Required: 36 credits of approved coursework

- **21** credits - standard graduate CS classroom-based courses.

  Course ________________________________ Semester _______ Grade _____ Credits: ____
  Course ________________________________ Semester _______ Grade _____ Credits: ____

- **6** credits - standard graduate CS, Math and Data Science classroom-based courses; independent study; MS thesis (no external internships) Independent study and master’s thesis require DGS approval.

  Course ________________________________ Semester _______ Grade _____ Credits: ____
  Course ________________________________ Semester _______ Grade _____ Credits: ____

- Remaining **9** credits in any of above or: credits transferred from graduate study in CS; external internship; and relevant graduate courses. At most 6 credits of external internship. Relevant graduate courses and external internships require DGS approval.

  Course ________________________________ Semester _______ Grade _____ Credits: ____
  Course ________________________________ Semester _______ Grade _____ Credits: ____

**Requirement A:** A student must take the three foundational courses and maintain a GPA of 2.667 or better in the courses:

- CSCI-GA 1170-001 Fundamental Algorithms  Semester_______ Grade_____ Credits: ___Placed Out ___
- CSCI-GA 2110-001 Programming Languages  Semester_______ Grade_____ Credits: ___Placed Out ___
- CSCI-GA 2250-001 Operating Systems  Semester_______ Grade_____ Credits: ___Placed Out ___

**Requirement B:** A student must pass **ONE** course in **TWO** of the following four designated application areas

  Course ________________________________ Semester _______ Grade _____ Credits: ____
  Course ________________________________ Semester _______ Grade _____ Credits: ____
Graphics
- Advanced Computer Graphics
- Advanced Computer Vision
- Computational Geometry
- Computer Graphics
- Computer Vision
- Computer Vision for Science and Engineering
- Geometric Modeling
- Graphics Processing Units (GPUs): Architecture and Programming
- Integrating Machine Learning to Computer Vision
- Introduction to Computer Vision
- Learning with Large Language and Vision Models
- Social Multiplayer Games
- Virtual Reality
- Vision Meets Machine Learning

Computation for Science and Society
- Applied Cryptography and Network Security
- Bioinformatics and Genomics
- Blockchain and Its Applications
- Convex and Nonsmooth Optimization
- Cryptocurrencies and Decentralized Ledgers
- Data Analytics and Visualization in Healthcare
- Data Science for Health
- Financial Software Projects
- High Performance Computing
- Immersed Boundary Method
- Information and Communication Technology for Developing Countries
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Linear Programming
- Machine Learning for Healthcare
- Monte Carlo Methods
- Music Software Projects
- Nonlinear Optimization
- Numerical Methods I
- Numerical Methods II
- Numerical Optimization
- Practical Computer Security
- Randomized Numerical Linear Algebra
- Responsible Data Science
- Scientific Computing
- Security and Privacy
- Speech Recognition
- Social Networks
- Stochastic modeling and uncertainty quantification in complex systems
- Technologies for Finance
- Topics in Digital Media
- Topics in Numerical Analysis
- Values Embodied in Information & Communications Technology

Intelligent Systems
- Advanced Computer Vision
- Advanced Machine Learning
- Advanced Topics in Natural Language Processing
- Artificial Intelligence
- Bayesian Machine Learning
- Big Data: Large Scale Machine Learning
- Big Data and ML Systems
- Big Data Science
- Cloud and Machine Learning
- Computer Vision
- Computer Vision for Science and Engineering
- Conceptual Gaps in Modern Machine Learning
- Data Analytics and Visualization in Healthcare
- Data Mining
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- Foundations of Deep Learning Theory
- Foundations of Machine Learning
- Heuristic Problem Solving
- High Performance Computing for Machine Learning
- High Performance Machine Learning
- Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- Learning with Large Language and Vision Models
- Logic in Computer Science
- Machine Learning
- Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- Responsible Data Science
- Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines

Databases
- Advanced Database Systems
- Big Data
- Database Systems
- Distributed Systems
- Realtime & Big Data Analytics
- Big Data Application Development

Requirement C: A student must complete a designated capstone course with the grade of B (3.0) or better. Alternatively, subject to requirements and prior approval of the DGS, a student may complete a master’s thesis or a capstone advanced lab.

Course ________________________________ Semester_______ Grade_____ Credits: ____

* Advanced Computer Graphics
* Advanced Database Systems
* Big Data and ML Systems
* Cloud and Machine Learning
* Compiler Construction
* Deep Reinforcement Learning
* Distributed Systems
* Graphics Processing Units (GPUs): Architecture & Programming
* High Performance Computing
* High Performance Machine Learning
* Info Tech Projects
* Multicore Processors: Architecture & Programming
* Networks & Mobile Systems
* Software Engineering
* Virtual Reality