MSCS DEGREE REQUIREMENTS (36 credits with concentration) last revised (02/06/2025)

First Name: Last Na	ame:	N number	:	NYU Email:
Required: 36 credits with concentration in	Artificial Intelligence C	<u>DR</u> Systems/Secur	rity (effectiv	ve Fall 2024)
• 21 credits – Standard graduate CS cla	ssroom-based courses			
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
• 6 credits – related electives from CS,	Math and Data Science	classroom-based	courses (3 o	r 6 credits)
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course				
Course				
Requirement A: A student must take the	three foundational cours	ses and maintain a	a GPA of 2.	667 or higher in the courses:
CSCI-GA 1170-001 Fundamental Alg	gorithms Semester	Grade	Credits:	Notes
CSCI-GA 2110-001 Programming La	nguages Semester	Grade	Credits:	Notes
CSCI-GA 2250-001 Operating System	ns Semester	Grade	Credits:	Notes
Requirement B: 9 credits are for concent page 2 for the course list). A student must c concentration, students are <u>required</u> to take	omplete ONE concentrati	on study (Artificia	al Intelligenc	e OR Systems/Security). For AI
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	

Requirement C: 3 credits A student must complete a concentration Capstone course with the grade of B (3.0) or better (see page 2 for the course list)

Course _____ Semester ____ Grade ___ Credits: ____

Artificial Intelligence

- Advanced Computer Vision
- Advanced Machine Learning
- Advanced Topics in Natural Language Processing
- Artificial Intelligence
- Bayesian Machine Learning
- ✤ Big Data and ML Systems
- Big Data Science
- Big Data: Large Scale Machine Learning
- Cloud and Machine Learning
- Computer Vision
- Computer Vision for Science and Engineering
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- Data Science for Health
- Deep Generative Models
- Deep Learning
- Deep Decision Making & Reinforcement Learning
- Efficient AI and Hardware Accelerator Design
- Embodied Learning and Vision
- Emerging Topics in Natural Language Processing
- Fair and Ethical Machine Learning for Social Good
- Foundations of Deep Learning Theory

Artificial Intelligence (Capstone)

- Big Data and ML Systems
- Cloud and Machine Learning
- Deep Decision Making & Reinforcement Learning
- Deep Learning
- Embodied Learning and Vision

Systems and Security

- Advanced Database Systems
- ✤ Applied Cryptography and Network Security
- Big Data Application Development
- Big Data Realtime & Big Data Analytics
- Blockchain and Its Applications
- Cryptocurrencies and Decentralized Ledgers
- Data Communications and Networks
- Database Systems
- Distributed Systems

Systems and Security (Capstone)

- Advanced Database Systems
- Big Data and ML Systems
- Cloud and Machine Learning
- Cloud Computing
- Compiler Construction
- Cryptography of Blockchains
- Distributed Systems
- Graphics Processing Units (GPUs): Architecture & Programming

- Foundations of Machine Learning
- Heuristic Problem Solving
- High Performance Computing for Machine Learning
- High Performance Machine Learning
- Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- Learning with Large Language and Vision Models
- ✤ Logic in Computer Science
- ✤ Machine Learning
- Machine Learning for Healthcare
- ✤ Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- Protein Design
- ✤ Responsible Data Science
- Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
- Graphics Processing Units (GPUs): Architecture and Programming
- High Performance Machine Learning
- ✤ Multicore Processors: Architecture & Programming
- Info Tech Projects (approved on a case-by-case basis; requires DGS approval)
- Efficient AI and Hardware Accelerator Design
- ✤ Graphics Processing Units (GPUs): Architecture and Programming
- High Performance Computing
- Information and Communication Technology for Developing Countries
- Interactive Proofs
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Programming Parallel Algorithms
- Recent Developments in Algorithm Design
- ✤ High Performance Computing
- Multicore Processors: Architecture & Programming
- Networks & Mobile Systems
- Software Engineering
- Networks & Mobile Systems
- Software Engineering
- Technologies of Finance
- Virtual Reality