MSCS DEGREE REQUIREMENTS FORM last revised (11/18/2021)

First Name:	Last Name:		N numbei	:	
Required: 36 credits of	approved coursework				
• 21 credits - standard	l graduate CS classroom-ba	ised courses.			
Course		_Semester	Grade	Credits: _	
Course		_Semester	Grade	Credits: _	
Course		_Semester	Grade	Credits: _	
Course		_Semester	Grade	Credits: _	
Course		_Semester	Grade	Credits: _	
Course		_ Semester	Grade	Credits: _	
Course		_Semester	Grade	Credits: _	
MS thesis (no extern	graduate CS, Math and Dat nal internships) Independen	nt study and mas	ster's thesis requ	ire DGS appr	oval.
and relevant graduate external internships	s in any of above or: credits te courses. At most 6 credit require DGS approval.	ts of external in	ternship. Relevai	nt graduate co	ourses and
Course		_ Semester	Grade	Credits: _	
Course		Semester	Grade	Credits: _	
Requirement A: A studenthe courses:	dent must take the three for	undational cours	ses and maintain	a GPA of 2.6	67 or better in
CSCI-GA 1170-001	Fundamental Algorithms	Semester	Grade	_ Credits:	Placed Out
CSCI-GA 2110-001	Programming Languages	Semester	Grade	_ Credits:	Placed Out
CSCI-GA 2250-001	Operating Systems	Semester	Grade	_ Credits:	Placed Out
Requirement B: A stud	dent must pass ONE course	e in TWO of the	e following four	designated ap	oplication areas
Course		_Semester	Grade	Credits: _	
Course		Semester	Grade	Credits:	

Graphics

- ❖ Advanced Computer Graphics
- ❖ Advanced Computer Vision
- Computational Geometry
- Computer Graphics
- Computer Vision

Computation for Science and Society

- ❖ Applied Cryptography and Network Security
- Bioinformatics and Genomics
- Blockchain and Its Applications
- Convex and Nonsmooth Optimization
- Cryptocurrencies and Decentralized Ledgers
- Data Science for Health
- Financial Software Projects
- **❖** High Performance Computing
- Immersed Boundary Method
- ❖ Information and Communication Technology for Developing Countries
- Introduction to Agent-Based Modeling
- Introduction to Cryptography
- Linear Programming
- Machine Learning for Healthcare
- Monte Carlo Methods

Intelligent Systems

- ❖ Advanced Computer Vision
- ❖ Advanced Machine Learning
- ❖ Advanced Topics in Natural Language Processing
- Artificial Intelligence
- ❖ Bayesian Machine Learning
- ❖ Big Data: Large Scale Machine Learning
- ❖ Big Data and ML Systems
- ❖ Big Data Science
- Cloud and Machine Learning
- **❖** Computer Vision
- Data Mining
- Deep Generative Models
- Deep Learning
- Deep Reinforcement Learning
- Foundations of Machine Learning
- Heuristic Problem Solving
- ❖ High Performance Computing for Machine Learning

Databases

- Advanced Database Systems
- ❖ Big Data
- Database Systems

- Geometric Modeling
- Graphics Processing Units (GPUs):
 Architecture and Programming
- ❖ Integrating Machine Learning to Computer Vision
- Social Multiplayer Games
- Vision Meets Machine Learning
- Music Software Projects
- Nonlinear Optimization
- Numerical Methods I
- Numerical Methods II
- Numerical Optimization
- Practical Computer Security
- Responsible Data Science
- ❖ Scientific Computing
- Security and Privacy
- Speech Recognition
- Social Networks
- Stochastic modeling and uncertainty quantification in complex systems
- * Topics in Digital Media
- * Topics in Numerical Analysis
- Values Embodied in Information
 & Communications Technology
- High Performance Machine Learning
- ❖ Integrating Machine Learning to Computer Vision
- Introduction to Data Science
- Introduction to Deep Learning Systems
- Introduction to Machine Learning
- Logic in Computer Science
- Machine Learning
- Machine Learning for Healthcare
- Mathematics of Deep Learning
- Natural Language Processing
- Predictive Analytics
- Probabilistic Graphical Models
- * Responsible Data Science
- * Robot Motion Planning
- Social Multiplayer Games
- Statistical Natural Language Processing
- Vision Meets Machine Learning
- Web Search Engines
- Distributed Systems
- * Realtime & Big Data Analytics

Requirement C: A student must complete a designated capstone course with the grade of B (3.0) or better. Alternatively, subject to requirements and prior approval of the DGS, a student may complete a master's thesis or a capstone advanced lab. Course

Semester Grade Credits:

* Advanced Computer Graphics

- * Advanced Database Systems
- * Big Data and ML Systems
- * Cloud and Machine Learning
- * Cloud Computing
- * Compiler Construction
- * Distributed Systems
- * Graphics Processing Units (GPUs): Architecture & Programming

- * High Performance Computing
- * High Performance Machine Learning
- * Info Tech Projects
- * Multicore Processors: Architecture & Programming
- * Networks & Mobile Systems
- * Software Engineering