
Formal Modeling of C. elegans Development:
A Scenar io-Based Approach

Na'aman Kam1, David Harel1, Hillel Kugler1, Rami Marelly1, Amir Pnueli1
E. Jane Albert Hubbard2, and Michael J. Stern3

1 Dept. of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel

{ kam, dhar el , kugl er , r ami , ami r } @wi sdom. wei zmann. ac. i l
2 Dept. of Biology, New York University, New York, NY

j ane. hubbar d@nyu. edu
3 Dept. of Genetics, Yale University School of Medicine, New Haven, CT

mi chael . st er n@yal e. edu
ht t p: / / www. wi sdom. wei zmann. ac. i l / ~kam/ Cel egansModel / Cel egansModel . ht m

Abstract. We present preliminary results of a new approach to the formal mod-
eling of biological phenomena. The approach stems from the conceptual com-
patibility of the methods and logic of data collection and analysis in the field of
developmental genetics with the languages, methods and tools of scenario-based
reactive system design. In particular, we use the recently developed methodol-
ogy consisting of the language of live sequence charts with the play-in/play-out
process, to model the well-characterized process of cell fate acquisition during
C. elegans vulval development.

1 Introduction

Our understanding of biology has become sufficiently complex that it is increasingly
difficult to integrate all the relevant facts using abstract reasoning alone. This is exac-
erbated by current high throughput technologies that spew data at ever-increasing rates.
While bioinformatic approaches to handling this mass of data have generated databases
that ease the storage and accessibility of the data, rigorous modeling approaches are
necessary to integrate these data into useable models that can exploit and analyze the
available information. There are many current efforts aimed at biological modeling,
and it is likely that different approaches will be appropriate for various types of bio-
logical information and for various research objectives [1, 2]. Here, we present a novel
approach to modeling biological phenomena. It utilizes in a direct and powerful way
the mechanisms by which raw biological data are amassed, and smoothly captures that
data within tools designed by computer scientists for the design and analysis of com-
plex reactive systems.

A considerable quantity of biological data is collected and reported in a form that
can be called “condition-result” data. The gathering is usually carried out by initializ-
ing an experiment that is triggered by a certain set of circumstances (conditions), fol-
lowing which an observation is made and the results recorded. The condition is most
often a perturbation, such as mutating genes or exposing cells to an altered environ-

ment. For example, genetic data often first emerge as phenotypic assessments (ana-
tomical or behavioral outputs) that are compared between a mutant background and a
defined "wild-type." Another example includes observations of the effects of anatomi-
cal manipulations (e.g. cell destruction or tissue transplantation) on the behavior of the
remaining structures. These types of experiments test specific hypotheses about the
nature of the system that is perturbed. Many inferences about how biological systems
function have been made from such experimental results, and our consequent under-
standing based on these logical inferences is becoming increasingly, even profoundly,
complex.

One feature of these types of experiments is that they do not necessitate an under-
standing of the particular molecular mechanisms underlying the events. For example,
much information can be ascertained about a gene's function by observing the conse-
quences of loss of that function before the biochemical nature or activity of the gene
product is known. Moreover, even when the biochemical activity is known, the func-
tional significance of that activity in the context of a biological system is often deduced
at the level of phenotypic output. Naturally, with knowledge of molecular mechanisms,
increasingly sophisticated inferences can be made and more detailed hypotheses tested,
but the outputs, be they a certain cell fate acquisition, changes in gene expression pat-
terns, etc., are often recorded and analyzed at the level of a phenotypic result. Thus, a
large proportion of biological data is reported as stories, or "scenarios," that document
the results of experiments conducted under specific conditions. The challenge of mod-
eling these aspects of biology is to be able to translate such "condition-result" phenom-
ena from the "scenario"-based natural language format into a meaningful and rigorous
mathematical language. Such a translation process will allow these data to be inte-
grated more comprehensively by the application of high-level computer-assisted analy-
sis. In order for it to be useful, the model must be rigorous and formal, and thus ame-
nable to verification and testing.

We have found that modeling methodologies originating in computer science and
software engineering, and created for the purpose of designing complex reactive sys-
tems, are conceptually well suited to model this type of condition-result biological data.
Reactive systems are those whose complexity stems not necessarily from complicated
computation but from complicated reactivity over time. They are most often highly
concurrent and time-intensive, and exhibit hybrid behavior that is predominantly dis-
crete in nature but has continuous aspects as well. The structure of a reactive system
consists of many interacting components, in which control of the behavior of the sys-
tem is highly distributed amongst the components. Very often the structure itself is
dynamic, with its components being repeatedly created and destroyed during the sys-
tem’s life span.

The most widely used frameworks for developing models of such systems feature
visual formalisms, which are both graphically intuitive and mathematically rigorous.
These are supported by powerful tools that enable full model executability and analy-
sis, and are linkable to graphical user interfaces (GUIs) of the system. This enables
realistic simulation prior to actual implementation. At present, such languages and
tools --- often based on the object-oriented paradigm --- are being strengthened by
verification modules, making it possible not only to execute and simulate the system
models (test and observe) but also to verify dynamic properties thereof (prove).

Fig. 1. Vulval cell fate determination. (A) Schematic representation of cellular interactions
that determine vulval fates. Signals (arrows and T-bars) are color-coded based on their source.
The anchor cell promotes vulval fates. VPC-VPC interactions inhibit adjacent cells from acquir-
ing a 1º fate (and instead promote a 2º fate). The ventral hypodermis inhibits vulval (1º and 2º)
fates. (B) Differential interference contrast (DIC) photomicrograph of the central body region of
a live C. elegans L3-stage worm. White bar ~ 15µm.

A central premise of this paper is that many kinds of biological systems exhibit
characteristics that are remarkably similar to those of reactive systems. The similarities
apply to many different levels of biological analysis, including those dealing with mo-
lecular, cellular, organ-based, whole organism, or even population biology phenomena.
Once viewed in this light, the dramatic concurrency of events, the chain-reactions, the
time-dependent patterns, and the event-driven discrete nature of their behaviors, are
readily apparent. Consequently, we believe that biological systems can be productively
modeled as reactive systems, using languages and tools developed for the construction
of man-made systems.

In previous work on T cell activation [3] and T cell behavior in the thymus [4], the
feasibility of this thesis was addressed on a small scale, and the results have been very
encouraging. In particular, that work demonstrated the adequacy of object-oriented
analysis to modeling biological systems, and showed the applicability of the visual
formalism of statecharts for representing their behavior.

In our current work, we not only begin to tackle a more complex system, but also
incorporate two levels of data into our model. One of these levels, shared also by the
models from the previous work, represents the 'rules' of the behavior of the system.
These rules are based on abstractions and inferences from various sets of primary data.

The second level of data being incorporated into our model, is new, and it includes the
"observations" that comprise the primary data itself. The set of observations utilized is
a crucial component of the model, allowing both execution and verification, including
consistency checks between the observations and the inferred rules. To accomplish
this, we also depart in a significant way from the intra-object, state-based, statechart
approach used in the previous work, and instead use a more recently-developed inter-
object, scenario-based approach to reactive system specification. The language we use
to formalize the data is called live sequence charts (LSCs) [5], and capturing the data
and analyzing it is carried out using the play-in/play-out methodology, supported by
the Play-Engine tool [6,7].

1.1 The Biological System

Our current effort is focused on a means to formalize and analyze primary data such
that the consistency of inferences made from these data can be tested as part of the
model. We have chosen the development of the nematode Caenorhabditis elegans as a
subject since this organism is extremely well defined at the anatomical, genetic, and
molecular level. Specifically, the entire cell lineage of C. elegans has been traced,
many genetic mutants have been described, and the entire genome is sequenced [8, 9].
Moreover, virtually all of the researchers working on this organism use conceptually
similar methodologies and logic in their genetic experiments, and use a uniform sub-
strate wild-type strain (N2). These circumstances make feasible computer-assisted
integration of the primary data. Finally, genome-wide efforts to define the function,
expression levels, expression patterns and interactions of all genes are underway [10-
13].

As a specific test-case, we have begun to model C. elegans vulval development (see
[14] for a recent review). The vulva is a structure through which eggs are laid. This
structure derives from three cells within a set of six cells with an equivalent set of
multiple developmental potentials (Fig. 1). These six cells are named P3.p, P4.p, P5.p,
P6.p, P7.p and P8.p (collectively termed P(3-8).p). Due to their potential to participate
in the formation of the vulva, they are also known as the vulval precursor cells (VPCs).
Each has the potential to acquire either a non-vulval fate (a 3º fate) or one of two vulval
cell fates (a 1º or a 2º cell fate; see Fig. 1). During normal development, after a series
of cell divisions in a characteristic pattern, a vulva consisting of 22 nuclei is formed.
Vulval development was one of the first areas to which considerable effort was applied
to achieve a molecular understanding of how cells acquire their particular fates. This
system, though limited in cell number, is quite complex and ultimately integrates at
least four different molecular signaling pathways in three different interacting tissue
types. Cell fate acquisition in development also occurs in the context of cell cycle con-
trol and the general global controls on the growth and development of the organism.
Hence, vulval development indeed represents a rather complex reactive system.

Here, we describe our progress applying the visual formalism of LSCs and the play-
in/play-out methodology to the representation of biological scenarios from one particu-
lar study, the data published in a paper by Sternberg and Horvitz in 1986 [15]. LSCs
appear to be highly accessible to biologists, while retaining mathematical rigor. De-

signed specifically to capture scenario-based behavior, the structure of LSCs fits ex-
tremely well into our framework of condition-result data. In this paper, data are re-
ported regarding a series of experiments in which cells are destroyed using a laser
microbeam (ablation). Since signals among the VPCs and between the VPCs and adja-
cent tissues cooperate to determine the fates of these cells, these experiments test the
nature of these interactions and the relative potential of the VPCs to adopt vulval (ver-
sus non-vulval) fates and, among those that adopt a vulval fate, the specific type of
vulval fate. These data are used to infer specific properties of the events that occur in
the wild-type situation and to generate a "model" for how the unperturbed system
works based on the behavior of the perturbed system. We present a subset of this test-
case below with special emphasis on the LSC language and the play-in/play-out meth-
odology. In addition, we present our solutions to particular challenges posed by the
nature of biological data itself and its formalization from the natural language used by
C. elegans biologists. In representing even a small and simple set of experimental
results, we have addressed a number of issues that provide evidence for the flexibility
and potential of this modeling approach.

1.2 The Modeling Methodology

We are adopting an inter-object, scenario-based modeling approach, using the lan-
guage of live sequence charts (LSCs) [5] and the play-in/play-out methodology [6, 7],
both supported by the Play-Engine modeling tool [6,7]. The decision to take this ap-
proach, rather than the statechart-based one, emerged from the consideration of how to
best represent the C. elegans data formally, and how to best carry out the formalization
process.

LSCs constitute a visual formalism for specifying sequences of events and message
passing activity between objects. They can specify scenarios of behavior that cut across
object boundaries and exhibit a variety of modalities, such as scenarios that can occur,
ones that must occur, ones that may not occur (called anti-scenarios), ones that must
follow others, ones that overlap with others, and more. Technically, there are two types
of LSCs, universal and existential. The elements of LSCs (events, messages, guarding
conditions, etc.) can be either mandatory (called hot in LSC terminology) or provi-
sional (called cold). Universal charts are the more important ones for modeling, and
comprise a prechart and a main chart, the former triggering the execution of the latter.
Thus, a universal LSC states that whenever the scenario in the prechart occurs (e.g., the
user has flipped a switch), the scenario in the main chart must follow it (e.g., the light
goes on). Thus, the relation between the prechart and the chart body can be viewed as
a dynamic condition-result: if and when the former occurs, the system is obligated to
satisfy the latter.

Play-in/play-out is a recently developed process for modeling in LSCs, with which
one can conveniently capture inter-object scenario-based behavior, execute it, and
simulate the modeled system in full. The play-in part of the method enables people
who are unfamiliar with LSCs to specify system behavior using a high level, intuitive
and user-friendly mechanism. The process asks that the user first build the graphical
user interface (GUI) of the system, with no behavior built into it. The user then 'plays'

the GUI by clicking the graphical control elements (in electronic systems these might
be buttons, knobs, and so on), in an intuitive manner, in this way giving the engine
sequences of events and actions, and teaching it how the system should respond to
them. As this is being done, the Play-Engine continuously constructs the corresponding
LSCs automatically.

While play-in is the analogue of writing programs, play-out is the analogue of run-
ning them. Here the user simply plays the GUI as he/she would have done when exe-
cuting the real system, also by clicking buttons and rotating knobs, and so on, but lim-
iting him/herself to end-user and external environment actions. As this is going on, the
Play-Engine interacts with the GUI and uses it to reflect the system state at any given
moment. The scenarios played in using any number of LSCs are all taken into account
during play-out, so that the user gets the full effect of the system with all its modeled
behaviors operating correctly in tandem. All specified ramifications entailed by an
occurring event or action will immediately be carried out by the engine automatically,
regardless of where in the LSCs it was originally specified. Also, any violations of
constraints (e.g., playing out an anti-scenario) or contradictions between scenarios, will
be detected if attempted. This kind of sweeping integration of the specified condition-
result style behavior is most fitting for biological systems, where it can often be very
difficult to connect the many pieces of behavioral data that are continuously discovered
or refined.

2 Results

2.1 The GUI of Vulval Fate Determination

Fig. 2. The GUI

A critical aspect of the GUI is that it can be designed by the user to reflect his/her
view of the system. In our case, the GUI (Fig. 2) is a simplified representation of the

actual anatomical situation under study (Fig. 1). The six VPCs and the interacting
adjacent tissues, that include the gonad and the ventral hypodermis, are represented.
This GUI represents the developmental decisions that occur during a discrete window
of time, and we developed it the way we did in order for it to best capture that particu-
lar stage in the organism's development It can be expanded to capture more parts and
stages in the development process, and also to include inputs from other GUIs (possi-
bly constructed by other people working on a growing distributed model) that represent
other connected developmental vignettes. The beauty of this kind of GUI is that it can
be made to directly reflect the way biologists represent their system's anatomy, and the
particular GUI in Figure 2 is intuitive for anyone working on vulval development.
However, the more important aspect of the GUI is that it allows the model to “come
alive” in the context of the play-in/play-out approach.

Fig. 3. An LSC depicting developmental time

2.2 Case Study: Sternberg and Horvitz, 1986

We present several examples of scenarios that were described in [15], which we trans-
lated into LSCs. These examples demonstrate how data is entered into the model and

give context to the progress we have made regarding broad conceptual aspects of the
formalization of biological data. Concepts already incorporated into the model include
the representation of developmental time, symbolic instances, default assumptions, and
non-deterministic behavior. Examples of LSCs are included that represent the formal-
ization of both primary observations and inferred rules.

Developmental Time. In the current model, developmental time drives the behavior
of the whole system. (See [16] for the way the issue of time is treated in LSCs and the
Play-Engine.) Thus, we begin by presenting the corresponding LSC (Fig. 3). We de-
cided to concentrate on post-embryonic development (after the embryo has hatched
from the egg), but earlier developmental stages can easily be incorporated as well.
Post-embryonic development is divided into four larval stages (denoted L1 to L4), each
of which end in a molt. The time units represent hours from hatching (the beginning of
L1). This LSC is activated when the user clicks the start button on the GUI. The time
at which this operation was performed is stored in a variable called T, and all other
events in this LSC refer to this time point. Thus, for example, the L1 phase lasts 12
hours, the L2 phase lasts 10 hours, and the Pn.p cells divide 26 hours after hatching,
which is 4 hours after entry into L3.

Fig. 4. A scenario involving the ablation of P(5-7).p and the gonad

Representing the exper imental setup in the prechart. The experiment represented
by the LSC in Fig. 4 was devised to establish the ground-state fate of the P(3,4,8).p
cells, that is to see what cell fate these cells would acquire if they were not influenced
by any known interactions from adjacent cells. At the time of this publication, the
influence of the hypodermis on vulval fate specification was not known (it is also ir-
relevant under these specific conditions). The cells known to influence VPC cell fate
were removed by laser ablation, including the three VPCs that are normally induced to
form the vulva (P5.p, P6.p and P7.p). The fates of the remaining VPCs were observed
and recorded. The results of this set of experiments were reported in the following
statement:

Fig. 5 Representing non-deterministic events. The results of two consecutive executions of this
LSC are shown. It can be seen that P8.p adopted a different fate on each of these executions

"We ablated P(5-7).p and the gonad in five L1 hermaphrodites; in these animals
P(3,4,8).p each adopted a tertiary fate" [15].

In this experiment, the cell ablations took place during the first larval stage (L1). This
fact is stated in the prechart by placing the condition before the L2 event: the pre-chart
will be satisfied only if by the time the L2 event occurs (determined in the developmen-
tal time LSC) the specified cells will already be ablated.

Experimental setups, such as the above one, implicitly assume that besides the re-
ported perturbations all other elements of the system remained intact. We represent
such implicit assumptions in a set of default assumptions, which includes all the prop-
erties of the system for which we would like to set some default value (e.g., genes are
not mutated, or “wild type”). If a given condition within the LSC includes assigning a
non-default value to some property, this requirement will override the default assump-
tion. Thus, the condition that appears in the pre-chart of Fig. 4 corresponds to a situa-
tion in which P(5-7).p and the gonad were ablated while all other genes and cells re-
mained intact. During a play-in session, a condition can be bound to a set of default
assumptions by clicking a checkbox within the condition window. Within the LSC,
this action is reflected by the DEF (default) tag that appears at the end of the condition,
as well as by a line that connects the condition with the set of default assumptions that

appears at the top of the LSC (the line appears only when the mouse cursor is placed
over the condition).

Symbolic instances. The LSC in Fig. 4 illustrates the concept of symbolic instances.
(See [17] for how symbolic instances are dealt with in LSCs and the Play-Engine.) In
this experiment, the behavior of all remaining VPCs is similar: they all adopt tertiary
fates. This is expressed in the LSC by making a general statement that applies to a
symbolic instance of the VPC class. This depiction indicates that during execution, all
instances of the VPC class that were not ablated will be bound to this LSC and execute
a tertiary fate.

Non-deterministic behavior . Part of the experiment designed to assess the ground
state of the VPCs involved ablating the cells that normally adopt vulval fates [P(5-7).p]
but leaving the gonad intact. Three animals were observed after performing these abla-
tion conditions; the fates of the VPCs are shown below (reported in Table 3, line 3,
[15]):

Pn.p cells: P3.p P.4p P5.p P6.p P7.p P8.p
Fates: 2º or 3º 1º or 2º ablated ablated ablated 1º or 2º

Fig. 6. An anti-scenario

As is often the case in biological experiments, the results of the conditions of this
experiment were not deterministic: P3.p adopted either a 2º or a 3º fate, while P4.p and
P8.p adopted either a 1º or a 2º fate. Each of these fates is recognizable by a specific

pattern of cell divisions and cellular morphologies. Non-determinism is represented in
the LSC that depicts this experiment (Fig. 5) using selection boxes within the main
chart. This representation enables the model to execute non-deterministic behavior of
objects using a selected list of outcomes at prescribed frequencies.

Fig. 7. A VPC can adopt a vulval fate in the absence of the anchor cell

Representing general rules as anti-scenar ios. In addition to the input of raw data
from specific experiments, general rules of system behavior can also be included as
LSCs. Some rules can be represented most easily by what are known as anti-scenarios.
For example, to represent the statement:

"The anchor cell is required for Pn.p cells to adopt vulval (1º or 2º) as opposed to
non-vulval (3º) fates" [15],

an LSC representing the following anti-scenario can be used:

“ it cannot be the case that a VPC will adopt a vulval fate in the absence of the anchor
cell” (Fig. 6).

The ability to represent behavior using “must” and “must not” statements lends greater
potential and power to modeling efforts.

System analysis: The play-out mechanism. The play-out mechanism can be used to
test the system in various ways:
1. Detecting inconsistencies among LSCs. In its anti-scenario guise, an LSC repre-

senting, for example, a scenario in which a VPC adopts a vulval fate in the ab-
sence of the anchor cell would cause the Play-Engine to announce that a 'hot' con-
dition was violated. Certain mutations can obviate the requirement of the anchor

cell for vulval cell fates. For example, if the hypodermal inhibitory mechanism
(see Fig. 1) is compromised by mutation, vulval fates can occur even in the ab-
sence of the gonad (e.g. see [19]). Executing a play-out session in which an 'ex-
periment' of this type was performed resulted in a violation of the 'old' rule. Thus,
this modeling approach can help integrate new results into the framework of exist-
ing data, pointing out inconsistencies that might have been ignored by the experi-
mentalist.

2. Predictability. The play-engine can juxtapose LSCs generated either from specific
information results or from general biological rules, which are inferred from many
data sets. This juxtaposition has the potential to simulate novel scenarios and to
highlight behaviors that were not previously observed. One such example was ob-
served over our model while playing-out a scenario that involved a combination of
two mutations ('double mutant'), one in the dig-1 gene and the other in the lin-12
gene. In dig-1 mutants the gonad is shifted anteriorly, and in lin-12(0) mutants the
three VPCs P(5-7).p were observed to adopt a 1° fate. An actual experiment that
detects the effect of combining these two mutations together has not been done
yet. However, based on the LSCs that represent the observed phenotypes for each
individual mutant, together with a couple of LSC that represent deduced rules re-
garding signaling mechanisms involved in vulval induction, the play-engine pre-
dicted that such an experiment would result in P(4-6).p adopting a 1° fate. Such a
play-out session illustrates that the play-engine can execute scenarios that were not
played-in explicitly. (For further explanations, including a demo of this execution,
see [19].)

3. Query the system for scenarios that satisfy a given behavior. Play-out has been
extended with a powerful new module, called smart play-out [18], which utilizes
tools from program verification in order to analyze an LSC model in much richer
ways than just executing it. Many of its uses come from asking the system to find
a way to do something on its own, or to ask it "Is this possible?" kinds of ques-
tions. For example, we can ask the system to automatically figure out if there is
some possible way of satisfying a particular scenario, and to then run the resulting
discivered sequence on its own. An example for such a test is depicted in Figure 8,
in which an existential LSC is used to query the system for scenarios that result in
P7.p adopting a 3° fate. (For further explanations, including a demo of applying
this test to the model, see [19].)

Thus, play-out, with its smart play-out enrichment, makes it possible to detect, or

predict, the outcome of combinations of conditions not previously tested, and to query
the system for many different kinds of desired (or undesired) outcomes.

Fig. 8. An existential chart is used to test whether there is any scenario in which P7.p adopts a
primary fate.

3 Discussion

3.1 Strengths of our approach

In previous sections, we illustrated the capability of our modeling approach to facilitate
the transformation of biological data into formal computer-analyzable statements. In
particular, our modeling approach provides solutions for the following challenges
involved in this formalization process:

Incorporating raw biological data. One of the unique features of our approach is the
incorporation of primary data, rather than modeling the general rules that are derived or
inferred from the actual data. One challenge to modeling primary data is the integration
of information obtained in different ways and using different approaches. The assess-
ment of results can vary with the individual experimentalist and changes over time as
new information about the system and technologies to evaluate it become available.
The variety of data collection methods can be integrated by incorporating LSCs that
link the different types of data together. We can then use the model to validate equiva-
lence statements against the data, thus enhancing our understanding of the biological
system.

Importantly, primary data, once entered as LSCs, can be used even when the general
rules of behavior are modified with time. Primary data scenarios can be derived from
many different laboratories and many different types of experimentation, and can be
used to detect conflicts within the primary data, highlighting important aspects to be
later tested more rigorously.

Rules as a second level. A computer-assisted approach to a formalized list of primary
data is useless unless it can be tested for overall consistency and logical conflict, in
ways that are better than can be done by human reasoning alone. This possibility is
also built into our approach. A logical system is routinely used by experimentalists to
infer abstractions about the real system from condition-result types of data. In our
model, these abstractions can be formalized as 'rules'. For example, they can be entered
in the form of anti-scenarios (as shown above). Thus, it may be possible to formalize a
system that is already in use in a non-formal way so that the rigorous tools of com-
puter-based verification can be brought to bear on the data. Moreover, having both
primary data and associated 'rules', allows novel scenarios to be obtained from the input
data, as illustrated above.

Non-deterministic events. One of the hallmarks of biological data is non-
determinism. While some non-determinism likely derives from the paucity of our
knowledge of the important details of the systems of interest, the very nature of bio-
logical systems contains some inherent non-determinism. For example, stochastic
events, threshold phenomena and feedback systems, all operate at the molecular and
cellular levels and it is crucial that methods and tools for their modeling support ex-
plicit choice-based, or probability-based, branching of behavior.

3.2 What can we get out of it?

A behavioral database. At the most basic level, a model of the type we propose forms
a behavioral database that can be used for retrieving dynamic data. Existing biological
databases can be used to retrieve the sequence of a given gene, or even to find its
homologues, but there is no current mechanism for asking questions such as 'what will
happen if gene X will be mutated together with gene Y', or 'what will be the phenotypic
outcome of ablating cell A over a specific genetic background'.

Detecting inconsistencies. New inferences that are made can be checked for consis-
tency against existing observations and rules. As illustrated in section 2.2 above, 'old'
rules that are contradicted by new experiments can be detected as well.

Predictions. The play-out approach offers the additional possibility of asking the sys-
tem for the predicted result of an experiment that has not yet been performed. Such
predictions can then be tested in the lab. If the model predicts an outcome different
from the actual outcome, there are likely factors that have not been included in the
model that are relevant to the experimental system. Identifying such putative factors
can then lead to new experiments that will aim at filling in these gaps. Alternatively,
such a mismatch between prediction and experiment can result from improper rules or
interpretations that currently constitute the model. Thus, the kind of model analysis we
propose can assist in improving, correcting and sharpening our understanding of the
biological system.

Explaining surpr ising results. The smart play-out mechanism can be used to answer
questions such as: 'Is there any scenario in which a given behavior will be observed?'
Such tests can be applied to explaining surprising experimental outcomes that were
observed in the lab ('based on the current data, is there any scenario that can produce
this surprising result?'), or to test our understanding of the system ('is there indeed no
scenario, in which, although the product of gene X was eliminated, a given tissue T
will still develop normally?').

3.3 Current status and future directions

To date, we have formalized as LSCs only a small set of data pertaining to VPC speci-
fication. These have served to highlight some of the critical issues that need to be ad-
dressed in modeling this system in its entirety. Several of these issues have already
been addressed, as described in this paper. In addition to the conceptual advances this
small data set has prompted, these LSCs reveal much of the promise and feasibility of
applying LSCs and play-in/play-out to the modeling of biology. One of the strengths of
the entire approach is the ability to execute a model even with incomplete data sets.

As we continue to fill out our test-case model, including the integration of different
signal-transduction inputs into the determination of vulval fates, we are also consider-
ing the expansion of the methodology in several areas:

Expanding the exper imental repertoire. Although our current efforts are concen-
trated on condition-result data from genetic and anatomical manipulations, there is no
a priori reason why the same methods should not be applied to other types of data,
representing other levels of biological inquiry. These include biochemical data (such as
signal transduction pathways, protein-protein interactions, etc.) and gene expression
data (microarray data, anatomical expression pattern information, etc.).

Distr ibuted play-in/play-out. It is already possible to connect separate GUIs and
Play-Engines to each other. This will enable multiple labs to participate in the model-
ing effort. Each lab can design its own GUI to represent its sub-system of interest, and
then play in the relevant scenarios. Connecting Play-Engines to each other can facili-
tate a distributed play-out mechanism, in which an event that occurs in an LSC that is
being executed on one computer will activate and LSC that belongs to a specification
running on another computer. The Play-Engine development team is also working on
tolls to connect the Play-Engine to other environments as well, e.g., tools that enable
statechart-based modeling, such as Rhapsody, and ones that deal with the continuous
aspects of systems. These too will significantly expand the possibilities of modeling
biological systems.

Another possibility is to connect to the C. elegans field's database Wormbase (or its
equivalent in other systems), so that just as we can obtain the sequence and homo-
logues, etc., for each gene, we would be able to retrieve via Wormbase the LSCs in
which it participates.

The long-term goal. Finally, we truly believe that this research effort could turn out
being the first step in a far, far more ambitious project. Namely, to construct a full 4-
dimensional model of a multi-cellular animal, which is true to all known facts about it,
and which is easily extendable as new facts are discovered (see [21] for a more detailed
discussion of this).

References

1. Bower, J.M., Bolouri, H. (eds.): Computational modeling of genetic and biochemical net-
works. The MIT Press, Cambridge, MA (2001)

2. Wilkins, A.S. (ed.): Modelling complex biological systems: a special issue. BioEssays 24(12)
Wiley Periodicals, Inc., Hoboken, NJ (2002)

3. Kam, N., Cohen, I.R., Harel, D., The Immune System as a Reactive System: Modeling T Cell
Activation with Statecharts. To appear in Bull. Math. Bio.
An extended abstract of this paper appeared in Proc. Visual Languages and Formal Methods
(VLFM01), part of IEEE Symposia on Human-Centric Computing Languages and Environ-
ments (HCC01), pp. 15-22 (2001)

4. Efroni, S., Harel, D. and Cohen I.R., Reactive Animation, submitted (2002)
5. Damm, W. and Harel, D., LSCs: Breathing Life into Message Sequence Charts, Formal

Methods in System Design 19:1 (2001). (Preliminary version in Proc. 3rd IFIP Int. Conf. on
Formal Methods for Open Object-Based Distributed Systems (FMOODS'99), (P. Ciancarini,
A. Fantechi and R. Gorrieri, eds.), Kluwer Academic Publishers, 1999, pp. 293-312.)

6. Harel, D. and Marelly, R Come, Let's Play: A Scenario-Based Approach to Programming,
Springer- Verlag, to appear (2003).

7. Harel, D. and Marelly, R., Specifying and Executing Behavioral Requirements: The Play
In/Play-Out Approach, Software and System Modeling (SoSyM), to appear (2003)

8. Riddle, D.L., Blumenthal, T. , Meyer, B.J., Priess, J.R. (eds.): C. elegans II Cold Spring
Harbor Laboratory Press Plainview, NY (1997)

9. The C. elegans Sequencing Consortium: Genome sequence of the nematode C. elegans: a
platform for investigating biology. The C. elegans Sequencing Consortium Science 282
(1998) 2012-2018

10. Fraser, A.G., Kamath, R.S., ZipperlenI, P., Martinez-Campos, M., Sohrmann, M., Ahringer,
J.: Functional genomic analysis fo C. elegans chromosome I by systematic RNA interference
Nature 408 (2000) 325-330

11. Piano, F., Schetter, A. J., Mangone, M., Stein, L., Kemphues, K. J.: RNAi analysis of genes
expressed in the ovary of Caenorhabditis elegans Curr Biol 10(24) 2000 1619-1622

12. Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., Duperon,
J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K.,
Goessen, A., Leidel, S., Alleaume, A. M., Martin, C., Ozlu, N., Bork, P., Hyman, A. A.:
Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromo-
some III Nature 408 (2000) 331-336

13. Maeda, I., Kohara, Y., Yamamoto, M., Sugimoto, A.: Large-scale analysis of gene function
in Caenorhabditis elegans by high-throughput RNAi Curr Biol 11(3) (2000) 171-176

14. Wang, M., Sternberg, P. W.: Pattern formation during C. elegans vulval induction Curr Top
Dev Biol 51 (2001) 189-220

15. Sternberg, P. W., Horvitz, H. R.: Pattern formation during vulval development in C. elegans
Cell 44 (1986) 761-772

16. Harel, D. and Marelly, R., Playing with Time: On the Specification and Execution of Time-
Enriched LSCs, Proc. 10th IEEE/ACM Int. Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS 2002), Fort Worth, Texas (2002)

17. Marelly, R., Harel, D. and Kugler, H., Multiple Instances and Symbolic Variables in Execu-
table Sequence Charts, Proc. 17th Ann. AM Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2002) 83-100

18. Harel, D., Kugler, H., Marelly, R. and Pnueli, A., Smart Play-Out of Behavioral Require-
ments, Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD 2002)
378-398

19. http://www.wisdom.weizmann.ac.il/mathusers/kam/CelegansModel/Demos.htm
20. Sternberg, P. W.: Lateral inhibition during vulval induction in Caenorhabditis elegans Nature

335 (1988) 551-554
21. Harel, D., A Grand Challenge for Computing: Full Reactive Modeling of a Multi-Cellular

Animal, position paper, UK Workshop on Grand Challenges in Computing Research, Oct.
2002; available at http://www.wisdom.weizmann.ac.il/~dharel/papers/GrandChallenge.doc

