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Abstract. In recent years, it has been established that regular model
checking can be successfully applied to several parameterized verification
problems. However, there are many parameterized verification problems
that cannot be described by regular languages, and thus cannot be veri-
fied using regular model checking. In this study we try to practice sym-
bolic model checking using classes of languages more expressive than the
regular languages. We provide three methods for the uniform verification
of non-regular parameterized systems.

1 Introduction

During the last two decades, several formal methods have been developed to
answer the verification problem of finite-state systems. The verification problem
asks the question of whether a given reactive system is correct relative to some
specification. Although many interesting concurrent programs are in fact finite
state, they are often given semantically in terms of a parameter n, representing
the number of concurrent processes. Such a schematic program really represents
an infinite family of uniformly defined programs. Such programs are often re-
ferred to as parameterized systems. A challenging problem is to provide methods
for the uniform verification of parameterized systems, i.e., proving correctness
for all possible programs obtained by instantiating the parameter. We refer to
this problem as the parameterized verification problem. In 1986 Apt and Kozen
proved that, in general, the parameterized verification problem is undecidable,
even when each instance is finite-state [AK86]. However, for specific families the
problem may be solvable.

Model Checking (MC) is an automatic technique for answering the verification
problem i.e., verifying that a given program satisfies a given specification. In this
framework, specification are usually expressed by a propositional temporal logic
and the programs are modeled by state-transition systems. The model checking
procedure performs an exhaustive search of the state space of the system to
determine whether the system satisfies the specification. The use of an exhaustive
state-space exploration limits the application of model checking to finite-state
systems.

However, it is possible to perform a state-space exploration of infinite-state
systems as well, by using an implicit representation for sets of states. The frame-
work of model checking where sets of states are represented implicitly using some



symbolic representation is known as symbolic model checking (SMC) [BCM*92].
Symbolic model checking can be applied to infinite-state systems, although in
this case, the termination of the procedure is not guaranteed.

Regular model checking is an application of symbolic model checking where
regular expressions are used to represent symbolically sets of states [KMM*97].
Regular model checking can be applied to any verification problem that is ex-
pressible using regular languages. Such an application is successful if the regular
model checking procedure has terminated. In recent years, it has been estab-
lished that regular model checking can be successfully applied to several types
of parameterized verification problems.

However, many interesting parameterized systems cannot be handled by reg-
ular model checking since the class of regular languages is not strong enough
to express them. An example for such a verification problem is the Peterson
algorithm for mutual exclusion among n processes [Pet81]. The existence of such
examples, is the main motivation for this study.

In this study we try to practice symbolic model checking using as symbolic
representation classes of languages more expressive than the regulars. As a first
attempt, we use context-free languages at the last step of the symbolic model
checking procedure, while regular languages are used in the procedure until this
last step. This seemingly slight change, already enables us to verify mutual ex-
clusion for the Peterson algorithm for an arbitrary number of processes.

By carefully examining the model checking procedure, one can compile a
list of the requirements a class of languages must meet in order to be adequate
for symbolic model checking [KMM*97]. Such a list consists of several opera-
tions the class must be effectively closed under, and several questions that must
be effectively decidable for the class. We recognize that the class of languages
accepted by deterministic pushdown automata Lpppa, meets all requirements
but two: the class is not closed under projection and there is no known efficient
algorithm to decide equivalence. We thus direct our effort to find a class, which
is a subset of the class Lpppa, and possesses efficient algorithms for computing
projection and deciding equivalence. This class must also satisfy the rest of the
requirements.

We succeed to define a sub-class of Lpppa, which we denote Lpppa_ s,
for which there exists a semi-algorithm ! to compute projection. In addition,
there exists an efficient algorithm to answer the equivalence problem for this
class. This class also satisfies all other requirements. Thus, we establish a class,
which is more expressive than the class of regular languages, and yet is adequate
for symbolic model checking. The Peterson example can be symbolically model
checked, using languages in this class.

! By semi-algorithm we mean an ”algorithm” that is not guaranteed to halt. The semi-
algorithm is assured to give the right answer in case it does halt, however for some
instances the semi-algorithm may run forever. In practice, when faced with a semi-
algorithm one usually bound the running time by a special ”aborting” parameter.
If the semi-algorithm reaches the aborting bound then the run is aborted without
results.



Recall that the standard fix-point computation in the symbolic model check-
ing procedure is not guaranteed to terminate when applied to infinite-state sys-
tems. This difficulty must be addressed when considering a class of languages
to be adequate for symbolic model checking. In order for such a class to be
practically adequate for symbolic model checking, it must also provide means
to tackle this difficulty. Indeed, for regular model checking, many techniques
to overcome this problem have been developed (see related work section). The
common idea behind these techniques lies in calculating the effect of taking an
arbitrary number of system-transitions in one step, often refer to as calculating
meta-transitions or “accelerations”.[PS00,BJNT00].

Finally, we focus on a special case of the class that we have found. For this
class there exists an algorithm to compute projection. In addition, we show
that all techniques developed for calculating meta-transitions for regular model
checking, can be applied to this class. This class is therefore practically adequate
for symbolic model checking. The Peterson example, escorting us through our
study, can also be verified using languages in this class.

Related Work The problem of uniform verification of a parameterized sys-
tems is one of the most thoroughly researched problems in computer science.
Many methods have been proposed for the uniform verification of parameter-
ized systems. These include explicit induction [EN96,SG92], network invariants,
which can be viewed as implicit induction [WL89,HLR92,LHR97, KM95 KP00],
methods that can be viewed as abstraction and approximation of network in-
variants [BCG86,5G89,CGJ95], and other methods that can be viewed as based
on abstraction [ID96,EN96|.

Regular model checking has been advocated by [KMM+97] and [WB9§] as a
uniform paradigm for algorithmic verification of several classes of parameterized
and infinite-state systems. The use of regular languages to express state prop-
erties goes back to [?]. The problem of calculating meta-transitions is one of
the most laborious problems in this field of research. It has been thoroughly re-
searched [ABJ98,ABJN99|[FO97], resulting in several corrective techniques, such
as acceleration [PS00][BF00], calculation of the transitive closure [JN00,BJNT00]
and widening [BJNT00,CC77,LHR97].

The study of model checking pushdown systems has recently been receiv-
ing growing attention. Various definitions and extensions to pushdown systems
can be found in the literature [BS95], [BG96], [BM96], [BGWW97], [BEM97],
[WB98] and [EHRS00]. There are numerous works on model checking of push-
down automata with various temporal logics. Walukiewicz [Wal96] considers the
p-calculus, Bouajjani et al. [BEM97] consider the linear p-calculus and the al-
ternation free u-calculus, while [FWW97] consider LTL and CTL*.

Nevertheless, these efforts do not pertain to this study for two reasons: first,
we use the pushdown automata to represent the set of states, while the above
work considers the pushdown automata as the system being analyzed. Further-
more, a fundamental difference is that all systems previously considered share a
common characteristic: a regular language represents their state space, whereas



our main interest is systems whose state space cannot be represented by a regular
language.

There has been other works also pursuing symbolic representations which
are more expressive than regular languages. Studies by Boigelot and Wolper
[WB94] and Comon and Jurski [CJ98] give symbolic representations for config-
urations of systems with counters. Both studies provide methods to compute
meta-transitions. Boigelot and Wolper [WB98] also furnish a semi-algorithm for
deciding inclusion, and an algorithm for determining equivalence.

Perhaps the work most related to this research is by Bouajjani and Habermehl
[BHI7]. They define a symbolic representation, denoted CQDD, which is an
extension of the QDDs defined by [BG96]. While QDDs are finite automata,
CQDDs are a combination of restricted finite automata and linear constrains on
a number of occurrences of symbols. The CQDDs are a symbolic representation
which is more expressive than regular languages. As an example, they show that
CQDDs accept the language a™b™a™b™. However, to our understanding, the
CQDDs are not strong enough to express the Peterson example, which we were
able to verify using all our methods.

Outline The paper is organized as follows. Section 2 provides some prelimi-
naries. Section 3 discusses adequacy of classes of automata for symbolic model
checking. Section 4,5, and 6 present the three methods we suggest for the uniform
verification of non-regular parameterized systems. Section 7 concludes.

2 Preliminaries

2.1 System Model

Definition 1. Let X be an alphabet. A bi-letter over X is an element of X' x .
A bi-word over X is a string of bi-letters over X' (i.e., an element of (¥ x X)*).
A bi-language over X is a set of bi-words over X' (i.e., a subset of (X x X)*). We
use the notations [;] and [:] to denote respectively the bi-letter (a,b) and the
bi-word [;][2] - - - [i»] where u = ajas...an, and v = byby...b,.

Given a bi-language L over X, we denote by L{; (L{2) the projection of L
on the first (respectively, second) coordinate. Given a language L over X, we
denote by L x I* the language {[*] : w € L, u € Z*, |u| = |v|}, referred to as
left lifting. Similarly, we define right lifting and use the notation X* x L. We use
the standard notations L and L; N Ly to denote the complement of a language
and the intersection of two languages respectively.

Definition 2. A system is a quadruple (X, x, ©, p) where

X is a finite alphabet.

— x C X* is a language over X, denoting the set of states.

— O C x is a language over X/, denoting the set of initial states.

— p C x x x is a bi-language over X', denoting the transition relation.



2.2 Symbolic Model Checking and Regular Model Checking

The wverification problem for a system M and a property ¢ is to decide whether ¢
holds over all computations of M. Model checking is an automatic technique for
answering the verification problem. In symbolic model checking, some symbolic
representation C is used to represent sets of states. In the framework of sym-
bolic model checking using the representation C, the system and the property
to be verified are represented as expressions in C: The system is defined using
C-expressions to describe its components, which are essentially sets of states or
relations over sets of states. The invariance property is defined using some ex-
pression in C to describe the sets of states satisfying it. Then, the model checking
procedures operate by manipulating sets of states (instead of individual states)
through operations on the expressions of C. Symbolic model checking can be
applied to infinite-state systems, although in this case, the termination of the
procedure is not guaranteed. We refer to this problem as the convergence prob-
lem.

2.3 Regular Model Checking

Regular model checking [KMM*97,WB98] is an application of symbolic model
checking, where regular expressions are used as the (symbolic) assertional lan-
guage for describing sets of states. Regular expressions have been proven to be
useful representations for several classes of infinite-state system, e.g., parame-
terized systems, counter systems and unbounded FIFO-channel systems.

Using this framework, the system’s components, and the property to be ver-
ified are defined by means of regular expressions. Usually, we assume a given
alphabet X to represent a local state. The set of global states x, the set of initial
states © and the property ¢, are specified by a regular expression (defining a
regular language) over X. The transition relation p is specified by a regular
expression using bi-letters over X' (sometimes referred to as a bi-regular expres-
sion).

Ezample 1. (TOKEN-STRING)

Consider an array of processes that pass a token from left to right. We define the
alphabet X' = {1, 0} to denote the local state of a process, i.e., that the process
has or has not the token. A global state of a system consisting of n processes
is defined by a word of length n, each letter describes the state of one process.
The set of global states x is defined to be the language of all words of positive
length, given by the regular expression (0 + 1)*. The set of initial states O, is
given by the regular expression 10*, indicating that the leftmost process holds
the token. The transition relation p can be specified by the bi-regular expression
(B1+0D" [ ] (B]+[])" defined over X = {0,1}. Alternatively, we can
specify the transition relation by the length-preserving rewrite rule x 1 0 y —
2 01y (where z and y are arbitrary words over {0,1}*). The invariance property
stating that there is exactly one token at all times, can be given by ¢ = 0* 1 0*.



2.4 Deterministic Pushdown Automata

Definition 3. A Deterministic Pushdown Automaton (DPDA) is a tuple (X, S, so, I, L, p, F)
such that:

— X' is an alphabet called the input alphabet.

— S is a finite set of states.

— 8o € S is the wnitial state.

— I' is an alphabet called the stack alphabet.

— 1 € I' is a stack symbol called stack bottom (we assume that L can be
neither put nor removed from the stack).

— pis a partial function from S x X' x I to S x Com(I") called the transition
function where Com(I") C I'* is the set of stack commands which are strings
that replace the symbol at the top of the stack.

— F C S is the set of accepting states.

A configuration of a DPDA M is a triplet (s,w,~y) where s € S, w € X¥* and
~ € I't. The configuration (ss,ws,y2) is defined to be an immediate successor of
the configuration (s1,ws,v1), denoted (s1,w1,7v1) by (82, w2, 72), if there exists
an input o € X U {e}, a stack symbol z € I', and stack words ~v,8 € I'* such
that wy = ows, 11 = vz, 72 = 70, and (s2,8) € p(s1,0,2). Thus on moving
from configuration (s1,w1,71) = (81,0w2,vz) to configuration (s2,ws,7v2) =
(s2,w2,70), the DPDA consumes o from w; and replaces z by 8 at the top of the
stack. In this case we say that o is the result of applying B to v, and denote
Y2 = B(71). When M is understood from the context, we omit the M subscript
and simply write (s1,w1,7v1) F— (82, w2, 72).

The initial configuration of a DPDA M = (X, S, 0,1, L, p, F) on a word w
over X is (sg,w, L ). We use I~ to denote the reflexive and transitive closure of
F— . A partial run of M is a sequence of configurations cg, ¢1, ..., ¢, such that ¢
is the initial configuration, and ¢;41 is an immediate successor of ¢;, for each i =
0,...,m—1.Forappa M = (X,S,s0,I,L,p, F) we define L(M), the language
accepted by M, to be {w : (so,w, L) (t,€,7) for some ¢t in F and v in I‘*}.

3 Adequacy of Classes of Automata for Symbolic Model
Checking

Regular model checking is an important application of symbolic model checking
which enables the verification of several classes of parameterized and infinite-
state systems. Nevertheless, there are instances where a regular language is not
expressive enough to describe the system or the property at hand.

Our aim is to find a class of languages that is more expressive than the regular
languages, yet is adequate for symbolic model checking. Naturally, we wish for
this class of languages to be as large as possible. However, the size of the class of
languages that is still adequate is bounded by the requirements symbolic model
checking compels.



The rich-language symbolic model checking methodology described in [KMM+97]
lists a set of minimal requirements from an assertional language, in order for it
to be adequate for symbolic model checking. We reformulate these requirements
here in terms of classes of languages rather than assertions. We classify the lan-
guages involved in the symbolic model checking procedures into different classes
according to the basic operations they undergo. Our intention is to allow de-
ployment of different classes of languages within the symbolic model checking
process. We present backward and forward model checking procedures in terms of
this classification, using only basic operations on languages.

Let M, R and A be three classes of languages. Let M, € M and A, € A
be languages adequate for specifying the property to be verified. Let Ao € A
and Mg € M be languages adequate for representing the initial state of the
system. Let B, € R be a bi-language adequate for representing the transition
relation of the system, augmented by the identity relation (idle transition). We
will use the auxiliary languages My, My, M>, ... € M to represent system states.
The following procedures describe backward and forward model checking:

Procedure Backward MC Procedure Forward MC
Mo = m Mg = M@
For + =0,1,... repeat For : =0,1,... repeat
Miyr = ((Z* x Mi) N R, Miyy = ((M: x Z*) N Rp)lja
until M;,, = M; until M, = M;
return M;NAg =10 return M;NA, =0

The classes M, R and A are adequate for symbolic model checking, if the fol-
lowing requirements hold:

Procedure Backward MC'is applicable using the classes M, R and A if the
following requirements hold:

1. R is adequate for representing p, and M and A are adequate for specifying
@ and O respectively .

2. M is effectively closed under complementation.

3. M is effectively closed under lifting.

4. M is effectively closed under intersection with R.

5. M is effectively closed under projection.

6. Either M is effectively closed under intersection with A and emptiness is
effectively decidable for M, or A is effectively closed under intersection with
M and emptiness is effectively decidable for A.

7. Equivalence of two languages in M is effectively decidable.

Procedure Forward MC is applicable using the classes M, R and A if the
following requirements hold:

1. A and M are adequate for specifying ¢ and © respectively, and R is adequate
for representing p.

2. A is effectively closed under complementation.

3. Requirements 3 — 7 above hold.



We say that the classes M, R and A are adequate for symbolic model check-
ing, if either procedure Backward MC is applicable using the classes M, R and
A or procedure Forward MC is applicable using the classes M, R and A.

Note that there is no requirement for closure under union on either of the
classes, although [KMM*97] requires closure under disjunction from the candi-
date assertional language. This is achieved by requiring that p always include
the identity relation (corresponding to the stuttering step).

3.1 Meeting the Requirements

Clearly, taking M, R and A to be the class of regular languages, £ 4, meets all
requirements, yielding regular model checking.

We can take one step further and choose the class of languages accepted by
deterministic pushdown automata, Lpppa, for A, leaving M and R to be the
Lpy class. Since the Lpppa class is closed under intersection with a regular
language, and emptiness is decidable for Lppp4, all the requirements are met.
Further, the fact that Lpppa is closed under complementation enables us to
perform both forward and backward model checking. The class of languages
accepted by (any) pushdown automata, Lpp4, is also closed under intersection
with a regular language, and the emptiness question is decidable for it as well.
Thus, choosing L pp 4 for A is also acceptable. Because Lpp 4 is not closed under
complementation, this choice restricts us to backward model checking?. In the
following section we show how this seemingly slight change can help us to verify
properties of algorithms that cannot be verified using regular model checking.

A more intricate step is considering M to be the Lpppa class, leaving the
Ly class for R and A. Requirement 3 is met as Lpppa is closed under inverse
homomorphism, which is a generalization of lifting. Requirements 2, 4 and 6
are met as Lpppa is closed under complementation and intersection with a
regular language, and the emptiness problem for Lppp4 is decidable. However,
requirement 5 is not met: Lppp4 is not closed under projection. Requirement
7, decidability of the equivalence problem, was an open question until recently.
In 1997 it was proven positively by Senizergues [Sen97]. However, the algorithm
he provides is not very effective [Sti01].

We thus concentrate our efforts to find a sub-class of Lpppa which is ade-
quate for symbolic model checking. Therefore, we must find effective algorithms
to compute projection and to decide equivalence for languages in this class. In
addition, this class must satisfy the rest of the closure and decidability properties
discussed above. This is the topic of Sections 5 and 6.

% If we can specify the negation of the property to be verified (directly) using a context-
free language, then we can perform forward model checking as well.



4 Symbolic Model Checking using Context-free
Languages and Regular Languages

In this section we concentrate on the framework of symbolic model checking
where the class A is chosen to be the Lppa class or the Lpppa class, while M
and R are the Ly class. If we choose to apply backward model checking we can
describe the property to be verified by some language in the Lppa (or Lpppa)
class, but then we have to compromise with a regular language for describing the
initial condition. Alternatively, we can choose to apply forward model checking,
which results in the initial condition being in Lppp 4, while the property must
be described by a regular language.

4.1 Peterson’s Algorithm

We focus on the verification of the Peterson algorithm for mutual exclusion
among N processes presented in the figure below. We show that this algorithm
cannot be verified using regular model checking, yet it can be verified using the
suggested framework.

N : natural initially N > 1
y :array [1.N] of [0..N — 1] initially y =0
s :array [1..N —1] of [1..N]

[t : integer
lo: loop forever do
?¢1: Non-Critical
N £y fort:=1to N—1do
IRE e (ylil, sl]) = (t,9)
Ly await s[t] #£1 V V5 # 1 y[ji] < yli]
¢5: Critical
le: yli] =0

Program Peterson(N).

The Peterson algorithm can be explained as follows. Each process PJi] has a
priority variable y[¢]. The range of the priority variable are the numbers from 0
to N —1.In addition there are N —1 signature variables s[1], s[2], ... s[IN—1]. The
domain of the signature variables consists of the processes indices 1,2, ..., N. The
variable s[i] holds the signature (index) of the last process that received priority
i. Assume process P[i] has priority j. In order to increment its priority (to j+1),
it must be either the process with the highest priority, or not the last who signed
in the signature s[j]. A process can enter the critical section if it has the highest
priority (N — 1) and it is not the last who signed in (in the signature of the
highest priority, s{N — 1]). When a process exits the critical section its priority
is reset.



4.2 An Encoding for Peterson

In order to apply regular model checking or our method, we must first model
the system by languages as defined in Definition 2. We can encode a state of the
Peterson system as a word of the form

s[1] s[2] S[N —1]

! | !
Q...Q|Q...Q|Q...Q|...|Q...Q|Q...Q
—_— Y Y — Y——

y=0 y=1 y=2 y=N-1 y=N-1

where all processes P[] within partition kK = 0,1,..., N—1 have their priority
variable y[i] set to k. The leftmost process in partition %k is the one signed in
the signature s[k]. Processes in the rightmost partition are the ones which are
in the critical section. Note that there are N + 1 partitions, separated by NV
border markers. The set of global states can thus be given by the language

x={we(O+|): #(|,w)=40O,w) >1}.
This is the language over the alphabet { O, |}, each of whose words has an
equal number of “|” and “O”. The initial state of a concrete system consisting

of N processes is described by the word ON|V; the N processes have their
priority variable y set to 0 and thus are located in the first partition. Hence, the
set of initial states of the parameterized system can be given by the language
O={0"|": i>1}.

The transition relation p can be specified using five length-preserving rewrite
rules: p1, p2, p3, P4 and p;q defined as follows:

pr : 2Oy~ z| Oy where z € O*y € (| + O)*
p2 : z|O|y—z|| Oy where z € (| + O)*,y € |*
ps : OO |y—»z0O| Oy where z,y € (| + O)*
ps : O+ Ox where z € (| + O)*
pid: TP where z € (| + O)*

The first rewrite rule states that a process can move unconditionally from the
first partition to the second partition. This corresponds to increasing the priority
variable y from 0 to 1. The second rewrite rule states that a single process within
a partition can move to the next partition provided that all the partitions to
the right are empty. This corresponds to the situation where the process has
the highest priority. The third rewrite rule transition states that a process can
move to the next partition provided that there is a process to its left in the same
partition. This corresponds to the situation where the process is not the last to
sign in the signature corresponding to its current priority. The fourth rewrite
rule describes exiting from the critical section and the last rewrite rule describes
the stuttering step.

10



4.3 Another Encoding for Peterson

The encoding described above is not regular, since languages x and © are non-
regular. It is possible to model the Peterson algorithm using regular languages as
follows. Define the alphabet X = {0, 1, 2}. Each priority queue is represented by
exactly one alphabet letter. An empty partition is represented by 0, a partition
with exactly one process is represented by 1 and a partition with two or more
processes is represented by 2. A state of a concrete system with N processes is
thus of length N + 1. Assuming there are at least two processes, we require a
state to be of length at least 3 and to have at least one partition with two or
more processes or two partitions with one process each. Thus, the set of global
states can be given as follows:

x = {uavbw : w,v,w € X*, a,b€ X, |uavbw| >3 and a+b > 2}.

The set of initial states can be specified by the language © = {20" : i > 2}.
The transition relation, using this encoding, consists of many rewrite rules. We
classified them to several groups corresponding to the first encoding.

20y —~21y|lly pr:x10y— 201y whereY €0

21y—22y|12y

p1:d10y-01y 0z2+—121|1z2

Oz1—120
11y= 02y 1z2—221|272
12y~ 02y PA"Y121-220

2z1—220

220y~ xzlly|lz2ly
p3:sx2ly—zl2y|lxz22y
z22y—x12y

222221222

Pid: T T

4.4 Verification of Peterson’s Algorithm

We begin by trying to apply regular model checking, using the second encoding.
We have calculated the set of reachable states using the tool TLvP [Sha96,PS00].
The tool offers several acceleration techniques, and we used local acceleration and
binary left-to-right acceleration. The computed set of reachable states % can be
given by xN(OUL{ULs) where Ly = {au2v : a € {0,1,2} w € {1,2}* and v € 0*}
and Ly = {awvlw : a € {0,1,2} u € {1,2}* and v,w € 0*}.

We are interested in verifying the property of mutual exclusion. Using the sug-
gested encoding, we can describe the negation of mutual exclusion as follows: @ =
27*2 indicating that there are two or more processes in the critical section. There
is a nonempty intersection between the set of reachable states ¢ and the negation
of mutual exclusion @. It is given by ¥y N g = {au2 : a € {0,1,2} w € {1,2}*}.
Thus, we were unable to verify the mutual exclusion property for Peterson(N),
using regular model checking.

11



However, if we recruit the context-free languages to aid us we can win the
task. We consider the first encoding suggested for Peterson. We compute the
set of reachable states, starting with an over-approximation of the set of initial

states: OF|*. The set of reachable states 1 is specified using this encoding as
Y = xN (@ UL ULy) where L1 = O*| (O O*|)* OO O* (e+ | |* and
L, = O* (O O*)* |[*(O | |*+ O). The negation of the property of mutual

exclusion is now given by » = (O + |)* O O. Now, the intersection between
the set of reachable states ¥ and the negation of the property ¥ is empty. This
is due to the context free language x. Thus, using this method we have proved,
what we failed to do using regular model checking, that Peterson(N) satisfied
mutual exclusion.

5 Symbolic Model Checking using a Cascade Product
1DPDA o DFA

In this section we seek to find a subset of Lpppa (a superset of Lpa) which is
adequate for symbolic model checking. Given a single state DPDA M we define the
class Lpppa—nr- We provide a semi-algorithm for computing projection for this
class, and an efficient algorithm to decide equivalence. This class, in addition, is
closed under all basic operations required in order to be adequate for symbolic
model checking. By this we provide the missing link, whose absence caused the
full Lpppa class to be inadequate.

5.1 The Classes Lpppa_m

We concentrate on DPDAs as defined in the preliminaries. We often consider
single-state DPDAs with an empty set of accepting conditions. We refer to a
single-state DPDA with an empty set of accepting states as a 1DPDA. A 1DPDA
M = (¥,{q},q, T, L, A, D) can be represented by the quadruple (¥, I', 1L, A)
where A : ¥ x I' — Com(I"). The following definitions are needed for the
sequel.

Definition 4. ( cascade product )

Let R=(V xI,S,s9,6,F) be a DFA and ¢ : V — X a substitution mapping
each letter of V to a letter in X. The cascade product M o4 R is the DPDA
(V,8,50, T, L, p, F) where p(s,0,2) = (6(s, (0, 2)), A(¢(0), 2))-

Definition 5. ( stack-consistent with M )

A DPDA A is said to be stack-consistent with M (M -consistent for short), if there
exists a substitution ¢ : V. — X and a DFA R = (V x I, S, s0,6, F) such that
A =M O¢ R

Let A = M oy R. A run m4 of A on the word w = o102 - - - 05, can be
decomposed into two runs: a run 7 of M on ¢(w) and a run 7 of R on w as
depicted below.
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o1/z1 oo /z2 on/zn

Tat (s0,70) FH———— (s1,m1) F———— ... F——— (sa,7)
$(o1)/z1 $(o2)/z2 $(on)/zn

TM : Yo '7 Y1 '7 - '7 Yn
a1, T (v0) 2, T(71) o,y T (Yn—1)

TR : S0 81 ee. B/ s,

The decision upon the stack command at the i-th step x; is governed only by
the 1DPDA M, which is not aware of the state s; of R. Yet, the DFA R can look
at the top symbol on the stack of M (we use T(7) to denote the stack symbol
at the top of the stack content ). Automata R and M move simultaneously:
when A reads a letter o; € V, the DFA R makes a move as if it was reading the
pair (o, T(vi—1)), where ;_; is the current stack-content of M, while M makes
a move as if it was reading ¢(o;). The automaton A decides to accept a word w
if, when the run terminates, R is in state s,, € F.

Therefore, an automaton A = (V, S, sq, I, L, p, F') which is M-consistent with
respect to ¢ can be characterized by the pair (R, ¢) where R is the DFA such
that A= M o4 R.

Definition 6. ( The M-stack consistent class, Loppa—m )

Given a 1DPDA M, we define the M-consistent class Lpppa_p t0o be the class
of languages that are accepted by some DPDA which is M-consistent with respect
to some substitution ¢.

The M-consistent automaton A can be viewed as a case in which the automa-
ton has been decomposed into a stack-manipulator, which behaves exactly like
M in its decisions about the stack transformations, and a finite-state controller R
which affects the selection of the next state. Two M-consistent automata A; and
A, share the same stack-manipulator and may differ in their respective finite-
state controller. Note that the substitution ¢ may differ between two automata
A1 and A, in the class.

Claim. The class Lpppa—ur is effectively closed under complementation, lifting
and intersection with a regular language.

Claim. Equivalence and Emptiness are effectively decidable for the class Lpppa— -

5.2 Computing Projection

Viewing the claims above, for any 1DPDA M the class Lpppa— s satisfies re-
quirements 1,2,3,4,6 and 7. Thus, if the class is also effectively closed under
projection, then it is adequate for symbolic model checking (in collaboration
with the Lry class). In the following we provide a semi-algorithm for computing
projection.

Let A be a DPDA which is M-consistent with respect to ¢, and let R be
A’s characteristic DFA. For simplification we assume the input alphabet of A is
X x X, where X' is the input alphabet of M. Also, we assume A is M-consistent
with respect to ¢ =)o and we wish to calculate the projection of £(A) on its first
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coordinate. That is, we would like to compute another DPDA A over the alphabet
Y which is M-consistent with respect to the identity relation and accepts the
projection of A on its first coordinate.

We claim that procedure Project described below calculates the correct pro-
jection (unless it aborts). The procedure can be explained as follows. To simplify
notations, we present p as a relation, a subset of S x X' x I"x Com(I") x S instead
of a function from S x X' x I' to S x Com(I').

Procedure Project
Input: aDPDA A= (X x X,5,s0,I,1,p, F), a positive integer k
Output: a DPDA A= (X, §,s~0,1", 1,p, ﬁ)
1. Annotation:
A= (¥ x X, §,§6,F, 1,p, F\) := Annotate(A, k)
2. Projection:
A:=(%,8,5,T,L,p, F) where § = §, $0 = S0, F=F and
p={(s,z1,01,21,8') : 323,09, x> such that (s,z21,22,01,02,21,22,5') € p}
3. Determinization:
R:= (X x I S, s'b,g,ﬁ') where 5(3, (0,2)) =58 < Fz: (s,2,0,z,5')€p
R=(¥xTI,8,53, 5, F) := Subset_Construction(R)
Return Z =M o4 ﬁ

In Phase 1 procedure Project calls procedure Annotate described below. Pro-
cedure Annotate guesses how the 1DPDA M will operate when looking at the first
coordinate instead of the second. For each edge (s, s') labeled by ([1], 22, z2)3
the procedure aims to find all possible stack letters z; and adequate stack com-
mands x; such that if M looks at the first coordinate then, when moving from
state s to s’, it will have 2; on the top of the stack and decide on the stack
command z1.

For each state, it saves an information describing the difference between the
actual stack of M and the “guessed stack” (the stack of M if it was looking
at the first coordinate). For this it uses the notation (8, (2) with the intention
that if the maximal common prefix of the actual stack and the guessed stack is
w then the “guessed stack” is described by wf; and the actual stack is described
by wfB;. An original state s of A may appear more than once in A, each time
labeled with a different notation {3, B2).

Note that zo must be the top symbol of wl2. The procedure will choose z;
to be the top symbol of wB;. The stack command z; is then determined by
A(o1, z1). Considering that the difference between the guessed stack and actual
stack in state s is described by {81, 82), and the stack commands for the guessed
and actual stack are z; and x5 respectively, we can compute the new difference
(B, B5) for state s'. Let 1 and 72 be the result of applying z; and z to the stack
contents wB; and wf; respectively. Given w' is the maximal common prefix of v;
and vz, then 8; = v /w' and B85 = 2 /w' (where u/v denotes the right division
of u by ).

3 1f (s, z) € p(s,0,2) we say that the edge (s,s') is labeled by (o, z, z).
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Procedure Annotate
Input: A= (X xX,S,s0,I,L1,p, F), a positive integer k
Output: A = (¥ x X, 8,8, L,p,F) where S C S x (I'S* x I'S*) and
PCSxE2xI?xCom(I')? x 8.
= (80, (€, €))

eg(50) := Compute_Stack_Language(A, sq)

F)
F)

Pick 5= (s,(01,02)) € Q
For all (r,r', 21, 22, %1, X2,01,09, b1, B2, 31, B5) € ReachableTransitions s.t.
(8,01,02,292,22,8") € pand 7 = freg(s) repeat

If || > k V |B3] > k then abort
§ = (s, (A1, B2))
f5 ¢S then freg(s') :=1" else freg(s') := freg(s') Ur’
le {(5,21, 22,01,02,1,32,8") }
=S U {3}

Q:=QU{3}

end for all

Q:=Q\ {5}
end while
50 :=A{(5,(B1,B2)) : s =50}
F:={(s,(B1,B2)) : s€F}

end procedure

v}

e
Il =

W) )

To guarantee termination, the procedure uses the second parameter — a
bound & € N. The procedure aborts if the length of either g, or G5 exceeds
k. It may be the case that the procedure decides to abort when exploring an
unreachable edge. We say that an edge (s, s') labeled by ([7L], 22, 22) where s is
annotated (81, (=) is unreachable if there is no prefix w such that wgs is in the
reachable stack language of s. To avoid this situation, the procedure computes
for each state s the reachable stack language of s. It uses a labeling function freg
that labels each state with its reachable stack language, £(s). When exploring
the edge (s, s') the procedure checks that w0, is in the reachable stack language
of s, given by r = freg(s). The procedure updates the reachable stack language
of ', freg(s'), to contain the set of words obtained by applying z» to a word in
7 whose top symbol is zs.

The complete relation between all involved components, is summarized as
follows. Let 21,20 € I', 01,090 € X, ,81,,82,,81,,8& € I', r1,29 € C’om(F),
r,r' € R(D). (r,7', 21, 22,21, %2, 01,02, b1, B2, 81, 3%) € ReachableTransitions if
and only if the following holds:

1. Jw € I'* such that wfhs € r
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2. 21 = T(wp) and 2o = T(wpfs)
. I = A(al,zl) and To = A(O’Q,ZQ)
4. By = z1(wh)/w" and By = z5(wfs)/w'
where w' = maz_common _prefiz(x1(wh ), x2(wph2))
5. ' = {za(uz2) | uze € r}

w

The search is conducted on-the-fly starting at the initial state. For the initial
state both the actual stack and guessed stack are | and hence the initial state is
annotated by (e, €). The reachable stack language of the initial state is computed
by calling procedure Compute_Stack_Languages (see for example [FWW9T]).
Then, for each state s labeled freg(s) = r and annotated by {8, 03=2), and for
each out-going edge (s,s') labeled by ([71], 22, %2), it annotates the state s’ by
(B1,85), updates freg(s') to contain v’ and adds the annotation z1,z1 to the
edge, where (1,7', 21, 22,1, %2,01,02, 01, B2, 81, B5) satisfy the conditions of a
reachable transition.

In Phase 2 procedure Project simply projects each edge on the first coordi-
nate. From each edge on it eliminates the second component oo of the bi-letter
[71], the stack letter z; and the stack command zs.

In Phase 3, as a first step the procedure extracts from the PDA A the finite-
state automaton R. Note that R is non-deterministic (i.e. it is an NFA): from one
state s there could be two outgoing edges (s, s') and (s, s") with the same label.
This non-determinism is the result of the projection performed in the previous
phase. Hence, as a second step, the algorithm applies the subset construction
and obtains the DFA R.

6 Symbolic Model Checking using a Product PDA X DFA

In the previous section, we saw that there is a semi-algorithm to compute
projection of a language given as a cascade product of a single-state DPDA and
a DFA. We now consider the case where the cascade product is degenerate, i.e.
the DFA does not look at the stack of the 1DPDA. In this case the language is
given by a simple product of a DPDA and a DFA. We show that if the initial
state of a system can be given by such a language, and the language is in some
sense “preserved” by the transition relation of the system, then projection can
be computed on the DFA part alone.

Definition 7. We say that a language L is left preserved by a bi-language R if
((Lx X*)NR)y2= L. We say that a language L is right preserved by a bi-language
Rif (X* x L)YNR)y1= L.

Note that in order to check that a language given by a cascade product
is right or left preserved, one can compute the projection using the procedure

presented in the previous section.

Claim. Let (D, ) be a verification problem where D = (X, x, 0, p).
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— If ® = LN Ry and L is left-preserved by p and p is regular, then the verifi-
cation problem (D, ) can be solved by applying the procedure for forward
model checking given below.

— If ~¢p = LN Ry and L is right-preserved by p and p is regular, then the
verification problem (D,¢) can be solved by applying the procedure for
backward model checking given below.

Procedure Backward MC Procedure Forward MC
My :=LNR, My :=LNRy
For : =0,1,... repeat For i =0,1,... repeat
Mi+1 = ((E* X Rz) N Rp)’U’l NL Mi+1 =LN ((R, X E*) n Rp)vuz
until Mi+1 = Mz until Mi+1 = Mi
return M; N Ao =10 return M;NA, =0

Note that applying symbolic model checking using this method, has another
advantage when considering the convergence problem. Any technique developed
for regular model checking can be applied here as well. Since the DFA part is sep-
arated, one can apply the technique on the DFA part alone, obtaining necessarily
correct results.

Peterson Example It can easily be seen that Peterson’s algorithm, when mod-
eled using the first encoding, fits into this frame. Recall that the set of global

states is given by x = {w : #(|,w) = (O, w) > 1}. The set of initial states
specified before by © = { O%|¢ : i > 1} can be given by x N O*|*.

Recall that the transition relation p is specified using the five length-preserving
rewrite rules below:

p1 : zO |y—z| Oy where z € O*y € (| + O)*
p2 ¢ x| Oly—z|]Oy where z € (| + O)"y € [*
ps : OO |y~ zO| Oy where z,y € (| + O)*
ps : O — Ox where z € (| + O)*
pid: THT where z € (| + O)*

Since in all rewrite rules, the number of sticks and stones does not change
between the left hand side and right hand side of the rule, x is right and left
preserved by p. Hence, by Claim 6, we can apply forward model checking when
projection is performed only on the transition relation.

7 Conclusions and Future Work

Our research tried to give an answer to the verification problem of parameterized
system, which cannot be answered using regular model checking.

First, we showed that we can solve the verification problem of parameterized
systems whose initial condition can be specified by a context free language, while
all other components can be specified by regular languages.
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Second, we defined a class, which is a subset of the Lpppa class, and showed
that it is adequate for symbolic model checking. We obtained this by giving
a semi-algorithm for computing the projection and an efficient algorithm for
deciding equivalence. By this we provided the missing link, whose absence caused
the full Lpppa class to be inadequate.

Third, we focused on a special case of the class we have defined. We gave a
simple algorithm to compute projection for this class. In addition, we showed
that all acceleration and widening techniques developed in order to achieve con-
vergence of the regular model checking procedure, can be applied to this class.
Thus we have shown that the class is practically adequate for symbolic model
checking.

We showed that the methods we have developed can be used for verifying
non-regular parameterized systems. All suggested methods have been success-
fully used to prove mutual exclusion of the Peterson algorithm for an arbitrary
number of processes [Pet81] and termination of a termination detection algo-
rithm extracted from Ricart and Agrawalas’ algorithm [RA81].

Future Work It is left to study the relation ship between these methods. Is
one stronger than the other or are they incomparable, and one works on some
instances while the second works on other.

In this paper we consider only safety properties. It is important to extend
our methods to verify liveness properties as well.

In order to apply regular model checking or any of the methods we have
developed here to a given verification problem, the verification problem must be
modeled by languages and Al-languages. In several cases, in order to model the
system, we used an encoding which is an abstraction of the system. It is interest-
ing to see if one can automatically verify the correctness of such an abstraction,
or even more, automatically produce a correct encoding (abstraction).

When dealing with regular languages one can alternate between the different,
yet equivalently expressive, formalisms FA, Ws1s and regular expressions (as done
in [JJK94] for example). It will be useful if we had an assertional language as
expressive as our restricted class, because it would allow convenient alternation
between representations according to the need. Such a direction of investigation
may be very interesting.

The class of languages introduced in this paper, similar to regular expressions,
allows many automatic manipulations. It is interesting to explore if this class
can be useful in the deductive realm as well.

Much like the class introduced here, it is interesting to see if there are other
classes, which are more expressive than regular expressions, and yet are adequate
for symbolic model checking.
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A  Proofs

Proofs of Subsection 5.1

Claim. The class Lpppa_ i is effectively closed under complementation.

Proof. Let A be an automaton in Lpppa—nr, characterized by (R, ¢) where
R=(VxI,8,s,6,F). We claim that the automaton A characterized by (R®, ¢)
where R = (V x I, S, 50,6,5 \ F) accepts the complemented language of A. We
note that since R and R differ only in the set of accepting states, any run of A
is a run of A and vice versa. By definition of F = S\ F a state s € F if and only
if s ¢ F. Therefore whenever the automaton A accepts a run 7, the automaton
A rejects it and vice versa. |

Claim. The class Lpppa_u is effectively closed under lifting.

Proof. Let A be an automaton in the class Lpppa—n, characterized by (R, ¢).
To simplify notations, we focus on the trivial case where V = X, thus, the input
alphabet for the DFA R is X x I" and the substitution ¢ is the identity. We con-
struct the proof for the case of left-lifting, the case of right-lifting is symmetric.
Let R = (X x I,S,50,6,F). Define a DFA R'i"¢ = (X x ¥ x I, S, 59,8 ™"e F)
where for all oy € X, §'ftine(s ([71],2)) = é(s, (01,2)). We claim that the au-
tomaton A8 characterized by (R },) accepts the left-lifting of £(A).
[11] € L(A) x &* <> w; € L(A)
<= the run w4 of A on w; is accepting
<= the run g of the DFA R on (wy,~) ends in state s € F
where v is the sequence of stack tops observed in the
run 7pr of M on w;.
<= the run g of R"™"¢ on ([%1],~) ends in state s € F
where v is the sequence of stack tops observed in the
run 7 of M on [41]41= ws.
— [i;] c L*(Alifting)
O

Claim. The class Lpppa—u is effectively closed under intersection with a reg-
ular language.

Proof. Let A be an automaton in the class Lpppa—_u, characterized by (R, ¢)
where R = (V x I, S, 80,6, F). Let r = (V x I, S,., 8§, 6r, F}) be a DFA. We de-
fine the automaton A" a member of Lpppa_n as follows. A" = (R, ¢)
where R"" = (V x IS x S;,(s0,84),6"", F x F,.) and 6""((s,s,),(0,2)) =
(6(s,{0,2)),0.(sr,{0,2)). It can easily be seen that w € L(A) N L(r) if and
only if w € L(A™). |

Claim. Let A1, A2 be two DPDAs over the alphabet V which are stack-consistent
with a 1DPDA M, with the same substitution ¢. The question whether £(4;) =
L(A2) is effectively decidable.
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Proof. The proof is derived from the decidability of the equivalence problem
for general deterministic pushdown automata [Sen97]. However, in this case, a
much shorter proof and a more efficient algorithm can be given. We sketch it as
follows: Assume A; and A, are characterized by (R, ¢) and (Rs, ¢) respectively.
L(A1) = L(A5) if and only if L(M o (R; NRS)) =0 and L(M o (R N Ry)) = 0.
Because emptiness is effectively decidable for DPDA we are done. O

Claim. Let A be a DPDA which is M-consistent. The question whether £(A4) =
is effectively decidable.

Proof. The proof is derived from the decidability of the emptiness problem for
general pushdown automata. O

Proofs of Subsection 5.2

Theorem 1. Let A be a 1DPDA which is M-consistent with respect to ¢ =|».
Assuming procedure Project did not abort when constructing A, then L(A) =

LA

Lemma 1. ( Correctness of procedure Annotate )
Letu; = olo) .. .0l and us = 0202 ...0%. Let 7o and mwys be runs of A and M

on [;] and uy respecltively as follows.

e e e

mai (o) (1) . (su1})
oy /z o,/ o/,

et o o e

For all 0 < i < n, let w; be the mazimal common prefiz of v} and +?. Let
B =~} Jw; and 2 = v?/w;. Denote by m the mazimal i such that |8} < k and
1671 < k.

Then, 8y,51,5%,53,...,5m 45 a partial run ofg and for oll 0 < ¢ < m the
5 = (8:,(B,8?)) and 42 € freg(s:) and for all 0 < i < m the edge (5;,5.11) is

labeled by (0-21+17 Ui2+17 T(’Yil)a T(’Y'Lz)a 3711+1a %2'+1)-

Proof. The proof is by induction on the length of the path, m. For the base case
where m = 0, we have that the initial stack contents 7} and 42 are L implying
their maximal common prefix wy is also L. Hence both 3} and (2 are e. This
proves the first part of the lemma, as by procedure Annotate, the initial state is
annotated (e,e). The freg-label of the initial state is the set of reachable stack
languages of the initial state in the automaton A and thus contains 1 = 2.

For the inductive step assume the claim holds for paths of length m we prove
it holds for paths of length m + 1. Let 74 and 73 be partial runs of A and M
on [%1] and u; respectively as follows.

02
(73] /22 23]/ [
Ta: (s0,7) P (51,7) F————— ... F———— (Smt1,%m41)
1 ot /=1 1 o3 /@3 U'lln+1/z:n+1 1
™ Y — 7 ... Va1
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By induction hypothesis there exists a partial run $p,51,85...,5,, in A such
that the lemma holds. That is, given w,, = maz_common_prefir(VL,,72,), 5m =
(8m, (BL,, B2)) where 8. =~ /w,, and 8%, = 42 /wm. Denote by 2. and 22,
the top symbols of v}, and 72, respectively. From the fact that 74 is a run of A

on [i1] we get that z2, = A(02,,22,) since A is M-consistent with respect to {}5.

u m’ ~“m
Similgrly, from the fact that mys is a run of M on w; we get that 2%, = Aol ,2L).
The same arguments imply that 72, = z2,(v2,) and 75,4 = 2% (77,)- Let 7,
be the freg-label of state §,,, freg(5,). By induction hypothesis v5* is in 7,,,
which implies wmB32, € Tm. Define 7,41 = {22, (wz2) : w2y € 1y }. It follows
that

1.2 .1 .2 1 2 gl g2 gl 2
(Tmarm+17zm7zm7xm7$m7o-m7o-m7ﬂm7/3m7ﬂm+l7ﬂm+l) €
Reachable Transitions.

Hence, procedure Annotate will add the edge (sm, Sm+t1) to A with the an-
notation ( ol 41,021, T(VL), T(VZ), 2k, 11,221 ) and the state spy,q1 with
the annotation (8}, ,82%,1)- Since 42, € rn41 and the procedure updates
freg(s') to contain 7,11, the proof is completed.

O

Lemma 2. If w is in L(A)1, then w is in L(A).

Proof. Let wy; = o1} ...0} € L(A)J1. Then there exists a word we = o303 ...03

such that [21] € L£(A). Let m4 be the accepting run of A on [7!] and let w3 be
the run of M on w; as follows.

o1 ol o
- )= )=
TA (50773) (S]_,’Yf) s (Sn77’3b)
1 1 1 1 1 1
o1/zy o3/ o, /T,
T Ve P——— 9] P——— ... P 4}
Since w4 is accepting, s, € F. By Lemma 1 3, 351,553,...,5, is a partial run

of A where forall 0 < i < n 5 = ({(B1,%)) and for all 0 < i < n the edge
(Sia 5i+1) is labeied by (0—11-{—17 U;‘2+17 T(’Y—il)a T(7'i2):$zl+17m12+1)' By definition of Fa
(sn, (81, B2) € F. Hence, by procedure Project, 5,51, 53, -..,5, is a partial run
of A where for all 0 < i < m the edge (s;, si11) is labeled by (0F1s T(fy,l), Ti,)-
By definition of R the run 7 described below is a run of the NFA R on w; :
U%vT('Yé) N UévT("Vll) N UévT(Vzl) ‘Ti,aT('Y;,)

Tai G § | & | el &

By definition of F', 5, € F. Hence by definition of R (the subset construction)
there exists $g, 51,82 ...8, such that §; 3 §; such that % described below is a

run of the DFA R on wy :

_ e Ty en T e T(n) o T(mon)
T So I s1 | S | . BVP—/—/—— s,

By definition of FN’, s, €F. By definition of A the following is an accepting run
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of A on wr:

01/11 Ul/zl 01 /11
~ 1 1/%1 ~ 1 | 2/T2 | Ini/%a — 1
T (SOa’YO) (81,7m) see (Sna’Yn)

Hence wy € L(A). m|

Lemma 3. If w is in L(A), then w is in L(A)}1.

Proof. Let wy = olol...cl be a word in £(A). Then, the run 7 of A on wy

described below, is accepting, .i.e, s, € F.

1.1 1.1 1 1
o1/zy o3 /T3 O/ Tn

75 (80,7%) F——— (i,) | . (8m>7m)

Since % is M-consistent with respect to the identity relation, there exists a run
m of A’s characteristic DFA R and a run my of M, both on w; as follows.

1 1
o T e ) e Tn) o Tlm1)
T~ S | s1 | S | cie P—" 5,
R
R . . T e
™Y b o v cii F—— 1}

By correctness of the subset construction, there exists a run 7 of the NFA R as
follows, where for all 4, 5; € §; and s;, € F.

1 1
LoenLTe) e Tm) e T(n) oy T(M=1)
TRyt So | $1 | $y | ee P/ s,

By definition of R, there exists z1,23, ...,z such that the following is a partial

run in A and s, € F.

1 1 1
A Teb/el aATeh/E | ahTahEl b TRAL/eh
mi: So | s1 f §y . B/ s,
By definition of A there exists 0%,0%2,...,02, 22,22,...,22 and 22,22,...,22,

such that the following is a partial run of A.

flaes ot 3] v
1 1 1 72] *2 o n] zn Tn
7T:4\ IS P S1 B ED] . e | P Sn

Hence, there exists g, s1, ..., 8, such that the following is a partial run of A where
$n € F and ¢ is defined as L and 4? = z2(72 ).

(23] et/ e (o8] =2/
A - (30773) (3177%) (32773) (Sn,’)’ﬁ)

Therefore, the run of A on [41] where wy = 0}03...072 is accepting. Hence w;

isin L(A)};. O
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The last two lemmas provide a proof for the theorem.

Proofs of Section 6

Claim. Let My = LN Ry for some languages L and Ry, and let R be a bi-
language.

— Define M1 = ((M; x Z*) N R)|». If L is left preserved by the bi-language
R then for all 4 > 1 the languages M; can be given by M; = L N R; where
R, = ((Ri—l X E*) n R)U@

— Define M1 = ((Z* x M;)NR){2. If L is right preserved by the bi-language
R then for all 4 > 1 the languages M, can be given by M; = L N R; where
R, = ((E* X R,;l) n R)U«Q

Proof. We prove the claim for the first case, the second case is symmetric. Let
My = LN Ry for some languages L and Ry and L = ((L x X*) N R) 2. We
prove that M; = LN R; where R; = ((R;_1 x X*) N R){2 by induction on ¢. For
the base case where ¢ = 0 the claim trivially holds. For the inductive step, we
assume M; = LN R; where R, = ((Ri—1 X 2*) N R)|> and compute M,;;1.

Miyi = ((Mix Z%) N R)s

by definition of M;

= (((LOR,) X E*)QR)UQ
by induction hypothesis M; = LN R;

= ((LxXZ*)N(R; x Z*))NR)2
by distribution of x with respect to N

= (((L X E*)QR)H((R, X 2*)ﬂR))Ur2
by distribution of N

= (L xZ*)NnR)2) N (((R: x Z*) N R)2)
by distribution of{} with respect to N

= Ln((RixX*)NR).
since L = (L x X* N R){2

= LNRiy
by induction hyp. R;y1 = (R; X X* N R){»

Claim. Let (D, ¢) be a verification problem where D = (X, x, ©, p).

— If ®=LN Ry and L is left-preserved by p and p is regular, then the verifi-
cation problem (D, ¢) can be solved by applying the procedure for forward
model checking given in the figure of Claim 6.

— If =¢ = LN Ry and L is right-preserved by p and p is regular, then the verifi-
cation problem (D, ¢) can be solved by applying the procedure for backward
model checking given in the figure of Claim 6.

Proof. Corollary of the claim above. O
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