MSCS DEGREE REQUIREMENTS FORM (before Fall 2024) last revised (07/18/2024)

First N	Name:	Last Name:		N number:_		_ NYU Email:
Requir	red: 36 credits of a	approved coursework				
• 21	21 credits - standard graduate CS classroom-based courses.					
Co	ourse		_ Semester	Grade_	Credits:	
Co	ourse		_ Semester	Grade_	Credits:	
Co	ourse		_Semester	Grade_	Credits:	
Co	ourse		_Semester	Grade_	Credits:	
Co	ourse		_Semester	Grade_	Credits:	
Co	ourse		_Semester	Grade_	Credits:	
Co	ourse		_Semester	Grade_	Credits:	
		ge 2 under Requirement C)		Grade_	Credits:	
Co	ourse		Semester	Grade	Credits:	
Co	ourse		Semester	Grade	Credits:	
Co	ourse		_ Semester	Grade	Credits:	
Co	ourse		_ Semester	Grade_	Credits:	
Requi	rement A: A stud	lent must take the three fou	ndational cour	rses and maintain	n a GPA of 2.0	667 or better in the courses:
CS	SCI-GA 1170-001	Fundamental Algorithms	Semester	Grade	_ Credits:	Notes
CS	SCI-GA 2110-001	Programming Languages	Semester	Grade	_ Credits:	Notes
CS	SCI-GA 2250-001	Operating Systems	Semester	Grade	_ Credits:	Notes
Requi	rement B: A stud	lent must pass ONE course	in TWO of th	ne following four	r designated a	pplication areas
Co	ourse		_ Semester	Grade_	Credits:	
Co	ourse		_ Semester	Grade_	Credits:	
list). A						.0) or better (see page 2 for the lete a master's thesis or a capstor
Co	ourse		Semester	Grade	Credits:	

Graphics

- **❖** Advanced Computer Graphics
- ❖ Advanced Computer Vision
- Computational Geometry
- Computer Graphics
- **❖** Computer Vision
- Computer Vision for Science and Engineering
- Geometric Modeling

Computation for Science and Society

- ❖ Applied Cryptography and Network Security
- Bioinformatics and Genomics
- Blockchain and Its Applications
- Convex and Nonsmooth Optimization
- Cryptocurrencies and Decentralized Ledgers
- ❖ Data Analytics and Visualization in Healthcare
- Data Science for Health
- Financial Software Projects
- High Performance Computing
- Immersed Boundary Method
- Information and Communication Technology for Developing Countries
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Linear Programming
- Machine Learning for Healthcare
- Monte Carlo Methods

Intelligent Systems

- Advanced Computer Vision
- Advanced Machine Learning
- ❖ Advanced Topics in Natural Language Processing
- Artificial Intelligence
- **❖** Bayesian Machine Learning
- ❖ Big Data: Large Scale Machine Learning
- ❖ Big Data and ML Systems
- ❖ Big Data Science
- Cloud and Machine Learning
- Computer Vision
- Computer Vision for Science and Engineering
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- Foundations of Deep Learning Theory
- Foundations of Machine Learning
- Heuristic Problem Solving
- High Performance Computing for Machine Learning

Databases

- Advanced Database Systems
- Big Data
- Database Systems

Capstone

- ❖ Advanced Computer Graphics
- Advanced Database Systems
- Big Data and ML Systems
- Cloud and Machine Learning
- Cloud Computing
- Compiler Construction
- Deep Reinforcement Learning
- Distributed Systems
- ❖ Geometric Modeling

- Graphics Processing Units (GPUs): Architecture and Programming
- Integrating Machine Learning to Computer Vision
- Introduction to Computer Vision
- ❖ Learning with Large Language and Vision Models
- Social Multiplayer Games
- Virtual Reality
- Vision Meets Machine Learning
- Music Software Projects
- Nonlinear Optimization
- Numerical Methods I
- Numerical Methods II
- Numerical Optimization
- Practical Computer Security
- * Randomized Numerical Linear Algebra
- Responsible Data Science
- Scientific Computing
- Security and Privacy
- Speech Recognition
- Social Networks
- ❖ Stochastic modeling and uncertainty quantification in complex systems
- Technologies for Finance
- Topics in Digital Media
- Topics in Numerical Analysis
- ❖ Values Embodied in Information & Communications Technology
- High Performance Machine Learning
- ❖ Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- ❖ Introduction to Deep Learning Systems
- Introduction to Machine Learning
- ❖ Learning with Large Language and Vision Models
- Logic in Computer Science
- Machine Learning
- Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- * Responsible Data Science
- Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
- Distributed Systems
- Realtime & Big Data Analytics
- ❖ Big Data Application Development
- ❖ Graphics Processing Units (GPUs): Architecture & Programming
- High Performance Computing
- ❖ High Performance Machine Learning
- ❖ Info Tech Projects
- Multicore Processors: Architecture & Programming
- Networks & Mobile Systems
- Software Engineering
- Virtual Reality