gy at the current position, and z equals g3 at all positions succeeding the current
position.

4.3 The History Scheme
A function (D-expression) h(y) is called historic if it satisfies
FB(y =2) = (h(y) = h(2))

Namely, h(y) is historic if it is provable that the value of h(y) depends only on the value of y at
the preceding positions. Note that our definition extends that of Abadi and Lamport in that it
allows h at position j to depend on the value of y at all preceding positions k£ < 7, rather than
just the value of y at 7 — 1. Another generalization is that A may depend on values of variables
other than y at all positions (including & > 7).

Lemma 11 Let h(y) be a historic function. Then
©(y) : y = h(y)

15 an extensible formula.

Theorem 1 Let h(y) be a historic function and o(y) : y = h(y). Then
-3y Oe(y)

This theorem establishes that a history scheme always defines some sequence y satisfying the
recurrence equation y = h(y) at all positions, and that this fact is provable in Qx.

14

4.4 The Prophecy Scheme
A function (D- expression) f(y) is called prophetic if it satisfies

FOW=2)=(f(y) = f())

Namely, f(y) is prophetic if it is provable that the value of f(y) depends only on the value of y at
the next position. Note that our definition extends that of Abadi and Lamport in that it allows
f to depend on values of variables other than y at all positions.

Let ¢(y) : v = f(y), where f(y) is a prophetic function. We define the following QPTL formula:

P(y) - 3t : step(t) A OO Iu: (Be(u) AB(E—u=1y)) (5)

This formula lies at the heart of the reason why prophecy schemes, which are based on backward
induction over a finite domain, identify a well-defined sequence y satisfying y = f(y) at all
positions. The formula uses the step variable ¢ to mark the current position. Then it requires
the existence of infinitely many future points, at which we can start a backwards induction on
a sequence u (that may vary from one future starting point to another), requiring that all these
sequences when they come back to the current position (and below) agree with the current value
of y. The informal proof that a prophecy scheme has a solution is based on the Ramsey theorem,
presented here in a simplified form.

Theorem 2 For every finite partition of the natural numbers
PuU...UP, =N,
some partition P, i € [1..h], is infinite.

The formula ¢(y) gives Theorem 2 a formal expression, as can be seen by the following interpre-
tation. Let h be the size of the domain of variable y. Namely, vy,..., v, are the possible values
of y, at each position. Let P;, where 1 < ¢ < h, be the set of all future positions £ € N such that
starting a backwards induction on a sequence u at position k, results in ¥y = v; at the current
position. Following Theorem 2, for some i, 1 < ¢ < h, P; is guaranteed to be an infinite set,
explaining the use of [J ¢ Ju (and not [(J Ju) in the definition of ¥ (y).

Theorem 2 relies on the partition being finite, and the proof of existence of a well-defined
sequence y satisfying y = f(y) indeed relies on the domain of y being finite, as can be seen in the
proof of Lemma 15 which is the basis for the main theorem (Theorem 3).

Claim 12 Let f(y) be a prophetic function. Then
By =2)=8(f(y) = f(2)

Claim 13 Let f(u) be a prophetic function. Then
FOVe3u: Ou=v) A B(u= f(u))

This claim states the following provability. Given an initial value v, we can always apply the
backward induction and obtain a sequence u satisfying u = f(u) at the current and all preceding
positions, and whose value at the next position equals v.

15

Corollary 14 FO3u: B(u= f(u))

This corollary claims that at every position, one can find a sequence u satisfying u = f(u) at the
present and all preceding positions, and that this fact is provable.

Lemma 15 Let f(y) be a prophetic function and p(y) : y = f(y). Then the formula ¢ as defined
in (5) is provably an extensible formula.

This lemma establishes that the formula 1 as defined in (5), is provably an extensible formula.
The extensibility of ¥ together with Lemma 8 are used to show the provability of existence of
a sequence y satisfying 1 at all positions, namely - Jy : [19(y). This together with the next
lemma (Lemma 16), establishes the provability of existence of prophecy schemes. Note that the
proof of Lemma, 15 relies on the finiteness of y’s domain.

Lemma 16 Let f(y) be a prophetic function and p(y) : y = f(y). Then

- (y) = Ee(y)

This lemma claims that if ¢ holds at some position, then y = f(y) holds at all preceding positions,
and that this fact is provable.

Theorem 3 Let f(y) be a prophetic function and ¢(y) 1y = f(y). Then

F3y: Oe(y)

This theorem establishes that a prophecy scheme always defines some sequence y satisfying the
recurrence equation y = f(y) at all positions, and that this fact is provable in Qx.

5 From QPTL to w-Automata

5.1 Basic Definitions
An w-automaton A = (Q, Qo, 6, C') consists of

e () — a finite set of automaton-locations?.
e Yy C) — a subset of initial automaton-locations.

e 6 — For every ¢;,q; € Q, 6(gi,q;) is a propositional assertion over V, a countable set of
boolean variables (i.e., a formula containing no quantifiers and no temporal operators).

e (' — an acceptance condition.

2We use the term location instead of the common term state, to avoid the confusion with model-states.

16

Let o : sg, s1,... be a model. A sequence of automaton-locations p : qqg, ¢1, - - . is a run-segment of
A over o, if

S;)= 5(Qz’,Qi+1),

for every i > 0. A run-segment p : qo,q1,-.. is a run of A if gy € Qo. The infinity set inf(p) of
a run p is the set of automaton-locations that are visited infinitely many times in p. A run is
accepting if the infinity set inf(p) satisfies the acceptance condition C. A model o is said to be
accepted by the automaton A, if A has an accepting run over 0. We denote by L(.A) (the language
of A), the set of all models accepted by A. Two automata 4; and A, are called equivalent if
L(A;) = L(A;), namely, for every model o, o is accepted by A; iff ¢ is accepted by A,.

Classes of w-automata are defined according to their acceptance conditions. We denote by B,
R and S the w-automata with Buchi, Rabin, and Streett acceptance conditions, respectively. The
acceptance conditions for these three classes are summarized in the table below.

H ‘ Syntax ‘ Semantics H
B|FCQ inf(p) N F # 0
R \/(Lz A =U;), where L, U; CQ | Ji: inf(p)NL;#0 A inf(p)NU;, =10

1

2

A model ¢’ is said to be a j-marked variant of o if ¢’ is a t-variant of ¢ and o’ interprets ¢ as
T at position j and F elsewhere. Observe that every model ¢ has a unique j-marked variant for
each 5 > 0.

Automaton A j-approves a model o if it accepts the j-marked variant of o.

Let ¢ be a QPTL formula not referring to the boolean variable ¢, and A be an w-automaton.
We say that A is an automaton congruent to the formula ¢ if, for every model o and position
j >0, (0,j) = ¢iff A j-approves o. Note that this definition overloads the notion of congruence
which may now hold between two formulas as well as between an automaton and a formula. This
extension is, however, consistent in the sense that if automaton A is congruent to formula ¢ and
also to formula 1) then ¢ and v are congruent formulas.

Let A = (Q,Qo,6,C) be an w-automaton. We say that an automaton-location q¢ € Q is
deterministic if for every model s, | {¢' | s = 6(¢,¢')} |< 1. We say that the automaton A is
deterministic if all its locations are, namely, for all ¢ € (), ¢ is deterministic.

Let A = (@, Qo, 6, F') be a Biichi automaton, and ¢, ¢ € Q. We say that ¢ is reachable from ¢ in
A if there exists a model o and a sequence of locations p: g0 = ¢,¢1,...,¢; = ¢, ... such that pis
a run-segment of A over 0. We say that A is deterministic-in-the-limit if for every location ¢’ € @
such that ¢’ is reachable from an accepting location ¢ € F, ¢’ is deterministic. This implies that
every accepting run can contain only finitely many non-deterministic automata locations. We
use the notation D, N and L for deterministic, non-deterministic and deterministic-in-the-limit
automata, respectively.

Let A be an w-automaton. We say that A is void if there is no model ¢ and no position j > 0,
such that o is j-approved by A. We say that A is initially void if there is no model o which is
0-approved by A. Note that an automaton which only accepts the empty language is necessarily

17

void. On the other hand, an automaton may be void and yet accept a non-empty language.
However, all the models it accepts are not a j-marked variant of some model, meaning that the
number of positions at which ¢ is true, in any of the accepted models, is different from 1.

For every automaton .4, we construct a QPTL formula x,, characterizing the approving runs
of A. The formula uses a variable y which ranges over) to denote the location in which the
automaton is currently situated. We write at_g;(y) as a synonym for y = ¢; and, for a set of
locations S C @, we write in_S(y) as a synonym for Vs at_g;(y). The formula is defined in
several stages as follows:

S(t) Bt AtA Ot
init, (y) - Qo(y)
run,(y) : OVig(at-g(y) A Oat g;(y) A 6(g,q5))

accer, (y) = it (y) A run(y), A acc,(y)
app-r,(y) = O(first A accr,(y))
X o dty 2 S(E) A app-r,(y)

Formula S(t) characterizes the special variable t € V as a proper marker which is true at the
current position and false at all other positions. Formula init,(y) requires that the automaton
currently resides at an initial location. Formula run,(y) requires that, from now on, variable y
will follow the transition rules, moving from location ¢; to g; only when 6(g¢;, g;) holds. Finally,
formula x , groups all these components together, requiring that ¢ marks the current position and
that, if we go back to the beginning of the model, we can interpret the values of y as encoding
an accepting run of the automaton.

Note that, since 6(g;, ¢;) is an assertion over V, the formulas run,(y), acc.r,(y) and app_r, (y)
may have any of the variables in V as free variables, including the special variable t. In the
following, we parameterize all these functions with y, but add a second parameter (t or v € V—{t})
only when relevant for a given proof.

The acceptance formula acc,(y) depends, of course, on the acceptance type. For the three
considered types, it is defined as follows:

(y) : OCm_F(y)
ace, (y) : V(OO mm_Li(y) A O O-inUi(y))
acc, (y) : AN(OO-in_Li(y) v OO in-Ui(y))

Dps

acc
ANB

Claim 17 Every automaton A is congruent to its characteristic formula x ,. That is, for every
model o and position j > 0, (0,7) E x, iff A j-approves o.

5.2 Complementation of w-Automata

In subsection 5.3, we show how to construct for each formula ¢ an NB-automaton which is
congruent to ¢. The construction is inductive, showing for each operator of the logic how to build
an automaton that corresponds to a formula using this operator from the automata corresponding
to its operands. Based on this construction, we then show that the congruence ¢ < x 4, 18
provable in the axiomatic system qQx. For all but the negation operator, the construction is

18

straightforward and requires no introduction. The construction for the negation operator is
introduced below.

A classical approach to the complementation of Biichi automata is via determinization into au-
tomata with stronger acceptance conditions. An optimal determinization construction is given in
[Saf88]. Another complementation construction which circumvents the need for determinization,
is presented in [Kla91]. A third approach, using a translation to weak alternating automata, is
given in [KV97]. All three methods enable a 2°(™°9") complementation construction, matching
the known lower bound [Mic88|.

Since we use the automata to show provability, we are not concerened with complexity issues,
but rather, simplicity and clarity of the construction. We therefore adopt a simplification of
[Saf88] construction. Let p be a formula and A, be an automata congruent to p. Following
([Saf88]), we construct the sequence

stepl step2 step3
AP CDR DDS A_'p7

where C,, is a deterministic Rabin automaton equivalent to A,, D, is a deterministic Streett
automaton which is the complement of C,,, and A, is a non-deterministic Biichi automaton
equivalent to D,,.. The relations holding between these automata are those of equivalence, which
is stronger than congruence. Certainly if A; and .4, are equivalent, i.e., accept the same language,
then they are congruent. That is, A; j-approves model o iff Ay j-approves o.

In te following, we present the first step of the construction, namely the determinization.
In [Saf88], determinization is performed in a single step. We use a simplified construction which
proceeds in two steps. Starting with a non-deterministic Biichi automaton A, ,, we first construct
a deterministic-in-the-limit Biichi automaton B,, which is equivalent to A, [CY95]. Next we

construct a deterministic automaton C,, with Rabin acceptance condition, which is equivalent to
B

LB*
Let A = (Q, Qo,5,C) be an automaton and S, S’ C Q. We denote by A4(S, S') the propositional
assertion which represents 6 over sets of locations, as follows:

AA(S, 8" - N Végr) A N\ -Vbr)

reS! qeS rgS! q€eSs
A state s satisfies A4(S, S"), iff the following two conditions are satisfied:
e For every location r € S’, there exists a location ¢ € S such that s = §(g, 7).

e For every location » € @ such that » & S’, there exists no location ¢ € S such that

s = 6(q,r).

Let 0 : s, ...,Sn be a model-segment. We write 0 = A#(S, S") to denote a sequence of propo-
sitional assertions

AA(Sy = S, 81), A*(S1, Ss), ..., AX(Sp,, S')

satisfying s; = AA(S;, Siy1), for every i € [0..m).

19

Let A, , = (Q*, Qo, 64, FA4) be a non-deterministic Biichi automaton. We define a deterministic-
in-the-limit automaton B, , = (QF, Qo, 6%, F?) as follows:

Q®F = QU{VW) I VWCQLVNW =0 VNFA=0 VUW # 0}

The transition assertion 68 is defined as follows:
For q,q' € Q4 N Q7 such that ¢’ € FA, then

8%(q,¢) = 6%(¢,4").
For ¢,¢' € QN QB such that ¢ € F4, then both
8%(q,¢') = 6"(g, ¢') and 6°(¢, (0, {¢'})) = 6"(¢, ¢)
For (Vi, W), (Va, W) € QF — Q4,
((If Vi=0and W, C FA then AA(Wy, Vo U W)

Else if V; =0 and W, ¢ F4A then F

§5((Vi, Wh), (Va, Wy)) = <
(2, W), (V2, W) Otherwise A4V, U W, Vo UW,) A AV 64(q,7)

reVa geVp
ANV)

{ re(Wa—FA) g€Wy

Thus, for the case that V3 =), we place in V3 all the non-accepting successors of Wy, and place
in W, all the accepting successors.

For V1 #), we place in V5 all the non-accepting successors of V; except those which also belong
to the successors of W;. The set W, gets all the successors of W; plus the accepting successors of
Vi.

The accepting set of B, ,:

Ff = {@wW)|Wce}
The following Claim states that the two automata A,, and B, , are equivalent.

Claim 18 L(A,,)=L(B,,)

Proof: The formal proof is presented in [CY95], Proposition 4.2.2.
Informally, let p : (Vy, Wy), (V1, W1), ... be an accepting run of B,, over some model o, and

0 < 73 < 1g,... be the positions at which p is accepting. Then from the construction of B, ,,
for each state ¢' € W;,,, there exists a state ¢ € W;,, j > 0, and a a finite run-segment of A,
over (o,%;),...,(0,4;+1) which leads from ¢ to ¢’ while visiting an accepting state of A, . The

fact that these segments can be concatenated into an accepting run of A, , follows from Ramsey
theorem.

The proof of the second direction (£(B,,) — L(A,,)) is based on the following Lemma (for
the proof of Lemma 19 see [CY95)).

20

Lemma 19 Let A = {Q,Qo, 6, F'} be a non-deterministic Bichi automaton. A model o is ac-
cepted by A if and only if o can be written as a sequence of model-segments o = oy07 . . ., satisfying
the following properties: there exists a state f € F' and a set R C Q) containing f such that

o 0y = A(Qo, Q) for some Q' C Q such that f € Q.
e 0, =A(R,R)NA({f}, R) for every i > 0.

Let o be a model accepted by A, , and o™t qo,q1, - .. be the accepting run. Following Lemma 19,
we can decompose ¢ into 0g, 01, ..., and find a state f € F' and a set of states R C () associated
with o, satisfying Lemma 19. We construct an accepting run p® of B,, over o as follows. The
initial run-segment begins with location gy and ends in location (@, {f}). Since (0,{f}) € F5,
then (0, {f}) is a deterministic state in @, and the rest of the run is uniquely defined by 6® and
0. Let 19,171 - .. be the position indices correspondig to the begininning of the sequences gy, o1, - . ..
Based on the construction of B,, and Lemma 19, it can be shown that for every position index
ij, 7 > 0, there exists a position index k;, 7; < k; < 7,4, such that pP(k;), the location at position
k;, is an accepting location of B, .

|

., we define a deterministic automaton C,, = (Q°, ¢, 6¢, C°)
with Rabin acceptance conditions, as follows. Let k = 2|Q® — Q| and Q¢ be the set of all pairs
of the form (S, (A, ..., Ax)), such that

Based on the automata A, . and B

Sc QA
A€ (QB —QAU{LY)), forevery i,1 <i <k,

Without loss of generality, assume an ordering on the set Q4.
The initial location of C,, is

6% = (Qo, (L,---,1)).

The transition assertion §¢ is defined as follows. Let s be a state and (S, (Ay, ..., Ax)), (S, (A, ..., A}))
be two locations in Q°, then

s):66((‘5’ (AlaaAk))a(Sla (Alla’A;c))) (6)
iff s = A4(S,S’) and the elements of (A’ ..., A}) are defined from left to right, for i = 1,...,k,

21

as follows.

(X If A; # 1,5 = 6%(A4;, X) and X # A for all j < i, Otherwise)
1 If A; # L and s = 6%(A;, A)) for some j < i, Otherwise
Y If A, =1, and [is the minimal index [> %, such that
Al =4 s k= 65(Ay, A}) for no j < i,and s = 6%(4;,Y), Otherwise > (7)

@,{q}) If A; =1, and g € S' N F4 is the least element of S’ N FA such that
A% #(0,{q}) for all j <4, Otherwise

\ J— 7

The accepting condition of C, , is a Rabin condition, where for every i, 1 <17 < k,

DR

L; = {(S,(A1,..., A)) | (S, (A1,...,AL) € Q" and A; € FB)
Uz' = {(Sa (Ala s aAk)) | (S’ (Al, T Ak)) € QDR and Az = J_}}
ace, (y) = V 0o in_Li(y) A OO —inUi(y)

1€[1..k]

Given a state s, a set of locations () and a transition assertion ¢ over (), we use the notation

§) ={r|rqe@,sErq}

The following Claim states that the two automata B, , and C, ,, are equivalent.

DR?
Claim 20 L(B,,)=L(C,,)

Proof: For a formal proof, see [McN66].

Informally, let o be a model and p” : g, g1, ... be an accepting run of B, over o. The model
o and the automaton B, define a unique run p¢ of C,, over . We have to show that p¢ is an
accepting run. The locations of p¢ are of the form (S, (Ai, ..., Az). Since p? is an accepting run
of B,,, then for infinitely many position indices 7;, j > 0, p®(i;) € F. From the construction
of C,,, then for some index Iy, 1 < Iy < k, p€(ig)[Ay,], the value of Ay, at p€(ig), equals p®(ip),
and therefore p€(ig) € L;,. Similarly, for some index 1 < I; < Iy, p®(41)[A),] = pP(i1) and thus
p€(i1) € L;,. We get an infinite sequence of the form

Pc(io) € LlinC(il) € Ly, --.

where £ > lp > [> l5... and for all 7 > 0, [; > 1. Since the sequence [y, [;,... is a finitely
descending sequence, there exists an r > 0, such that for all j > r, l; = [;;1. Let I, = m
(1 < m < k). This corresponds to the fact that from some position of p, the value of A,, is never
1. We conclude that for all j > r, p*(i;) € L, and p®(i;) & U,,. namely, o€ is an accepting run
of B, .

22

Next, let 0 be a model and p° be an accepting run of C,,, over o. We show how to construct
an accepting run p® of B, over 0. Let m, 0 < m < k be the accepting index of p®, namely
0 L (0°) A O O —in_Upy(p©). Let r be the smallest position index such that p¢(r) & U,,.
We construct p® such that for every i > 7, pB(i) = p¢(i)[Am]-

For every 0 <4 < r, if p¢(i)[4;] = (6%)~ i pP(i+ 1) for some I, 1 <1 < k, then , B(i) = pC(i)[Ai]-
Otherwise, p5(i) = (63) LpB(i+1)Np€(i)[S]. It is straightforward to show that p? is an accepting
run of B, ,

|

Corollary 21 L(A,,)=L(C,,)

Proof: An immediate result of Claims 18 and 20.

5.3 Inductive Construction of Automata

In the following, we show how to construct for each formula ¢ an NB-automaton (non-deterministic
Biichi automaton) which is congruent to ¢. The construction is inductive, showing first how to
construct an automaton congruent to a proposition p, and then presenting, for each operator of
the logic, a construction showing how to build an automaton that corresponds to a formula using
this operator from the automata corresponding to its operands.

To reduce the number of considered constructions, we replace all occurrences of the I/ operator
with the temporal operators [J and O, using the following congruence:

pUg & Ft: tADOFE — qgVpA QL) A-Ot (8)

Similarly, we replace all occurrences of the S operator with the temporal operators [and ©,
using the following congruence:

pSq & F: tAEE — qV(p A OL)) 9)

We proceed to present the construction of an NB-automata A, congruent to the formula ¢ by
induction on the structure of ¢. We use the axiomatic system Qx to show the provability of the
congruence ¢ < x, -

Case: @ is a proposition

Let p be a proposition and A, : (Q, Qo, 6, F') be an NB-automaton given by:

Q = {0, 0}
Qo = {QO}
F = {(11}

5(qo,q1) = pAt
§(q0,90) = 6(q1,q1) =t
§(qi,q0) = F

23

Claim 22 The automaton A, is congruent to p. Furthermore, p:711,79,... 15 a j-approving run
in Ay, iff for every i < j, ri = qo and for every i > j, ri = q1.

Proof: Assume ¢ is j-approved by A,. This means that A, accepts ¢’, the j-marked variant of
o. The accepting run of A, over ¢’ must move from ¢, to ¢; at some step ¢, and this is possible
only if this 7 satisfies

oilp] = oift] = T.
Since o’ is j-marked, then 7 = j and we conclude that
oilpl = o1l =,

ie. (0,7) Ep.

Assume (0, j) = p, i.e., 0j[p] = T. Then o, the j-marked variant of o satisfies o[p] = oj[t] = T
and is accepted by a run that moves from gy to ¢; at step j, remaining at ¢; thereafter. This run
is accepting, showing that ¢’ is j-approved by A,.

[|
Claim 23 Fp e Xy,
Proof: The first direction

Fp=3t,y: S(t) A appr,(y)

L pASH ABly=q)ANTOly=q) Claim 22
= S(t) A app-r,(y) + PTL completeness
2. pASE) ATy By =q) ATy =q)
=y : S(t) A app-r,(y) J3-IiNTR 1
3. OF:Bly=q) A dly=aq) Claim 10
4. p A S(t)=3y: S(t) A appr,(v) TR2, 3
5 pAJt: SEt)=Iy,t: S{t) A appr,(y) IIINTR 4
6. O3t: S(t) Claim 10
7. p=3Jy,t: S(t) A app-r,(y) TR 5,6

The second direction

= S(t) A app-r,(y)=p,

is a direct result of claim 22 and the completeness of the axiomatic system with respect to PTL.
|

24

Case: ¢ is of the form pV ¢

By induction, we assume that we have already constructed the automata congruent to p and g,
given by A, = (QP, Q§, 67, F?) and A, = (Q?, Qf, 69, F'9) respectively. Without loss of generality,
we assume that QP N Q? = (. The automaton A,,, = (Q, Q, 6, F) is given by:

Q : QPUQR?
Qo : QUGG
F : FPUF?

For every ¢;,q; € Q,

(¢, q5) ifgq,q € QP
6(¢,q5) 3 6Uai,q;) if gi,q € Q7
F Otherwise

Claim 24 For every model o and position j > 0, o s j-approved by A,y, iff it is j-approved by
either A, or A,. Furthermore, p : qo, ¢, --. 15 a j-approving run of Ay, over o iff p : qo, q1,. ..
is a j-approving run of either A, or A, over o.

Proof: Assume o is j-approved by either A = A, or A = A,. Let p: qo, q1, . . . be the j-approving
run of A over ¢’. Then obviously, p is a j-approving run over ¢’ in A,y,.

Assume ¢’ is j-approved by A,y,. Then, there exists a j-approving run p : gy, g1, ... over ¢’ in
A,y g, which is a j-approving run over ¢’ of either A, or A,, as can be seen from the definition of
0.

|

Claim 25 F Xa, ¥V Xa, & Xapy,
Proof: In order to prove

F X4, V Xay, = Xy,

it suffices to prove separately - x Ay = Xy, and F x 4y = Xapy,- To prove + x ap = Xapy,» WE
apply rule QT to the entailment

S(t) A app-r, (y)=5S(t) A app-r, . (y)

The validity of the last entailment follows from Claim 24, by which, any accepting run of A, is also
an accepting run of A,,,. Provability by Qx follows from the completeness of PTL. Provability of
the entailment y ag = Xy, is established similarly.

To prove the second direction

- XAqu = X'AP v XAq’

25

we apply rule QT to the entailment
S(t) A app-r, ()= S(t) A (app_rAp (z) V app-r, (2))

As for the first direction, the validity of this entailment follows from Claim 24, and provability
follows from PTL completeness.
|

Let n(t) be a propositional assertion. We denote by n[T] the formula 5[t «+ T|, i.e., the formula
obtained by replacing every occurence of ¢ by T. Similarly, we denote 7[t < F] by n[F].

Let S C @ be a subset of automaton locations (possibly S = Q). We denote by S’ the primed
version of the subset S, namely

S'={q | qe S}

Case: @ is of the form Op

Assume that A, : (QP, QF, 67, FP) is an automaton congruent to p.
The automaton A_, = (Q, Qo, 6, F') is given by:

Q : Qru(Qry
Qo : Qg
F : FP

For every ¢;, q; € QP, let 6P(g;, ¢;) = 1i;(t). Then

6(girq;) = —t A mij[F]
6(q, ;) t A mij[F]
6(gi,q5) = —t A milT]
6(4i» q7) F

Claim 26 For every model o and position j > 0, o is j-approved by A_, iff it is (j +1)-approved
by A,. Furthermore if p : Go,q1, - .- is the j-approving run of A_, and p: qo,q1, ... is the (j + 1)-
approving run of A, then §; = q; fori= (j + 1), and G = ¢ for all i # (j + 1).

Proof: Assume that o is j-approved by A_,. Let ¢’ be the j-marked variant of 0. Then there
exists an accepting run

. tAnjj+1[F] , —tAn41,542(T)
P 4 RS — Gijy2 ..

over o' in A_,. It is easy to see that the sequence

nj,j+1[F] Mj+1,5+2[T]
% — G+ T G2 /.-

is an accepting run of A, over ¢”, the (j + 1)-marked variant of o.

26

Assume that ¢ is (j + 1)-approved by A,. Let ¢’ be the (j 4+ 1)-marked variant of 0. Then
there exists an accepting run

Pieey iy qir1,q542---
over ¢’ in A,. It follows that
(o',9) = 2t A 8%(g5, 4j41) implying (0", j) &= 6°(¢j, gj+1)[F]
(0,7 +1) =t A 62(gjs1,q5+2) implying (o', 7 + 1) = 67(gj11, ¢j+2)[T]
It follows that

(U”J:) = (45> Gj41)
(0", 7+ 1) = 6(dj115 Gj+2)

where 0" is the j-marked variant of o (and o). Obviously, p' : ..., q;, 1,42, - - - is an accepting
run of A_, over o,

|
Claim 27 F Xaoy & OXa,
Proof: To prove the first direction
FS(t) A app_erp(x,t) = Q3t,y: S{H) A app-r, (y,t"),
we apply rule QT to the entailment
S(t) A app_erp(ac,t) = O(S(Ot) A app_rAp(unprime(x), Ot)) (10)

where, for each ¢ € QP, unprime(q) = unprime(q’) = q. The validity of entailment (10) follows
from Claim 26. The provability of (10) follows from its validity and PTL completeness.
To prove the second direction

= O(S(t) A app-r, (y,1)) =3t z: SE) A app_erp(ac,t'),
we apply rule QT to the entailment

O(S(t) A appr, (y,1))=S(Ot) A appr_, (z,O1)lal, (11)
where « is the substitution

a: [z« if ¢ then 3 else 9]

Similar to (10), the validity of (11) follows from Claim 26, and provability follows from its
validity and PTL completeness.

27

Case: @ is of the form op
The automaton A_, = (Q, Qo, 6, F') is given by:

Q : QruU(QP)
Qo : Q’S
F . FP

For every ¢;, ¢; € QP, let 6P(g;, ¢;) = 1i;(t). Then

6(girq;) + —t A mij[F
0(gisq;) = —t A mylT]
6(¢;,95) t A mi[F]
6(q» 4;) F

Claim 28 For every model o and position j > 0, o is j-approved by A, iff it is (j — 1)-approved
by A_p-

Claim 29 F Xage € O X,
The proofs of claims 28 and 29 are similar to the proofs of claims 26 and 27, respectively.

Case: @ is of the form ¢ p
The automaton A_, = (Q, Qo, 6, F) is defined as follows:

Q@ : QU
Qo : Qg
F : (FP)

For every ¢;,q; € QF, let 6*(g;, q;) = m;;(t). Then

6(girq5) = mij[F]
5(%,9}) L M| T]
6(gi,q3) + —t A my[F]
6(¢i,q;) + F

Claim 30 For every model o and position j > 0, o is j-approved by A, iff it is k-approved by
Ay, for some k > j. Furthermore if p : qo, G1, - - . is the j-approving run of A _, and p : qo,q1,. ..
is the k-approving run of A, then G; = q; for all i <k and §; = q; for all i > k.

Proof: First, assume that o is j-approved by A_,. Let 0’ be the j-marked variant of 0. Then,
there exists an accepting run

P qy,qi+1s---

28

of A_, over o', and a position k£ > j, such that ¢ € QP and ¢; € (QP)' for all i > k. It follows
oP

that (0'/, k)): nk,k+1[T]-

Let 0” be the k-marked variant of 0. Then obviously, unprime(p) = ..., qx, unprime(qgei1), - - -
is an accepting run of A4, over ¢”, for some j < k.

Next, assume that o is k-approved by A, for some k£ > j. Let

P sy k41, - -
be the accepting run of A, over ¢’ : s¢, 51, . .., the k-marked variant of o. Obviously s; = 7;;+1]F]

for every i # k, and s = Mg p41[T]-
Then

. '
O Qe Qs - -
is an accepting run of A_, over ¢”, the j-marked variant of o.

Claim 31 F Xags & O Xa,
Proof: To prove the first direction
FS(t) A app_erp(x,t) = O y: SE) A app-r, (y,t),
we apply rule QT to the entailment (provable by Claim 30 and PTL completeness)
S(t) A app_rAOp(x,t):> S(SH) A app_rAP(unprime(x,t')))[a],
where « is the substitution
a: [t —primed(z) A primed(Q x)].
and, for a variable z whose values are in QP U (Q?)’, primed(x) is a boolean expression defined by
primed(z) : v € (QP)".
The proof of the second direction
FO(S(t) A app-r, (y)=3t' z: SE) A app_erp(x),
is given by the following sequence:
1. O(S@) A appr, (y,1)) A S(t') Claim 30
= S(t') A app-r hon (x,t")[0] + PTL completeness
where (3 is the substitution
B: [z if ©&Stthen y else y.
2. O(S(t) A app_rAp(y)) A3t S(t)
=3t': S(t') A app_erp(l“)[ﬁ] J3-INTR 1
3. g3t St Claim 10
4. O(S(t) A app-r, (y))=3t': S(t') A app_erp(m)[ﬂ] TR 2,3
5. O(S(t) A app_rAp(y))ﬁElt',x: S(t) A app_erp(x) QT, 4

29

Case: @ is of the form ¢ p
The automaton A_, = (Q, Qo, 6, F') is given by:

Q : QruU(Qr)
Qo : Qg
F . (F?Y

For every ¢;,q; € QF, let 6*(g;, qj) = m;;(t). Then

0(girq;) + —t A mij[F]
6(a, q;) t M [T
o(qiq;) = mijlF
6(qi,q;) @ F

Claim 32 For every model o and position j > 0, o is j-approved by A, if it is k-approved by
A,, for some k < j.

Claim 33 F Xags © S X,

The proofs of claims 32 and 33 are similar to the proofs of claims 30 and 31, respectively.

Case: @ is of the form Jv: p

For every ¢;,q; € QP and v € V — {t}, let 67(q;, ¢;) = m;(v).
The automaton Asz,., = (Q, Qq, 6, F') is defined as follows:

Q D@
Qo : Qg
F : FP

6(¢iyqj) : mij[F]Vmi[T] for every ¢;,q; € Q

Claim 34 For every model o and position j > 0, o is j-approved by As,., iff o' is j-approved by
A,, for some o', a v-variant of o. Furthermore, p is a j-approving run of As,., over o iff p is a
j-approving run of A, over o'

Proof: Let p: qo,q1,... be the run by which As,., j-approves the model o : sq, s1,.... We will
construct o’ : sb, 3'1, ..., a v-variant of o which is j-approved by A,. For every 7 > 0 we know
that s; = 1j41[F] V 7;,41[T]. We define o}[v] = F iff s; |= n;;41[F]. It is not difficult to see that
‘7;' = 77j,j+1[7)]-

In the other direction, let ¢’ : sz), Sy, ..be av-variant of o : sq, s1, . . ., such that ¢’ is j-approved
by A,, using the run p : go, ¢1,.... We will show that o is j-approved by As,., using the same
run p. For every j > 0, s; = 7,41 which is equivalent to s; = v A 1j;41[T] V v A 7;;41[F],
implying s'j = njj+1]T] V n;41[F], i-e., s'j = 6(g,q;j)- Since 5;- agrees with s; on all variables,
except possibly v, and §(g;, g;) does not refer to v, it follows that s; = 6(g;, ¢;)-

|

30

Claim 35 F Xag,., & v X,

Proof: To prove the first direction
FS(t) A app_rAamp(x) =3t y,v: S{H') A app-r, (y,v),
we apply rule QT to the entailment

FS(t) A app-r,_ ()= 5S(t) A app-r, (z, least_sat(v)), (12)

where least_sat(v) is given by the expression
if 6’(z,Ox)[F| then F else T,

and 67(x, O x)[F]? is the formula obtained by replacing every occurence of v in the propositional
assertion ¢*(x, O x) by F.
To prove the second direction

=3 () A appr, (y)= 3,22 SE) A appr, (2)

: P

we apply rule QT to the entailment

FS(t) A app-r, (y)=S(t) A app_r

‘AEI'v:p

(). (13)

The validity of both (12) and (13) result from Claim 34. Provability results from their validity
and PTL completeness.

5.4 The Case of Negation

Assume that ¢ is of the form —p and that we have already constructed the automaton A, con-
gruent to p. As discussed in subsection 5.2, we construct the sequence

A stepl step2 D step3
P DR DS —-p

where C,, is a deterministic Rabin automaton equivalent to A,, D, is a deterministic Streett
automaton which is the complement of C,,, and A, is a non-deterministic Biichi automaton
equivalent to D, .

3Note that 67(z, O z)[F] is a shorthand notation for the formula \/ at—qi(z) A O at—gj(z) A 67(gs, q;)[F]-
2%

31

Negation - Step 1: A, — C,,. Let p be a QPTL formula and A, = (Q, Qo, 6, F') be an

NB-automaton congruent to p. Let C,, = (QDR, qé) R, 6DR, CDR) be a pr-automaton equivalent to
A, as defined in subsection 5.2.
Claim 36 F 3w acer, (z) < Jy: accr, (y)

Claim 36 is established by a sequence of claims. We first set out to prove the first implication
- acer, (z) =3y : accr, (y)- (14)

Let o : sg, s1,... be a model, and = be a variable whose interpretation identifies an accepting run
of C,, over o. Since x represents an accepting run of C,,, over o, then o = Viep 5 O O inLi A
& O —in_U;. Let m be the minimal index, 1 < m < k, such that o = (0 in_ Ly, A O O —in_U,y,.
Recall that a location in Q”" is of the form (S, (As, ..., Az)), where 4; = (V;, W) (or A; = 1)
and S,V;,W,; C Q, for every 4, 1 <14 < k. In order to identify a unique run y of A, over o, we
first define a total ordering on @ such that for every non-empty S C @, the function least(S)
specifies a unique location in S.
We can now define a prophecy scheme y = f,,,(O y), as follows:

least(Vy, U Wy,) If 0(A,#L)and Qy & QOVin U O W,

least(67'(Oy)) N W,,) Else, if O(A,, # L) and § ' (Qy) N W,, # 0
fm(Qy) least(6'(Oy)NV,,) Else, if O(A,, # L) and 1 (Oy) NV, #0

least(6~1(Oy) N S) Else, if s~'(Oy)NS # 0

least(Q) Otherwise

The purpose of function f,,(Oy) is to define a descending inductive scheme by which, given the
value of y at position i + 1, we determine the value of y at position 7. Note that the fuction f,,
depends on the choice of m. Denote the value of y at positions ¢ and 7 + 1 by ¢;,¢;+1 € Q. The
definition of f states the following:

e If we are at a position 7 beyond which (A, # 1), and ¢;4+1 € O Vin U O Wiy, we take g;
to be the least member of V,,, U W,

Otherwise, if we are at a position beyond which [J(4,, # L), and there exists a location
q € W, such that s; = 6(q, ¢;41), we take ¢; to be the least member of 67 (g, 1) N W,,.

Otherwise, if we are at a position beyond which [J(4,, # L), and there exists a location
q € V,, such that s; = 6(q, ¢i1), we take g; to be the least member of § (g 1) N V.

Otherwise, if § *(g;;1) NS is non-empty, we take g; to be the least member of §!(g;.1) N S.

Otherwise, we take ¢; to be the least member of Q).

Claim 37 - acer, () A (OO in-Ln(z) A OO -in-Un(z)) A Oy = fu(Oy)) — acer, (y)

32

Proof: We show that the claimed implication is (semantically) valid.

Let o : sg, s1,... be a model, and = be a variable whose interpretation p identifies an accepting
run of C,, over 0. Let m be the minimal accepting index of p. From the construction of C,,, we
can deduce the following properties of p. Let [be a position beyond which [1(A4,, # 1), and let
1 > [. Then,

P1. V,,(4) U W,,(3) # @ and every location ¢ € V,,,(i + 1) U W,,(i + 1) has a predecessor in
Vin(1) U Wi(3).

P2. For every location ¢ € W,,,(3), either ¢ € F or ¢q has a predecessor in W,,(i — 1)

P3. If p(7), the location at position 4, is an accepting location, then V,,(7) = @ and W,,,(i+1) C F.

First, we show that every y satisfying O(y = f(Qy)) is a run of .4, over the considered model
0. In terms of position indices, ((y = f(Oy)) implies y(i) = f(y(i + 1)) for all 7 > 0. The
definition of f consists of 5 clauses. Clauses 2 — 4 guarantee that y(7) is a predecessor of y(i + 1)
or, equivalently, that y(i + 1) is a §-successor of y(i). We claim that, if y(i) = f(y(i + 1)) holds
for all 7 > 0, then clauses 1 and 5 are never used.

Let [denote the position beyond which A,, is never L, namely A,,(7) # L for all i > [. Clause
1 can only be used at some position i > [. To be used at 7, it is necessary that y(i + 1) ¢
V(i +1) U W,,(i + 1). Consider location y(i + 2). If y(i +2) & (Viu(i + 2) U W,,(5 + 2))
then, in the computation of y(i + 1) = f(y(i + 2)), we use clause 1 and pick y(i + 1) to be the
least location in V,,(i + 1) U W,,(¢ + 1), which, by property P1, is non-empty. Alternately, if
y(i +2) € V(i +2) UW,,(i + 2), then by property P1, either 6 *(Oy) N V(2 +1) # 0 or
S HOy) N W,,(1+1) # 0, and we use clauses 2 or 3 to pick y(i + 1) to be the least location in
either W,,,(i + 1) or V,,(i + 1) respectively. It follows that y(i+ 1) € W,,,(i +1) U V,,(i + 1) in
both cases, which shows that clause 1 could not have been used for computing y(i) = f(y(i+ 1)).

By the previous argument y(i) € V,,(i) U W,,,(i) and is a predecessor of y(i + 1) for all 7 > .
By the construction of C,,, V(i) U W,,(i) C S(3) for all ¢ > 0, and every location ¢ € S(7) has
a predecessor in S(i — 1) for all ¢ > 0. Thus, in the evaluation of y(i) = f(y(i + 1)) for i < I, we
use clause 4, which shows that clause 5 is never used.

Next we show that y = y(0),y(1),... is an accepting run of A, over o. Let 7,7, 1 < i < j
be two positions such that x(7) and z(j) are accepting locations in C,,. Let R = {r |i <r <
J,y(r) € W(r)}. Since z(j) is an accepting locations in C, ,, then V,,,(j) = 0, and by property P1,
W,.(j) # 0. Then, by the definition of f, y(j) € W,,(j). Thus, R # 0. Let 7 € R be the minimal
element in R. If r =4+ 1 then y(r) € W,,,(i + 1), and since by property P3, W,,(i+1) C F, then
y(r) € F. Else, if r > i+ 1 then y(r) € W,,(r) and y(r — 1) € W,,,(r — 1) (since 7 is minimal in
R). By the definition of f for y(i) & W,,(i), y(r) can not have a predecessor in W,,,(r — 1). Thus,
by property P2, y(r) € F.

Thus, for every positions 4, j, ¢ < j, such that z(7) and z(j) are accepting locations in C,,
there exists a location r, i < 7 < j, such that y(r) is an accepting location in A,. Since there
are infinitely many positions #; < 73 < ... at which z is accepting, y passes infinitely many times
through accepting locations.

Once the validity of the implication is established, its provability follows from PTL complete-
ness. a

33

We can now proceed with the proof of (14):

1. accr, (z)— \/ OO in_Li(z) A & Oin_Us(w) Def. of acc_r,
2. accer, () AV (ni(z) A Oy = f:(Oy))) —accr, (y) Claim 37
1<i<k

+ PTL completeness
3. acer, () A (pi(x) A Fy: Oy = fi(Oy)) —Fy: accr, (y) FF-INTR 2

1<i<k
4. AN Fy: O=fi(Oy)) Theorem 3
1<i<k
5. acer, () =3y : accry, (y) TR 3, 1,4
o
Next, we prove the second implication
= acer, (y)—3z: acc-r, (2), (15)
Let o : sg,s1,... be a model, and y be a variable whose interpretation identifies an accepting

run of A, over o. In order to identify a unique run x of C,, over o, we define a history scheme
z = h(© x), where h(© z) is defined as follows:

DR
9 If first
h :
(©2) { min q.6DR(@ x,q) Otherwise

The purpose of function A(Q x) is to define a ascending inductive scheme by which, given the
value of z at position 7 — 1, we determine the value of z at position 1.

The definition of A(©) relies on the determinization to construct the unique run of C,, over
the considered model o : s, s1,.... It sets x(to qé) R, the single initial location of C,,. Then, for
every i > 1, (i) is defined to be the unique C,, location ¢ € Q"" satisfying s;_; = 6" (z(i—1),q).
Note that the historic function hA(© x) does not refer to y.

Claim 38 Facer, (y) A O =h(0z))— accr, (x)
Proof: A direct result of Corollary 21 and PTL completeness.
-4
We can now proceed with the proof of (15):
1. accr, (y) A O =h(Oz))— accre (x) Claim 38
2. accr, (y) A Jz: O =h0Oz))—3: accr, () J3-1inTR 1
3. dz: Oz =h(O1)) Theorem 1
4. accr, (y)—3z: accr, (z) TR 2,3
|

34

Negation - Step 2: C,, — D,,.
Let C,, = (QDR,qDR,(SDR,CDR) be a pr-automaton as defined in step 1. We define a Ds-
automaton D, . = (@, ¢, 67 C’DS) as follows:

DS DS
=0

DR DS

¢« Q" =Q"q =g .6
e C” - For every i € [1..k], L; and U; are defined as in C,,, .
ace, (y): N\ O O-in-Li(y) v OO in-Ui(y)

DR

i€[1..k]
Claim 39 F 3w acer, (x) < -3y : accr, (y)
Proof: The first implication is proven as follows:
1. ace, () A Oy =2)— nace, (y) Def. of acc, ,acc,
and PTL completenes
2. ity (x) A rune (2) A Oy =) Def. of C,,., D,
— inity, (y) A rung, (y) and PTL completeness
Pp ;(y)
3. amit, (z) A rung () A 0Oy =) D, deterministic, 2,
— Py (y) and PTL completeness
4. accr, (z) TR 1,3
—-0@w=2) A -y, (y) VO =2z) A nace, (y)
5. accr, (x) — nacery, (v) TR 4
6. accr, () —>Vy: —acer, (y) V-INTR 5
7. accr, (x) — 3Ty : acc-ry (v) QR 6

The second implication is proven similarly.

Negation - Step 3: D,, — A_.
The following construction is taken from [Saf88] where it is attributed to Vardi. Let D, =
s Db, C’Ué) be a ps-automaton with k£ accepting pairs. We construct an equivalent NB-

(Q) QO ’ 6
automaton A_ = (@, Qo, 6, F) as follows:

e Q : {(¢,5,%)]qeQ”,S, C{1,... . k}or S, ={#}}fori=1,2

o QO : {(Q(l))sa {#}a {#})}
e 6 : Consider (g,51,52) € Q and ¢ € Q"". Define

Al . 51U{Z|QI€L1}
AQ : SQU{Z|QI€UZ}

We say that (¢, S, S4) is a syntactic successor of (g, S1,Ss) if one of the following holds:

35

~ 51 =5 = {#} and (S} = 5 = {#} or 5 = 5} =).
—AlgAQandSi=S§=(/).
- AlgAQ and Si:Al, Sé:AQ

For every (¢', S7,.5%) a syntactic successor of (g, S1,Ss), we set
5((g,81,52), (¢, S1,95) =6 (4,4

If (¢', S7,S5) is not a syntactic successor of (g, S1, S2), we set
6((g, S1,5),(q',51,85)) = F

e F : {(g,0,0)|¢eQ™}
Claim 40 F 3z acer, (x) < Jy: accr, (v)
Proof: The proof of the first implication
- acer, () — 3Ty : accr, (y), (16)

is performed in several steps. First we observe the following claim:

Claim 41 Let o be a model and x be a variable whose interpretation identifies an accepting run
of D, over o. Then for some j > 0,

(0,5) = N\ in_Li(z) = O in_U(z)

i€[1..k]

7

st(;ble

Proof: The validity of the claim is obvious from the definition of Streett acceptance conditions.

ol

Let 0 be a model and p be a run of D, over ¢. In order to identify a unique run of A_ over o,
we define a history scheme y = h(© y) as follows:

(Q(?Sa {#}7 {#}) s If ﬁTSt
oY) : (', {#},{#}), where ¢ =minq.6 (Oz,q) Else, if —stable
v (¢',0,0), where ¢ = minq.8 " (©z,q) Else, if stable A © —stable
minu.6(0y,u) Otherwise

The definition of 2(© y) sets (0) to (g, , {#}, {#}), the single initial location of A_,. Relying
on the knowledge of position j at which the run of D, over o becomes stable, y(i) is set to
(z(i),{#}, {#}), at all non-stable positions 0,...,7 — 1. At position j, the value of y(j) is set
to (z(4),0,0). Finally, at all positions k£ > j, the value of y(k) is evaluated relying on § being
deterministic at all stable positions.

36

Claim 42 Facer, (x) A O stable(z) A Oy = H(Oy)) — acer, (v)

Proof: To prove the validity of the claim, we observe that every y satisfying [1(y = h(Oy)) is a
run of A over 0. To see that the run y(0),y(1),... is an accepting run, observe that S; and S
are set to () on the first stable position, and at every position satisfying S; C Sy. Since z is an
accepting run of D, ., then [0 G(A; € Ay), which implies O Oy = Veqps (¢,0,0)), namely, at
infinitely many positions ¢ > j, y(i) € F.

Provability follows from the validity and completeness of the axiomatic system Qx for PTL.

ol
We can now prove (16), as follows:
1. accr, (x) AN O stable(z) A Oy = (O y)) — acer, (y) Claim 42
2. accr, (x) A O stable(z) A Jy: Oy =h(Oy))—y: acer,_ (y) FF-1InNTR 1
3. dy: Oly=h(0Oy)) Theorem 1
4. accr, (z)—3Jy: acer, (v) TR 2, 3, Claim 41
ol

To prove the second implication

- acer, (y)— 3z : accr, (z),

we apply rule QT to the following implication
accr, (y) — acc-ry (location(y)),

where, for y = (g, S1, S2), location(y) = q. The validity of this implication is a straightforward
result of the definition of A_, and provability follows from the validity and the completeness of
PTL.

|

Let p be a formula and A, be an NB-automaton congruent to p. Let A, be the automaton
resulting from the three-step determinization construction.

Claim 43 F Xa, € Xy,

Proof:
L. 3z: accr, (z)< —3Jy: accr, (y) Claim 36, Claims 39,40
2. O first TR
3. O&(first A (Fz: accr, (z) < =3y : accr, (y))) TR 1,2
4. O(first A Jz ¢ accr,_ (z)) & O(first A =3Iy @ accr, (y)) TR 3
5. dz: O(first A accr, (2)) & =3y : O(first A acer, (y)) Qr 2,4
6. dx: app-r, (z) & —Fy: app-r, (y) 5,def. of app_r,
7. Jt: S(t) Az app-r, (x) & 3Jt: St) A —Ty: app-r, (y) TR 6,33-INTR
8 Ft,x: S(t) A app-r,_ () & -3,y S(t) A app-r, (y) QR 7
9. X, © X4, 8, Def. of x

37

Theorem 4 For every QPTL formula ¢, there exists a Biichi automaton A, such that
FoeXx,,-

Proof: A direct result of all claims in Subsections 5.3 and 5.4.

5.5 Winding it All Up

Assume that we have obtained our final automaton A, which is congruent (and has been formally
shown to be so) to the formula ¢. The last step is to test whether A, is initially void and show
that if it is initially void then —¢ which is congruent to —y 4, 18 provable.

Claim 44 If automaton A, is initially void, then —x , is provable.
Proof: From the definition of x ,,

X Yyt S()V E(first(y) V —init, (y) V —run, (y) V O O ~in F(y))
The above formula is valid iff the following formula is valid

—S(t) vV B&(—first(y) V —init, (y) V ~run, (y) V S O ﬂin,FA(y)) (17)
Finally, the validity of (17) is provable by the completeness of the PTL axiomatic system.

This leads to the final result:
Theorem 5 If the formula ¢ is valid, then it is provable in the ariomatic system Qx.

Proof: Let ¢ be a valid formula and A-, be an NB-automata congruent to —¢. Since ¢ is valid,
then —¢ is not satisfiable and A, is initially void.

L. F-=xa., A, initially void , Claim 44
2. F-9p<% xa,, Theorem 4

3. F (=) 1,2

4. Fop 3

6 Discussion

The general technique proposed here, proving completeness by a formal trace of an automata
reduction, seems to be widely applicable. We are currently studying other versions of temporal
logics, examining whether their completeness can be determined by very similar means. Among
the logics that should be considered are full QPTL but with the floating notion of validity. Another
interesting logic would be the future fragment of PTL, and of course, stuttering-free logics such
as TLA and other variants.

38

Acknowledgment: We thank the referees for their helpful comments.

Appendix A

In the following we present the proofs of all lemmas, claims and theorems of section 4.
Lemma 2 Let ¢(y) be a QPTL formula. Then
Fo(y)=3z: (p(z) A z=min u.p(u))
Proof: First, define
Xi = Ju: o(u) A u=k;
Then
minu.(u) = if x; then k; else-if ... else-if x, then £k, else k;

Note: For every 1 =1,...,n,
Fxi A\ —x; = minu.p(u) =k (18)
j<i

We can now proceed with the proof:

Loo(y)= Vel Ay =k) TAU
2. py)= VXi Qr 1
3. \/Xz:> \/Xz N '/\._'Xj TAU
7 7 j'<l
4. ri=3z: o(2) N z=k; Defs. of x;,7;
5. r;= minu.p(u) =k; (18)
6. ri=3z: o(2) A z=minu.p(u) 4,5
7. Vri=3z: ¢(2) A z=minu.p(u) TR6
8. ¢(y)=3z: ¢(2) N z=minu.p(u) TR 2,3,7
|
Lemma 3 Let ¢(y) be an extensible formula. Then
O3y e(y)
Proof: Using the induction theorem NFx5, we need to show that
Fody: ey)=Fy:)
which follows immediately from the definition of extensibility.
|

39

Claim 4 Let ¢(y) be a uniquely extensible formula. Then

= o(y) = (y = min u. p(u))

Proof:
1. o(y)=3z: ¢(2) AN z=minu.p(u) Lemma 2
2. o) N p(z)=(y=2) unique extensibility
3. ¢(y)=(y=minu.y¢(u)) PR 1,2 and TAU

Claim 5 Let ¢(y) be uniquely extensible. Then

= o(y) = o(min u. o(u))

Proof:
1. ¢(y)=(y =minu.p(u)) Claim 4
2. Be(y)= B(y=minu.p(u)) TR 1
3. o(y)= B ¢y) unique extensibility
4. F(y=minu.p(u))=¢(y) < p(minu.p(u)) past-dependence
5. w(y)=¢(y) < e(minwu. p(u)) TR 2,3, 4
6. ©(y) = p(minu.p(u)) TR 5

Lemma 6 Let ¢(y) be uniquely extensible. Then

=3y Oely)
Proof:
1. o(y)= ¢(minu. o(u)) Claim 5
2. Jy: o(y) = p(minu. ¢(u)) J-INTR 1
3. OFy: ¢(y)— Oe(minu.p(u)) TR 2
4. O3Fy: o(y) —3z: Oe(z) QT 3
5. 3z: Oe¢(z) MP 4, Lemma 3

Let ¢(y) be an extensible formula. Define

sext,(y) 1 o(y) A (y=minu.(p(u) A B(u=1y)))

40

Lemma 7 Let ¢(y) be an extensible formula. Then it is provable that

& sext,(y)

15 a uniquely extensible formula.

Proof: We have to show the following:

(0) F By =2) = (B sesty(y) = B seat,(2))
(b) F Esert,(y)=3z: By =2) A & sexty,(2)
(c) F Esexty(y) N & sest,(z) = (y=2)

(d) + 3 sexty,(y) & =& sexty,(y)

Entailment (a) is a direct result of

F By =2)= B8(p(y) < »(2)).

which is easily provable for a past-dependent formula ¢.

Proof of (b):

1. Tsext,(y) = Be(y)
2. Oserty(y)=32: ¢(z
3. p(z) NEHI(z=y) =
wo)
Jw : p(w) A E(w=y) A (w=minu. (p(u)
Jz: 0(2) A Bz =y)=Fw:
Esext,(y) = Jw : sext,(w) A B(w =1y)
B(w =1y) A Tsext,(y) = Bsert,(w)

E(z=1y)

® N oo

Bserty(y) A Jw : sext,(w) A Bw=y)=
Jw : @ sext,(w) A B(w =1y)

9. Tsext,(y)=Tw: sert,(w) A B(w=1y)

A E|(y minu. p(u) A Su=
) A

sext,(w) A B

Ssext,(y) A sext,(w) A B(w =y)= & sext,(w)

past-dependence
extensibility

unique extensibility
unique extensibility

Def. of sext,, TR
extensibility of ¢

Lemma 2 on ¢(z), TR
J-iNTR 3,def. of sext,
TR 2,4

part (a), TR
A Bw = TR 6
Jd3-INTR 7
TR 5, 8

Proof of (¢): Using induction theorem N¥x5, we prove the stronger entailment:

F & sert,(y) A B sext,(2) = By = 2)

We have to show the following:

- (Eseat,(y) A Bsesty(2) — By = 2))

p

1. By=2)= (minu.pu) A Bu=
sext,(y) A sext,(z) A Ty = 2) =
3. p=> (B sexty,(y) A B sexty(z) » E

N

= (B sext,(y) A B sext,(z) = By = 2))

1, Def. of sext,,
TR 2, Def of p

ol

Provability of congruence (d) is a direct result of the idempotence of the [operator and PTL

completeness.

Lemma 8 Let ¢(y) be an extensible formula. Then

=3y Oe(y)
Proof:
1. Esert,(y)=¢(y) Def. of sext,(y)
2. OO sexty(y) — Oe(y) TR 1
3. dy: O sext,(y)—Iy: Op(y) IF-INTR 2
4. Jy: O3 sexty,(y) Lemmas 6,7
5. Jy: Oely) mP 3,4

Let step(t) represent the following QPTL formula
step(t) : @t A Ot
Claim 9 F O3t step(t)

Proof: Using the induction theorem Nrx5, we have to show

(a) F3t: step(t)
(b)) Fo3t: step(t)=-3t: step(t)

Proof of (a):

1. @ first A O—first TR
2. step(first) Def. of step, 1
3. Jt: step(t) QT 2

Proof of (b):
1L o@EyAOw=(EeyArT60y) ™

2. O step(y) = step(©O y) Def. of step, 1
3. Ostep(y) =3t : step(t) QT 2

4. dt: ©step(t) =3t : step(t) 3-INTR , 3

5. ©3dt: step(t)= 3t : step(t) d—com—Q© 4

Let g1, g2, and g3 be three expressions, and z be a variable that does not occur free in

these expressions. Then,

42

any of

Claim 10

FO3z: (E(z=91) A (z2=g2) A Oz = g3))

Proof: Define 9(z) : Gz =g1) A (z=g2) A Oz = g3).

1. step(t)
=Y(if Ot then g; else-if ¢ A O -t then g, else g3) TR, def. of step and ¢
2. step(t)=3z : ¥(z) Qr1
3. Jt: step(t) =3z : ¥(2) 3-INTR 2
4. O3t : step(t) — 3z : P(2)) TR 3
5. O3t: step(t)— O3z : ¥(z) TR 4
6. OFz: (BAlz=g91) A (z=9) A TO(z=93)) mp 5, Claim 9
Lemma 11 let h(y) be a historic function. Then
o(y) 1y = h(y)
15 provably an extensible formula.
Proof: We have to show the following:
(a) FE(y=2)=0y) < ¢(z) past-dependence
(b) FEpy)=3z: p(z) A B(z=y) extensibility
Proof of (a):
1. Bly=2)=(y=2) A (h(y) =h(z)) TR,h historic
2. By=2=>W="hy) < (z="h(z) TRI1
3. By=2)=p(y) < ¢z 2, Def. of ¢
Proof of (b): We prove the stronger claim
FOdz: ¢(z) A B(z=1)
1. Ek=y)A(z=hy))=0(z) A GE=y) h historic
2. Jz:Tlz=y) A (z=h(y)=3z: ¢(z) A Bz =1) J3-INTR 1
3. O@z: Tz=y) A (z=h(y)—32: ¢(z) NB(z=y)) TR2
4. O3z: Blkz=y) A(z=h(y))— O3z: p(z) AT(z=y) TR 3
5. O3z: (B(z=1y) A (z=h(y)) Claim 10
6. O3z: p(z) A E(z=1y) TR 4,5

43

Theorem 1 Let h(y) be a historic function and o(y) : y = h(y). Then
=3y : Oy = My))

Proof: A direct result of Lemma 8 and Lemma 11.
[|

Let ¢(y) : v = f(y), where f(y) is a prophetic function. We define the following QPTL formula:
P(y) : 3t : step(t) A OO Tu: (Bo(u) AB(E—u=y)) (19)
Claim 12 Let f(y) be a prophetic function. Then
e =2)=8(()=f(2)
Proof:

L. O(y=2)=f(y) = f(2) f prophetic
2. @O =2)=0(fy)=f(2) T”1
3. [E z

Claim 13 Let f(u) be a prophetic function. Then
FOVedu: O(u=v) A B(u= f(u))

Proof: Using the induction theorem NFx5, we need to show the following:

(a) FVYvIu: O(u=v) A u= f(u)
() FoVYviu: O(u=v) A B(u= f(u)=Vz3w: O(w=2) A F(w = f(w))

Proof of a:
1. Ju: O(u=v) A u= f(v) Claim 10, TR
2. O(u=v) A (u=fv)= Ow="2v) A (u= f(u)) prophetic func. def.
3. Ju: Olu=v) A (u=f(w))=Fu: O(lu=v) A (u= f(u)) FF-INTR 2
4. Ju: O(u=v) AN u= f(u) TR 1,3
5. Yvdu: O(u=v) A u= f(u) V-INTR 4

44

Proof of b:
1. OVwdu: O(u=v) A E(u= f(u))
u

= ©Ju: Ou = f(2)) A B(u= f(u)) Ql, Q2

=3Ju: (u=f(2)) A B(u= f/(\u)) R TR
2. (u=f(2) ABu=fw) ABw=u) A (w=f(2) A Ow=2)

= O(w = 2) //l H(w = f(w)) R TR, f prophetic
3. (u=f(2) ANBu=[f(w) ATw: Bw=u) A (w=[f(2) A Ow=2)

=3Jdw: O(w=2) N =(

A
= f(w)) J3-INTR 2
OFw: Bw=u) A (w=f(z

4.) A TO(w = 2) Claim 10
5. (u=f(2)) A B(u=f(u)=3w: Ow=2) A B(w=f(w)) TR 3,4
6. Ju: (u=f(2) AE(u=f(u)=>TFw: O(w=2) A @F(w= f(w)) J-INTR 5
7. OVodu: O(u=v) A Bu= f(u))=3Fw: O(w=2) AN @(w=f(w)) TRI16
8 OVvidu: O(u=v) A B(u= f(u)=Vz3dw: O(w=2) A B(w = f(w)) V-GEN T
|
Corollary 14 FO3u: B(u= f(u))

Lemma 15 Let f(y) be a prophetic function and o(y) : y = f(y). Then the formula v as defined
in (19) is provably an extensible formula.

Proof: We have to prove the following:

a. FE(y=2) = Y(y) < () past-dependence
b. FQY(y) = F2: ¥(2) A B(y=2) extensibility

Proof of (a): We prove the following
FE(y=2) A () =¥(2)

We use the following notation:
X(y):olu) ANt—u=y

2. At—y=2) A Bxy) =2 xz) TR
3. OBt—y=2 A0S 3u: @Ex(y)
= O00EE—-y=2) A Ju: Bx(y)) TR
= 00 u: (Bt—y=2) A Bx()) QR
= 0O du: Bx(z) TR 2
4. BElly=2) A step(t) AN OO Tu: B x(y)
= step(t) A OO Ju: B x(z) TR 1,3
5. BElly=2) A 3t: step(t) A OO Tu: B x(y)
=3t: step(t) A OO Tu: B x(2) J3-INTR 4
6. By=2) A P(y)=9y(2) 5, Def. of 1

45

Proof of (b): We have to prove the following
Feuv(y)=32: Y() A By =2)
We break the proof into two parts, as follows:

Part-1: F first— 3z : 9(2)
Part-2: FO¥(y)=3z: ¢(z) A By = 2)

Proof of Part-1: We have to show
F 3tz step(t) A OO Tu: (Be(u) AEI(E—u = 2))
Take t = first, and show

al. F step(first)
bl. F3z: OO Tu: (B e(u) AB(first—u = 2))

F step(first) requires - (= first A O O —first) which follows from PTL completeness.

Proof of (b1):

1. Oo(first A \n/ u=k;) TR, TAU

i=1

2. Bew) = Beu) A S(first A\ u=k) TR 1
=1

3. OFu: Be(w)— OJu: (Be(u) A S(first A\ u=k;)) IFIINTR 2, TR

=1

4. O3u: Be(u) Corollary 14
5. OFu: (Be(u) A S(first A\ u=k)) MP 3,4
i=1
6. OOIu: (@e(w) A S(first A\ u=k)) TR 5
i=1

7. VOO du: (Be(u) A S(first A u=k;)) Distributivity of v*

i=1
8. VOoO3u: (Belu) AB(first—u=k;)) TR 7

=1
9. VIz: 0O Tu: (Bew) A B(first—u=z)) QT 8
10. 2Ei:,zlz OO Ju: (Be(u) A B(first—u=2)) TR 9

46

Proof of Part-2: We use the following notation
n D OtAT

Iy,t) + Be(u) ANBE—u=y)

1. on=> oM A V(u==Ek)) TAU, TR
2. Jt: Ostep(t) A OO Tu: Hy,t) A S0
=3t: Ostep(t) A OO Tu: Wy, t) A S A Vu=k)) TR, 1, 33-INTR
3. on A Fu:dy,t)=Iu: (¥(y,t) A Sn) u
4. Ostep(t)= OSSN TR, defs of step,n
5. OSnADOOTu: ¥y, t)= OO(Sn A Ju: ¥y, t)) TR
6. OSSN A Ju:d(y,t)=0Cu: (Hy,t) A &Sn) TR 3

7. Ostep(t) A OO Ju: ¥y, t)
= Qstep(t) A OO Tu: (Wy,t) A Sn) TR 4,5,6

8 dt: Ostep(t) A OO Tu: Iy, t)
=3dt: Ostep(t) A OO Tu: (W(y,t) A Sn) J3-INTR 7

9. OY(y)=>3t: Ostep(t) A OO Tu: Iy, t) A S(n A\ u=k)) TRS,2

7

10. ©Y(y)= \/Ht: Ostep(t) A OO u: ¥y, t) A &(n A (u=k;)) Distributivity of v *

“v*

(=)
=

11. Ostep(t) A z=k; A E(z =)

= O00W(y,t) N &(n AN u=k)—39z,0O1)) TR
12. Ostep(t) A p=0OVu: (Hy,t) N Sn AN u=k)—9(2,01)) V-INTR 11, TR

OO Ju: Iy, t) A S(n A u=k)
13. p A g= A TR 12
OVu: (W(y,t) N Sn A u=k;)—39(z 01))

“Note that V does not distribute over [] but distributes over the combination []<>. Note also that [] <>
distributes over V but not over 3, which explains why provability is restricted to finite domains.

47

Iy, t) A &0 A u=k)

4. pANg=0u: A TR, QR 13
ﬁ(yat) A @(77 Nu= kl) _”9(% Gt))

15. pAgG=0C3u: ¥z, 01) TR 14

16. p A g = step(Ot) AOCTu: ¥z,0t) A Tz =1y) 15, def. of p, g;

17. p A g = TFt:step(t) A OO Tu: Iz, t) AT(z=1y) QT 16

18. Ft:gAIz:(z=k;AB(z=vy)=>32: ¥(2) AB(z=y) FINTR,IFINTR 17,p def.

19. O3z: 2=k AB(z=y) Claim 10
20. Jt:g=3z: YP(z) A Tz =1y) TR 18,19
21. \/3t: =32 Y(z) A E(z=1y) TR 20
22. OY(y)=3z: Y(z) A B(z=1y) TR 10, 21
|
Lemma 16 Let f(y) be a prophetic function and p(y) : y = f(y). Then
= Y(y) = B(e(y))
Proof:
H:@ZtATOEtAOOCH: (Be(u) A Blt—u=2y))
=3 GJtATtAOu: (Do) AB(E—u=y)) TR
=3It,u: @t A O tASBe(w) ABE—u=1y)) Commutativuty of 3, &
=3tu: AtATOtABe) AB{t—u=1y) TR
=Ju: Be(u) AN Gy =u) TR
= Ee(y) fprophetic + Claim 12
|

Theorem 3 Let f(y) be a prophetic function and ¢(y) : y = f(y). Then

=3y Oe(y)
Proof:

1. (y) = Ee(y) Lemma 16

2. O¥(y)— OGe(y) TR 1

3. Ov(y)— Oe) TR 2

4. Jy: OY(y)—3y: Oe(y) I3-INTR 3

5. Jy: Ov(y) Lemma 8, Lemma 15
6. Jy: Ooey) MP 4,5

48

References

[Abag9]
[AL91]

[ANS79)]

[BBS6]

[Buc62]

[CooT8]

[CY95]

[Gab87]

[GPSSS80]

[Hod95]

[HWZ00]

[Jon87]

[Kam68)]

[Kla91]

[KMP94]

M. Abadi. The power of temporal proofs. Theor. Comp. Sci., 65:35-84, 1989.

M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer
Science, 82(2):253-284, May 1991.

H. Andreka, I. Nemeti, and I. Sain. Completeness problems in verification of programs and
program schemes. In 4th Mathematical Foundations of Computer Science (MFCS 79), vol-
ume 74 of Lect. Notes in Comp. Sci., pages 208-218. Springer-Verlag, 1979. Invited Lecture.

B. Baniegbal and H. Barringer. A study of an extended temporal logic and a temporal fixed
point calculus. Technical report, University of Manchester, UMCS-86-10-2, 1986.

J.R. Buchi. On a decision method in resricted second-order arithmetics. In Proc. Int’r Congr.
Logic, Method. Phil. of Sci., 1960, pages 1-12. Stanford University Press, 1962.

S.A. Cook. Soundness and completeness of an axiom system for program verification. STAM
J. Comp., 7:70-90, 1978.

C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,
42:857-907, 1995.

D. Gabbay. The declarative past and imperative future. In B. Baniegbal, H. Barringer, and
A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lect. Notes in Comp. Sci.,
pages 407-448. Springer-Verlag, 1987.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc.
7th ACM Symp. Princ. of Prog. Lang., pages 163-173, 1980.

I. Hodkinson. On Gabbay’s Temporal Fixed Point Operator. Theor. Comp. Sci., 139:1-25,
1995.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal
logics. Annals of Pure and Applied Logic, 106:85-134, 2000.

B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis, Uppsala Univer-
sity, Sweden, 1987.

J.AW. Kamp. Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

N. Klarlund. Progress measures for complementation of w-automata with applications to
temporal logic. In Proc. 32nd FOCS, pages 358-367, 1991.

Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of simulation and refinement.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency,
volume 803 of Lect. Notes in Comp. Sci., pages 273-346. Springer-Verlag, 1994.

49

[KV97]

[Lam83]

[Lam94]

[Lic91]

[LPOO]

[LPZ85]

[LS84]

[LT87]

[McN66]

[Mic88]

[MP71]
[MP83]

[MP91]

[MS73]

[Saf88]

[Sie70]

[SVW87]

[Sza86]

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. In Proc. 5th
Israeli Symp. on Theory of Computing and Systems, pages 147-158, 1997.

L. Lamport. Specifying concurrent program modules. ACM Trans. Prog. Lang. Sys., 5:190—
222, 1983.

L. Lamport. The temporal logic of actions. ACM Trans. Prog. Lang. Sys., 16(3):872-923,
May 1994.

O. Lichtenstein. Decidability, Completeness, and Extensions of Linear Time Temporal Logic.
PhD thesis, The Weizmann Institute if Science, Israel, 1991.

O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and completeness.
Logic Journal of the IGPL, 8(1):1-31, 2000.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logics of
Programs, volume 193 of Lect. Notes in Comp. Sci., pages 196-218. Springer-Verlag, 1985.

S.S. Lam and A.U. Shankar. Protocol verification via projections. IEEE Trans. Software
Engin., 10(4):325-342, 1984.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proc.
6th ACM Symp. Princ. of Dist. Comp., pages 137-151, 1987.

R. McNaughton. Testing and generating infinite sequences by a finite automaton. Inf. and
Cont., 9:521-530, 1966.

M. Michel. Complementation is more difficult with automata on infinite words. Manuscript,
1988.

R. McNaughton and S. Papert. Counter Free Automata. MIT Press, 1971.

Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet language. In
Proc. 10th ACM Symp. Princ. of Prog. Lang., pages 141-154, 1983.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer Verlag, New York, 1991.

A R. Meyer and L.J. Stockmeyer. Non-elementary word problems in automata and logic. In
Proc. AMS Symp. on Complexity of Computation, April 1973.

S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Symp. Found. of Comp. Sci.,
pages 319-327, 1988. An extended version to appear in J. Comp. Sys. Sci.

D. Siefkes. Decidable Theories I — Biichi’s Monadic second-order successor arithmetics. Lec.
Notes Math. 120, Springer-Verlag, 1970.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Biichi autamata
with application to temporal logic. Theor. Comp. Sci., 49:217-237, 1987.

A. Szalas. Concerning the semantic consequence relation in first-order temporal logic. Theor.
Comp. Sci., 47:329-334, 1986.

50

[Wol83] P. Wolper. Temporal logic can be more expressive. Inf. and Cont., 56:72-99, 1983.

[WZ00] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order temporal
logic. 2000. Submitted.

o1

