MSCS DEGREE REQUIREMENTS FORM (36 credits with concentration) last revised (06/26/2024)

First Name:	me: Last Name:		N number:		NYU Email:	
Required: 36 credits wi	th concentration in Artificia	al Intelligence <u>(</u>	OR Systems/Sec	curity (effect	ive Fall 2024)	
• 21 credits – Standa	rd graduate CS classroom-l	based courses				
Course		_ Semester	Grade_	Credits	::	
Course		_ Semester	Grade_	Credits	::	
Course		Semester	Grade_	Credits	::	
Course		_ Semester	Grade_	Credits	::	
Course		_ Semester	Grade_	Credits	::	
Course		Semester	Grade_	Credits	::	
• 6 credits – related 6	electives from CS, Math and	d Data Science	classroom-base	d courses (3	or 6 credits)	
Course		_ Semester	Grade_	Credits	::	
Course		_Semester	Grade	Credits	:	
credits (9 credits m	ax) - see page 2 for the cou	rse list; MS TheSemester	esis does not ful Grade	Ifill the Caps Credits	:	
Course		_ Semester	Grade_	Credits	::	
Course		_ Semester	Grade_	Credits	::	
Requirement A: A stu	dent must take the three for	ındational cours	ses and maintain	n a GPA of 2	2.667 or higher in the courses:	
CSCI-GA 1170-00	1 Fundamental Algorithms	Semester	Grade	_ Credits:	_Notes	
CSCI-GA 2110-00	1 Programming Languages	Semester	Grade	_ Credits:	Notes	
CSCI-GA 2250-00	1 Operating Systems	Semester	Grade	_ Credits:	_Notes	
	dits are for concentration of the course list). A student					
Course		_ Semester	Grade_	Credits	::	
Course		_ Semester	Grade_	Credits	::	
Course		Semester	Grade_	Credits	:	
Requirement C: 3 cree for the course list)	dits A student must comple	ete a concentrati	on Capstone co	urse with the	e grade of B (3.0) or better (se	e page
Course		Samastar	Grade	Cradita	•	

Artificial Intelligence

- ❖ Advanced Computer Vision
- Advanced Machine Learning
- ❖ Advanced Topics in Natural Language Processing
- Artificial Intelligence
- ❖ Bayesian Machine Learning
- ❖ Big Data and ML Systems
- ❖ Big Data Science
- ❖ Big Data: Large Scale Machine Learning
- Cloud and Machine Learning
- Computer Vision
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- ❖ Data Science for Health
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- ❖ Fair and Ethical Machine Learning for Social Good
- Foundations of Deep Learning Theory
- Foundations of Machine Learning
- ❖ Heuristic Problem Solving

Artificial Intelligence (Capstone)

- ❖ Big Data and ML Systems
- Cloud and Machine Learning
- Deep Reinforcement Learning
- * High Performance Machine Learning
- **Systems and Security**
- Advanced Database Systems
- * Applied Cryptography and Network Security
- ❖ Big Data Application Development
- ❖ Big Data Realtime & Big Data Analytics
- Blockchain and Its Applications
- Cryptocurrencies and Decentralized Ledgers
- Database Systems
- Systems and Security (Capstone)
- Advanced Database Systems
- ❖ Big Data and ML Systems
- Cloud and Machine Learning
- Cloud Computing
- Compiler Construction
- Distributed Systems
- ❖ Graphics Processing Units (GPUs): Architecture & Programming
- High Performance Computing
- ❖ Multicore Processors: Architecture & Programming
- Networks & Mobile Systems
- Software Engineering
- Networks & Mobile Systems
- ❖ Software Engineering
- Virtual Reality

- High Performance Computing for Machine Learning
- ❖ High Performance Machine Learning
- Integrating Machine Learning to Computer Vision
- ❖ Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- ❖ Learning with Large Language and Vision Models
- Logic in Computer Science
- Machine Learning
- Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- * Responsible Data Science
- * Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
- Graphics Processing Units (GPUs): Architecture and Programming
- Multicore Processors: Architecture & Programming
- Info Tech Projects (approved on a case-by-case basis; requires DGS approval)
- Distributed Systems
- Graphics Processing Units (GPUs): Architecture and Programming
- High Performance Computing
- ❖ Information and Communication Technology for Developing Countries
- Introduction to Agent-Based Modeling
- Introduction to Cryptography