MSCS DEGREE REQUIREMENTS FORM (30 CREDITS) last revised (06/12/2024)

First Name:		Last Name:	N number:		NYU Email:	
Re	equired: 30 credits	with Capstone course (effective	ve Fall 2024)			
•	21 credits – Stand	dard graduate CS classroom-b	ased courses			
	Course		_Semester	Grade	Credits:	
	Course		_Semester	Grade	Credits:	
	Course		Semester	Grade	Credits:	
	Course		_Semester	Grade	Credits:	
	Course		Semester	Grade	Credits:	
	Course		_Semester	Grade	Credits:	
•		d electives from CS, Math and			`	,
•		dits - credits transferred from . At most 3 credits of external roval.				
	Course		_Semester	Grade	Credits:	
	equirement A: A se courses:	student must take the three fou	ındational cours	ses and maintain	a GPA of 2.	667 or higher in
	CSCI-GA 1170-0	001 Fundamental Algorithms	Semester	Grade	_ Credits:	_Notes
	CSCI-GA 2110-0	001 Programming Languages	Semester	Grade	_ Credits:	_Notes
	CSCI-GA 2250-0	001 Operating Systems	Semester	Grade	_ Credits:	_Notes
	equirement B: A s t of application are	student must pass ONE of the eas)	following four	designated appli	cation areas	(see page 2 for the
	Course		Semester	Grade	Credits:	
Re	equirement C: A s	student must complete a Capst	one project cou	arse (see page 2 t	for the list of	Capstone courses)
	Course		Semester	Grade	Credits:	

Graphics

- ❖ Advanced Computer Graphics
- Advanced Computer Vision
- Computational Geometry
- Computer Graphics
- Computer Vision
- Computer Vision for Science and Engineering
- Geometric Modeling

Computation for Science and Society

- Applied Cryptography and Network Security
- Bioinformatics and Genomics
- ❖ Blockchain and Its Applications
- Convex and Nonsmooth Optimization
- Cryptocurrencies and Decentralized Ledgers
- ❖ Data Analytics and Visualization in Healthcare
- Data Science for Health
- Financial Software Projects for Developing Countries
- High Performance Computing
- Immersed Boundary Method
- Information and Communication Technology
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Linear Programming
- Machine Learning for Healthcare
- Monte Carlo Methods

Artificial Intelligence

- Advanced Computer Vision
- ❖ Advanced Machine Learning
- ❖ Advanced Topics in Natural Language Processing
- Artificial Intelligence
- * Bayesian Machine Learning
- Big Data and ML Systems
- Big Data Science
- ❖ Big Data: Large Scale Machine Learning
- Cloud and Machine Learning
- Computer Vision
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- ❖ Data Science for Health
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- ❖ Foundations of Deep Learning Theory
- Foundations of Machine Learning
- Heuristic Problem Solving
- ❖ High Performance Computing for Machine Learning

Databases

- Advanced Database Systems
- Big Data
- Database Systems

Capstone

- Advanced Computer Graphics
- Advanced Database Systems
- ❖ Big Data and ML Systems
- Cloud and Machine Learning
- Cloud Computing
- Compiler Construction
- Deep Reinforcement Learning
- Distributed Systems

- Graphics Processing Units (GPUs): Architecture and Programming
- ❖ Integrating Machine Learning to Computer Vision
- Introduction to Computer Vision
- Learning with Large Language and Vision Models
- Social Multiplayer Games
- Virtual Reality
- Vision Meets Machine Learning
- Music Software Projects
- Nonlinear Optimization
- Numerical Methods I
- Numerical Methods II
- Numerical Optimization
- Practical Computer Security
- Randomized Numerical Linear Algebra
- * Responsible Data Science
- Scientific Computing
- Security and Privacy
- Social Networks
- Speech Recognition
- ❖ Stochastic modeling and uncertainty quantification in complex systems
- * Technologies for Finance
- Topics in Digital Media
- Topics in Numerical Analysis
- ❖ Values Embodied in Information & Communications Technology
- ❖ High Performance Machine Learning
- ❖ Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- Learning with Large Language and Vision Models
- Logic in Computer Science
- Machine Learning
- Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- * Responsible Data Science
- Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
- Distributed Systems
- Realtime & Big Data Analytics
- ❖ Big Data Application Development
- Geometric Modeling
- Graphics Processing Units (GPUs): Architecture & Programming
- High Performance Computing
- High Performance Machine Learning
- Info Tech Projects
- Multicore Processors: Architecture & Programming
- Virtual Reality