MSCS DEGREE REQUII First Name: Last Name:				
Required: 36 credits of approved coursework				
• 21 credits - standard graduate CS classroom-ba			~ 11	
Course				
Course	_Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	_Semester	Grade	Credits:	
Course	_Semester	Grade	Credits:	
Course	_Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
 Remaining 9 credits in any of above or: credits and relevant graduate courses. At most 6 credit external interractions require DCS emproval. 	transferred from	n graduate stud	ly in CS; exte	rnal internship;
external internships require DGS approval. Course	_Semester	Grade	Credits:	
Course	Semester	Grade	Credits:	
Course	_Semester	Grade	Credits:	
Requirement A: A student must take the three fou courses:	undational cours	es and maintair	n a GPA of 2.	667 or better in th
CSCI-GA 1170-001 Fundamental Algorithms	Semester	Grade	Credits:	_Placed Out
CSCI-GA 2110-001 Programming Languages	Semester	Grade	Credits:	_Placed Out
CSCI-GA 2250-001 Operating Systems	Semester	Grade	_Credits:	_Placed Out
Dequinement D. A student must see ONE	e in TWO of the	e following four	designated a	pplication areas
Requirement B: A student must pass ONE course		e		
Course		-	Credits:	

Graphics

- ✤ Advanced Computer Graphics
- ✤ Advanced Computer Vision
- Computational Geometry
- Computer Graphics
- Computer Vision
- Computer Vision for Science and Engineering
- Geometric Modeling

Computation for Science and Society

- Applied Cryptography and Network Security
- Bioinformatics and Genomics
- Blockchain and Its Applications
- ✤ Convex and Nonsmooth Optimization
- Cryptocurrencies and Decentralized Ledgers
- Data Analytics and Visualization in Healthcare
- Data Science for Health
- Financial Software Projects
- High Performance Computing
- Immersed Boundary Method
- Information and Communication Technology for Developing Countries
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Linear Programming
- Machine Learning for Healthcare
- Monte Carlo Methods

Intelligent Systems

- Advanced Computer Vision
- Advanced Machine Learning
- Advanced Topics in Natural Language Processing
- Artificial Intelligence
- Bayesian Machine Learning
- ✤ Big Data: Large Scale Machine Learning
- Big Data and ML Systems
- Big Data Science
- Cloud and Machine Learning
- Computer Vision
- Computer Vision for Science and Engineering
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- Foundations of Deep Learning Theory
- Foundations of Machine Learning
- ✤ Heuristic Problem Solving
- High Performance Computing for Machine Learning

Databases

- Advanced Database Systems
- Big Data
- Database Systems

- Graphics Processing Units (GPUs): Architecture and Programming
- Integrating Machine Learning to Computer Vision
- Introduction to Computer Vision
- Learning with Large Language and Vision Models
- Social Multiplayer Games
- Virtual Reality
- Vision Meets Machine Learning
- Music Software Projects
- Nonlinear Optimization
- Numerical Methods I
- Numerical Methods II
- Numerical Optimization
- Practical Computer Security
- Randomized Numerical Linear Algebra
- Responsible Data Science
- ✤ Scientific Computing
- Security and Privacy
- Speech Recognition
- Social Networks
- ✤ Stochastic modeling and uncertainty quantification in complex systems
- ✤ Technologies for Finance
- Topics in Digital Media
- Topics in Numerical Analysis
- ✤ Values Embodied in Information & Communications Technology
 - High Performance Machine Learning
- Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- ✤ Learning with Large Language and Vision Models
- Logic in Computer Science
- ✤ Machine Learning
- ✤ Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- Responsible Data Science
- Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
 - Distributed Systems

* High Performance Computing

* Networks & Mobile Systems

* Info Tech Projects

* Virtual Reality

* Software Engineering

* High Performance Machine Learning

- ✤ Realtime & Big Data Analytics
- Big Data Application Development

* Multicore Processors: Architecture & Programming

* Graphics Processing Units (GPUs): Architecture & Programming

Requirement C: A student must complete a designated capstone course with the grade of B (3.0) or better. Alternatively, subject to requirements and prior approval of the DGS, a student may complete a master's thesis or a capstone advanced lab. Course Semester Grade Credits:

* Advanced Computer Graphics

* Cloud and Machine Learning

* Deep Reinforcement Learning

* Advanced Database Systems
* Big Data and ML Systems

Cloud ComputingCompiler Construction

* Distributed Systems