
Polymorphic Type Reconstruction for

Garbage Collection without Tags

Benjamin Goldberg
Department of Computer Science

New York University

Michael Gloger
Department of Computer Science

Technical University of Darmstadt2

Abstract

Several papers ([Appe189],[Goldberg9 1]) have re-
cently claimed that garbage collection can be performed
on untagged data in the presence of ML-style type poly-
morphism. They rely on the ability to reconstruct the
type of any reachable object during garbage collection.
The bad news is that this is false – there can be reachable
objects in the program whose type cannot be determined
by the garbage collector. The good news is that tag-free
garbage collection can be performed anyway – any ob-
ject whose type cannot be determined by the collector is,
in fact, garbage. Such objects can be discarded by the
collector. This is the key result of this paper.

We present a type reconstruction algorithm that can
determine the type of any non-garbage object, Unfortu-
nately, the implementation of the tag-free collector for a
polymorphically typed language is difficult in ways that
were not described in the previous papers, and we ad-
dress some implementation issues as well. However, we
mainly describe how to perform type reconstruction dur-

1. Address: 251 Mercer Street New York NY 10012, USA.
emeil: goldberg@cs.nyu.edu, Phone: (212) 998-3495.
2. Address: D-61OODarmstad4 Magdalenenstr. llc, Germany.
emsil: gloger@pi.informatik, thdartnstadt.de.

This research has been supported, in par~ by the National Sci-
ence Foundation (#CCR-8909634) and DARPA (DARPA/
ONR #NOOO14-91-J1472).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

diract commercial advantage, the ACM copyright notice and the
title of the publication and ita date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1992 ACM LISP & F.P.-6/92/CA
a 1992 ACM 0-t39791-4S3-X/9210006 /0053 . ..el .5o

ing garbage collection and do not attempt to address
practical issues of the garbage collection process.

1. Introduction

Methods for performing garbage collection for

strongly typed languages in the absence of tagged data

have been around since the early days of ALGOL68.

These methods have been based on the ability to associ-

ate type information with the code of each procedure,

such that when the garbage collector is traversing a pro-

cedure’s activation record, the type information can be

extracted and used by the collector. This type informa-

tion can be encoded into type descriptors that are inter-

preted by the garbage collector, or encoded as garbage

collection routines that are called by the garbage collec-

tor. Since the type of each variable in a procedure defini-

tion is the same for all calls to the procedure and is

known at compile time, the compiler can produce the en-

coded type information for each procedure.

Recently, there have been several papers describing

tag-free garbage collection for polymotphically typed

languages such as Standard ML [MLH90]. In Standard

ML, the same function may be applied to arguments of

different types, and thus the types of the variables in dif-

ferent activation records for the same function may vary.

The solution to this problem was initially suggested in

[Appe189], in which it was noticed that the types of the

variables in the activation record of a function~may de-

pend on the types of the variables in f‘s caller, inf ’s call-

er’s caller, and so on. Thus, the type of the variables in

an activation record can be determined by examining the

type information associated with the other activation

53

records on the stack.

As a possible implementation of this scheme, [Gold-

berg91] described a method in which type information

was propagated up the stack (from the oldest frame to the

newest frame) in order to determine the types of each

variable in each activation record during garbage collec-

tion.

The details of the methods previously proposed are

described in the following section. Unfortunately, what

each of these methods failed to address is that there can

be objects that are reachable by the collector but whose

types cannot be reconstructed. While this would seem to

preclude tag-free garbage collection for polymorphic

languages, we show in this paper that this is not so. We

prove that tag-free garbage collection is possible for lan-

guages like Standard ML, and extend the methods de-

scribed in [Appe189] and [Goldberg91] to insure safe

garbage collection.

Some difficult implementation issues arise for poly-

morphic tag-free garbage collection that were not ad-

dressed in previous papers. We describe these problems,

and suggest some solutions in section 6.

Throughout this papr, however, we mainly concen-

trate on type reconstruction without being concerned

with the efficiency of the garbage collection process. We

felt that by ignoring some of the garbage collection de-

tails, we could present a clearer explanation of the type

reconstruction algorithm.

2. Related Work

The fundamental idea behind tag-free garbage col-

lection is that compile-time type information is retained

at run-time, but is not retained in the form of type tags.

When the garbage collector traverses a data structure, it

must be able to find the type information for that struc-

ture. How that type information is found, and how it is

represented, differs in previously published algorithms.

In 1970, Branquart and Lewi [BL70] described two

tag-free garbage collection algorithms for Algo168. The

first, called the interpretive method, associates a tem-

plate with each type that describes the structure of vari-

ables of that type. As the garbage collector traverses a

data structure, it also traverses the corresponding tem-

plate to determine the appropriate actions. The second

method, called the compiled method, associates a gar-

bage collection routine (which we shall refer to as a

gc_routine) with each type in the user program. The

gc_routine is executed when the garbage collector en-

counters a variable of the corresponding type. These gar-

bage collection routines are produced by the compiler

based on the types defined in the user’s program.

Both methods described by Branquart and Lewi rely

on a run-time table mapping stack locations representing

local variables to type templates (for the interpretive

method) or gc_routines (for the compiled method). This

table must be updated whenever a new local variable is

created. As the garbage collector traverses the stack, it

looks in the table to find the type template or garbage col-

lection routine for each variable. Because Algo168 dis-

courages heap allocation of structures bound to local

variables, the table seldom needs to be updated. Type

templates or gc_routines can be associated directly with

global variables, since their location is fixed during the

computation,

In 1975, Diane Britton [Britton75] extended both the

interpretive and compiled methods for Pascal. Instead of

a table mapping locations to type templates or gc_rou-

tines, each activation record in the stack contains an extra

pointer to a template or gc_routine corresponding to all

the variables in the activation record.

In 1989 Peyton Jones and Salkid [PJS89] described a

garbage collection scheme for their tagless graph reduc-

tion abstract machine. Because they implement a lazy

language, each data structure is contained in a closure

(that may represent an unevaluated value). The closure

contains a pointer to a table of appropriate routines for

the closure, including the garbage collection routines. It

is not clear how this method would be adapted for strict

languages like Standard ML.

Also in 1989, Andrew Appel [Appe189] outlined an

interpretive method in which the template describing the

variables in each activation record is accessed via the re-

turn pointer stored in the activation record, The beauty of

this method is that no run-time overhead is incurred dur-

ing normal execution. The only overhead occurs during

the garbage collection process itself. Appel also suggest-

54

ed how tag-free garbage collection could be extended for

polymorphically typed languages, and we discuss this in

section 3.

In 1991, Goldberg [Goldberg91] described a com-

piled method that, like Appel’s method, used the return

pointer of an activation record to find the gc_routine to

trace the variables in the activation remrd. The paper de-

scribed how common program analyses, like live vari-

able analysis, can optimize the garbage collection pro-

cess by not copying reachable structures that will not

subsequently be referenced. In [Goldberg92] an incre-

mental version of the tag-free garbage collection algo-

rithm is described.

Details of a tag-free garbage collection algorithm us-

ing the compiled method for a monomorphically typed

language can be found in [Goldberg9 1]. For our purpos-

es here, it is sufficient to describe it as follows:

● For each function~ in the program, the compiler gen-

erates a gc_routine for tracing the variables in an ac-

tivation record for~. Actually, since the number and

types of variables in the activation record at different

points of execution of the body of ~ may differ, sev-

eral gc_routines are generated – one for each function

call in~during which garbage collection could occur.

Garbage collection can only occur during a function

call, since the only way to allocate heap space is by

calling a primitive function such as cons (For ease

of presentation, we assume the compiler does not in-

line the code for cons. This assumption really has no

effect on the algorithms described here, though.).

“ In the code for~, the address of a gc_routine is asso-

ciated with each call instruction (at some offset with-

in the code segment). Thus the appropriate gc_rou-

tine for an activation record for~can be found by ex-

amining the return address of the next activation

record on the stack.

● If a variable in f‘s activation record is bound to a clo-

sure representing some function g, the type of g will

not necessarily reflect the types of the variables

stored in the closure. Therefore, associated with the

code for g (pointed to by the closure’s code pointer)

is a gc_routine for tracing the variables in the closure.

.

This gc_routine is found at some offset from the start

of g’s code.

When the garbage collector encounters an activation

record for~, it simply calls the gc_routine associated

with the current call instruction in~’s code.

Throughout this paper, we will assume that a simple two-

heap copying garbage collector is used. In this scheme,

objects are preserved by the collector by copying them

from the heap currently in use, labeled FROM space, to

the other heap, labeled TO space, When atl reachable ob-

jects have been copied to TO space, execution resumes

and the labels of the heaps are switched.

3. Polymorphism and Tag-Free GC

In a polymorphically typed language, different acti-

vation records for the same function may contain objects

of different types. Thus, the gc_routines for the function

(which all activation records for the function share) can-

not know the precise types of its variables.

Appel [Appe189] suggested a solution to this prob-

lem. The types of the arguments passed to a polymorphic

function determine the types of its parameters and local

variables. Thus, if the garbage collector cannot deter-

mine the type of a variable in a polymorphic function’s

activation record, then the calling procedure (found by

the return address and dynamic link) is examined to de-

termine the type of the arguments. If the calling proce-

dure is itself polymorphic, then its caller may have to be

examined, and so on. The traversing of the stack contin-

ues until the precise type of each variable in the current

activation record can be determined. Since the types of

the vai-iables in the outermost function in the program

(corresponding to the bottom activation record on the

stack) are known, each traversat of the stack will termi-

nate successfully.

Since Appel’s solution may require many traversals

of the stack, [Goldberg91] descriked a method requiring

a single traversal of the stack. The garbage collector

starts at the bottom of the stack by calling the gc_routine

of the outermost function. As each successive activation

record is encountered, its gc_routine is passed encoded

type information, in the form of templates or gc_rou-

55

tines, from the previous (i.e. caller’s) activation record’s

gc_rotttine. This encoded type information describes the

types of the arguments that were passed in the call that

created the activation record during execution. Each

gc_routine reconstructs the types of the local variables

from the encoded type information that was passed to it.

It then passes encoded type information to the next acti-

vation record’s gc_routine.

3.1. Closures - A Problem?

When a closure is created, either through a partial ap-

plication of a curried function or via the evaluation of a

lambda abstraction, a gc_routine must be associated with

the closure’s code pointer such that the gc_routine can

determine how the elements (i.e. captured free variables)

of the closure can be traced. In a monomorphic language,

this is easily done, since the type of each variable in the

closure is known at compile time.

In a polymorphic language, however, this becomes

more difficult. Different closures that are created by dif-

ferent partial applications of the same function or by

multiple evaluations of the same lambda abstraction will

all contain the same code pointer. Thus, they will have

the same gc_routine associated with them. But, the types

of the variables that are captured may differ from closure

to closure. This is because the variables in the curried

function or lambda abstraction can have different types

in different instantiation of the function or lambda ab-

straction.

The solution to this problem for an activation record

representing a function call was to parametrize the func-

tion’s gc_routine with encoded type information corre-

sponding to the types of the arguments in that particular

call to the function. However, this cannot be done for

closures, because the types of the arguments to the cur-

ried function, or the types of the free variables captured

in a lambda abstraction, can no longer be determined.

Consider the following program fragment:

let

funfx=

fn z => if length x = 1

then z+l

else z-1

valg= if... then f [1,2,3]

else f [[1,2], [3,4]]

in

g (hd [1])

end

where the type off is et list-+ int+int and the type of g

is irtt+int. Suppose that garbage collection occurs dur-

ing the construction of the list [1] in the result expres-

sion. The garbage collector would need to copy the clo-

sure representing g into TO space.

The problem lies in reconstructing the type of the

variable x captured in the closure. In f, the type of x is

u list and its actual type in the closure does not appear in

the type of g. The type of x in the closure depends on the

type of the argument to f. Unfortunately, the activation

record representing the call to the f that created the clo-

sure for g no longer exists, and there is no way, in gener-

al, to determine which application of f created the clo-

sure. Thus, the garbage collector will not be able to pass

the encoded type information corresponding to the types

of f‘s arguments to the gc_routine for g.

On closer inspection of the program, we appear to get

lucky. The gc_routine associated with the code for g

only knows that x is a list and knows nothing about the

type of x’s elements. But, notice that the vahtes of the el-

ements of the list are never needed! Only the length of x

is required, and finding the length of a list does not re-

quire examining its elements.

Thus, when the garbage collector encountetx the clo-

sure for g, it only needs to preserve the spine of x (i.e.

just the top-levels cons cells) in the closure. The ele-

ments can be discarded. In a copying collector, an object

is discarded simply by not copying it into TO space. No

type information about the object is required to nor copy

it.

In this case, the garbage collector was unable to re-

construct completely the type of a variable captured in a

closure, but luckily did not have to. The obvious next

question is “What happens if we aren’t so lucky, and

56

there are variables whose types cannot be reconstruct

by the garbage collector but whose values must be pre-

served?”. As it turns out, this case cannot occur. Anv ob-

Ject whose type cannot be reconstructed b v the gar-

collector is g@M@ In section 5, we prove this as-

sertion.

Before we continue, we need to remark that our as-

sertion is only true in the absence of the polymorphic

equality operation (and the whole notion of equality

types) provided in Standard ML. We rely on the fact that

any operator that needs to examine the values of its oper-

ands induces a concrete (i.e. monomorphic) type on the

operands. We discuss polymorphic equality (which is an

example of a dynamically overloaded operator) in sec-

tion 8, along with overloading supported by Haskell’s

type classes, and describe how tag-free garbage collec-

tion can still be supported. Thus, until section 8, assume

that ML has only monomorphic equality operators.

It is worth noting that tail recursion, like closures,

can lead to variables in activation records whose types

cannot be reconstructed, The following program illus-

trates this point.

let

fun fxy=length(x::y)

fungn=

if (n = 3)

then f 5 [4,3,2]

else f [1,2] [[3,4], [5,6]]

ingx

end

In this case, if g’s call to f is implemented as a tail

call, then g’s activation record will be overwritten with

f‘s activation record, and g’s gc_routine will not be ac-

cessible in order to indicate what types were passed to f.

Thus, if garbage collection occurs during the execution

of the :: (cons) in the body of f, no information about

the types of x and y can be propagated to f‘s gc_routine.

f‘s gc_routine knows only that y is a list of some type.

However, like the previous examples, the value of x and

the values of the elements of y are not nwded and do not

need to be copied into TO space,

For brevity, we will only discuss the loss of type in-

formation due to closures and will assume that the com-

piler does not generate tail calls. However, the tech-

niques described here are easily extended to handle a

tail-recursive implementation, and our claim that objects

whose types cannot be reconstructed are garbage still

holds.

4. Type Reconstruction during GC

This paper concentrates on how the garbage collector

reconstructs the types, if possible, of reachable struc-

tures. We do not consider in any detail what the garbage

collector does with a structure once its type has been re-

constructed, nor with the many implementation details

that the implementor of a garbage collector needs be con-

cerned with.

4.1. A Simple Example

Consider the following program fragment

let

fun fgx=fny => if g x then y

else O
valc=if . . . then

f (fn x => hd x = 1) [1,2]

else

f (fn x => x) true

in

C (hd [1])

end

where the type off is (o. + bool) + u + inr --+ Z’Wand

the type of c is int + int. Note that et, the type of the vari-

able x in f, appears in argument position in the type of

f‘s first formal parameter, g. If garbage collection oc-

curs during the construction of [1] in the result expres-

sion, the type of the variable x stored in the closure rep-

resenting c must be reconstructed. The solution in this

case (which we later generalize) is as follows:

● The gc_routine associated with c is the gc_routine,

which we will call f_gc, that is associated with any

closure that results from the application of f to two

arguments. The task off gc is to reconstruct the ac-.
tual type of x, corresponding to the type variable et in

the static type off.

● f_gc knows that the static type of g in the body of f

k (CX+ bool), where the type of x is also et, and that

this (et + bool) must unify with the type of the func-

tion bound tog. If this unification binds ct to a mono-

57

morphic type, then the actual type of x has been de-

termined.

. The type of the function bound to g is determined us-

ing the gc_routine accessible from g’s code pointer,

In the above example, g is either (f n x => hd x

= 1) or the identity function (f n x => x). Each

of these functions will have a different gc_routine as-

sociated with their closures. In order to unify (u +

bool) with the type of the function bound to g, g’s

gc_routine is passed (a + bool) as a parameter.

c If g is (f n x => hd x = 1), g’s gc_routine uni-

fies its static type, namely int list + bool with the

type passed to the gc_routine, namely (et+ bool). In

this case, the type variable u would be instantiated to

int list. Thus the type of the variable x in f is deter-

mined to be int list.

● In the case where g is the identity function, the

gc_routine for g unifies y+ y, the type of the identity

function, with (u + booZ), the argument to the

gc_routine. In this case, cc is bound to bool and thus

the type of x in f is determined to be bool.

In the following section, we present the algorithm for

type reconstruction at garbage collection time. The

above example illustrated a very simple type reconstruc-

tion, involving very little use of unification. A subse-

quent example shows that type reconstruction can be

substantially more difficult.

4.2. The Type Reconstruction Algorithm

The rest work of type reconstruction is done at gar-

bage collection time by calls to a function called rest

(for reconstruct). The calls to rest are made by the

gc_routines associated with activation records and clo-

sures.

rest is passed a unifier 0, mapping type variables to

their current reconstructions, a list u consisting of type

expressions that need to be unifk?d, a list tl (for type

list) consisting of variable-type pairs describing the

types of variables reachable from the current activation

record, and a list cl of closures whose gc_routines must

still be called. rest is defined as follows:

function rest (0, u, tlr cl) =

begin

e := unify (O, u);

(tl, cl) := Subst(e, tl, cl) ;

while (cl != []) do

(C, tc) := pop(cl) ;

(e, tl, cl) := C.gc(tc, e,tlrcl)

end do;

return (0, tl) ;
end;

where c. gc is the gc_routine associated with a closure

c.

The function subst (6, t 1, c1) applies the unifier

0 to the lists tl and cl, giving more precise type infor-

mation about variables and closures, In addition, if there

is any compnent of a variable in t 1 that had type a such

that 0 maps o! to a function type, then place all such com-

ponents are placed in cl, along with their types. For ex-

ample, if there was a variable L in t 1 whose type was cz

list and 0 mapped ct to II + ‘C2for some types ~1 and ~2,

then for each element e of L, (e,’tl --+ 72) would be placed

in cl.

We now describe how the gc_routines are generated

for tracing an activation record representing the call to a

function (rather than the closure representing a function).

As we mentioned previously, a different gc_routine will

be associated with each call instruction in the function

that could lead to garbage collection.

For a function f defined as

f(xl, . . .,Xn) = body

of type%l + ,,, -+ q ---n, the garbage collection routines

generated for f by the compiler are parameterized by the

types tl ... t. of the arguments to f and the result type

t. The code generated for each gc_routine does the fol-

lowing:

procedure f_gci (tl, ... ,tnr t) =

begin

tl := [(Vl, tvl), . . . (Vm, tvm)] ;

I*

e .—.-

U :=

P

each vj is a variable in the activation record

and tvj is its static type */

{};
[tl=c~, . . . tn=’cn, t=] ;

71 ...7. are the static types of f’s

58

parameters, with unique variable names

created to avoid name conflict */

cl := [(c~, tc~), (Cp, tcp) 1 ;

/* each ci is an object in f that is statically

recognizable as a closure and whose type is

inferred to be ki */

(e, tl) := rcst(ft, u,tl, cl);

trace_ar (current_ar, tl) ;

/* copyinto TOspace allthe reachable
structures from the activation record, using

tl to determine their types */

next_ar. gc((3(ta1) ,.. .,t3(tam) ,O(tr)) ;

/* c~lthegc_routine forthe nextactivation
record. The actual types of the arguments

passed to the callee, and its result, are

reconstructed by applying () to their

static types tal,.. .,%, and tr, resp, */

end;

When t race_ar encounters a structure whose type in

t 1 k a type variable u, it does not copy that structure

(see the discussion in section 6).

Now we need to describe what the gc_routine for a

closure c looks like. The gc_routine parameters are:

● tc – the type of c to the extent that it has been recon-

structed by the garbage collector

● El- mapping type variables to type expressions

“ tl - a list of variable-type pairs associating variables

with their reconstructed types,

● cl - a list of closure-type pairs representing those

closures whose gc_routines have yet to be called,

Here is what the compiler would generate for a gc_rou-

tine for a function c represented by a closure

function c_gc (tc, t3, tl, cl) =

begin

u := [(tc, t)l;

/*t is the static type of c */

tl :=[(v~, tv~), (Vm, tvm)] A tl;

/“ append (A) to tl the list of variables VI ...v~

captured in c, associated with their static

types tvl ...tvm */

cl := [(c~, tc~) . . . (cj, tcj)]A Cl

/* append to cl a list of closures c1 ... cj

captured in c along with their static types

tcl ... tcj */

(ertl) := rcst(El, u,tlr cl) ;

return (t3, tl)

end

When garbage collection occurs, all that is necessary is

to call the gc_routine of the bottommost activation

record. This activation record corresponds to the pro-

gram itself, and since it generally takes no parameters,

~e gc_routine is not parametrized as well.

In order to traverse the stack from the bottom activa-

tion to the top, an initial uaversal of the stack might be

necessary to reverse the dynamic chain. However, if the

gc_routine for each function knows precisely the size of

its activation record and the offset to the next one, then

this initial traversal might be unnecessary.

4.3. A More Complex Example

Consider the following program:

fun hl x = fn (y::l) => y: :x: :1

fun h2 z =

let fung (y:: 1)= ifzythenl

elsey::gl

in g

end

fun h(fl,l) =

fn (i, j) =>

length (nth(fl, i) (nth(fl, j) 1))

val G = h ([hl [true, false] , h2 hdl ,

[true, false, true])

Where nth (1, i) selects the iti element from a list 1.

The types are as follows:

hl: a+cllist+cxlist

h2: (~ + bool) + ~ list + ~ list

h: (y list -+ y list) list* y list + int * int + int

and the type of G k (int*int) + int. Notice that the type

of the first argument to h k (bool list list + bool list list)

list. For ease of presentation, we have chosen unique

names for each type variable,

If garbage collection occurs after the creation of G

then the garbage collector had better be able to determine

59

that f 1, captured in the closure for G, is a list of functions

and be able to reconstruct the types of the objects cap-

tured in the closures representing those functions.

The garbage collection routines are defined as fol-

lows, based on the material discussed in the previous sec-

tion. hl_gc and h2_gc are the gc_routines for the clo-

sures formed by applying hl and h2 to one argument,

respectively. hd gc k the gc_routine for the closure—
representing the function hd (i.e. car). h_gc is the

gc_routine for the closure created by applying h to two

arguments (that is, to the arguments for f 1 and 1), as k

done in the definition of G.

function hl_gc (thl, 9, tl, cl) =

begin

u := [(thl, a list +cxlist)l ;

tl := [(x, et)] A tl;

(e, tl) := rcst(9, u,tl, cl) ;
return (9, tl);

end;

function h2_gc (th2, 9, tl, cl) =

begin

u := [(th2, ~list +~list)]

tl := [(z, ~+bool)] A tl

cl := [(z, ~+bool)] “ Cl

(e, tl) := rest (e, u,tl, a)
return (9, tl)

end;

function h_gc (th, El, IQ, cl) =

begin

u := [(th, (int*int) -+ int)

tl :=[(flr (~list +~list)list)r

(1, ylist)] A tl;

for c in fl do

cl := [(crylist +ylist)l A Cl;
P for each closure c in the list f 1, put c,

along with its static type, onto c1 */

(e, tl) := rc9t(9, u,tl, cl) ;

return (0, tl) ;

end

function hd_gc (thd, 9, tl, cl) =

u := [(thd, 5 list + 5)]

(e, tl, d) := rcst(9, u,tl, cl)
return (e, tl)

Suppose garbage collection occurred after the creation of

G. Since G is a variable of type (int * int) + int in the

bottommost activation record (representing the main

program), the gc_routine for the main program simply

calls G’s gc_routine, namely h_gc, as follows:

h_gc((int*int)+ int, { } , [] , []) kCdkd:

● u = [] (no use unifying two identical monomor-

phic type expressions)

● tl = [(fl, (ylist +~list) list) ,

(l, ylist)]

● cl = [(hl_gc, ylist + ylist) ,

(h2_gc, ylist + ylist)]

● rest ({}, u,tl, cl) is called.

rest ({}, [(fl, (ylist + y list)

(l, ylist) 1, [(hl_gc,’Ylist+’Y

(h2_gcr ylist + y list)])

does the following:

“ (tl, cl) = Subst({}, tlrcl), so

-tl = [(fl, (y list + ylist)

(1,7 list)]

-cl = [(hlr (ylist + ylist),

list) ,

list) ,

list),

(h2, (ylist + y list)]

. hl_gc (tc, { }, tl, cl) is called.

hl_gc (Ylist + ylist, { } , tl,

[(h2_gc, (ylist + ylist) 1)

does the following:

● u = [(ylist+ylist, ctlist+czlist)l

●tl = [(x, U) , (fl, (ylist+ylist) list) ,

(l, ylist)] ,

ccl= [(h2_gc, (ylist + ~list)]

● rest ({}, u,tl, cl) is called

rest unifies y with (x, so

●tl = [(xr Y) , (l, Y list) ,
(fl, (y list +7 list) list) 1

and

e ={CX= Y }.

“ (Crtc) = (h2_gcr (ylist+ ylist) list)

“cl= [1

60

● h2_gc is called, Notice that even though hl_gc

has finished, the type of x in hl is still unknown.

h2_gc(’ylist -)ylist, {cx=y}, tl, [])

does the following:

“ u = [(71ist+TM3t, i31ist -P list) 1

●tl = [(z, fkbod), (X, CX), (l, Y list),

(fl, (’)’ list -+ ~ list) list)]

●C1 = [(z, ~+bool)]

● rest (q, u, tl, cl) is called,

rest unifies j3 with y, so

●tl = [(z, ~+bool) , (xry) , (l, y list)

(fl, (y list + y list) list)]

“Cl = [(z,’y+bool)]]and O={a =y, ~= y}.

● (c, tcl) = (z, y+bool) andcl = []

● z. gc, which is really hd. gc, k called.

hd_gc(y+bool, { ct=y, &y} , [(Z, y-+bool) ,

(xf Y) , (fl, (ylist+y list) list) ,

(l, y list)], [])

does the following:

‘U = [(~-+bool, ~ list +6)]

● rest (q, u, tl, cl) is called, unifying 8 with

bool and y with bool list. O becomes { 8 = bool,

y= bool list, cx= bool list, ~ = bool list}.

s 0 is applied to t 1, giving

[(z, bool list+bool) , (x, bool

list) ,

(fl, (bool list list+bool list list)

list) ,

(l, bool list list)]

Since there are no more closures in cl, the unifier (3and

the list tl of the types of the variables are returned all the

way back to the gc_routine for the activation record.

Now that all the types are known, the collector can copy

all the reachable structures into TO space.

One of the issues we have ignored is when the clo-

sures are copied into TO space. During the reconstruc-

tion process, most of each closure can be copied. It is just

the variables captured in each closure whose types have

not yet been reconstructed that cannot be copied yet. In

fact, in order for the reconstruction not to repeat calls to

the same closure’s gc_routine if the closure is shared, the

closure should be copied when it is first encountered.

5. Correctness Proofs

Lemma 1 In Standard ML (minus polymorphic equali-

ty), no primitive operator p whose behavior depends

upon the value of an operand (and therefore must access

the value of that operand) can be polymorphic with re-

spect to that operand. That is, in the ~pe signature of the

operator, the type term corresponding to the reqw”red

operand cannot be a simple type variable. Likewise, l~p

requires the value of some component of its operand,

then the type of that component in the type signature of p

cannot be a simple type variable.

-f This can be shown by a simple enumeration of

the primitive operators in Standard ML (minus the poly-

morphic equality operator). Intuitively, this simply says

that in order for the vatue of an object to be accessed, its

type must be known. O

Lemma 2 If o is a variable with a static type a in the

body of a function f such that there is an expression p(o)

in f, where p is a primitive operator whose parameter

type is ~, then cr must be an instance of ~.

-f In the ML type system, the type of an argument

to a function or operator must be an instance of the pa-

rameter type of the function or operator. Thus, a must be

an instance of T.

Lemma 3 For any function f, the static type of each

function g referenced in the body of f can be determined

at type reconstruction time,

Wf If g is a known (i.e let-bound) function, then the

type of each instance of g in f has been determined by the

static type inference. Otherwise, g is an unknown (i.e.

lambda-bound) function represented by a closure and its

static type is known by the gc_routine accessible from

the closure’s code pointer.

Theorem 1 Suppose there is an object o in the activa-

tion record for a function f, such that the static type of o

61

is G and (he value of o will subsequently be passed to a

primitive operator p whose corresponding argument

type is ~. Suppose also that the type of the call to f has

been reconstructed. The type reconstruction method de-

scribed here will reconstruct the actual type of o to a new

type that is an instance ofz.

~f There are three ways in which the value of o

could be passed to p:

case 1. p(exp) appears in f, such that the value of exp

could be the value of o. In this case, exp must have type
6 (guaranteed by ML’s strong typing) and the static type
system would have insured that o is statically an instance
of T. No type reconstruction need occur in this case.

case 2. The value of o is returned by f to its caller and the

value is subsequently passed to p. Thus, o appears in the

static result type off, but an instance of z must appear in

result component of the reconstructed type of the call to

f. The type reconstruction method unifies the type of the

call to f with the static type of ~. Therefore cr would be

unified with an instance of ~. In this way, the type of o is

determined to be an instance of ~.

case 3. The value of o is passed to a function fl which

passes the value to f2 and so on until the value of is

passed to a function fn in which p is applied to the value.

The static type of the parameter off. (corresponding to

the value of o) is an instance oft Each of fl ...f. can be

either a known (i.e. let-bound) function or a unknown

(lambda-bound) function. If all of fl..$n are known func-

tions, then the static type inference would have induced

a type on o that is an instance of ~, and no type recon-

struction is necessary,

Iffil,fiz, ... ,jjare lambda-bound functions in the se-

quence of calls, for 1< il S i2 ...< ~ <n, then the static

argument types (corresponding to where o is passed) of

the calls to fil, J>,..., fij must be precisely o, since they

cannot be polymorphic, Since the scope of o is only the

body off, each fik must be a lambda-bound function in f

or a lambda-bound function inside some other fi~. fil

must be a lambda-bound function inf,

In addition, the type of the parameter offij must be

an instance of ‘c (since each call in the sequence of calls

to known functions after f; is statically inferred to have

an argument type that k an instance of ~). This means

that the closure for each fi~ will be traversed during the

type reconstruction of f‘s activation rezord, such that the
input types of all these lambda-bound functions are uni-

fied with each other and a. Since the input type of fij is

an instance of ~, 6 will be unified with that type and the

type of o will be reconstructed as an instance of ~.

Theorem 2 Suppose there is an object o whose static

type is o captured in a closure representing a function g

which is reachablefiom the activation record for afunc-

tion f, such that the value of o will subsequently be

passed to a primitive operator p whose corresponding

parameter type is ~. Suppose also that the type of the call

to f has been reconstructed. The type reconstruction

method described here will reconstruct the actual type of

o to a new type cr’ that is an instance of ~.

IX?stf The proof is essentially identical to the proof of

Theorem 1. There are three cases in which the value of

an object stored in a closure could be accessed by a prim-

itive operator, and these are same three cases as when the

object is stored in an activation record.

Theorem 3 The type reconstruction method described

here will, during garbage collection, reconstruct the

types of all reachable, non-garbage, objects.

H All that remains to be shown is that the actual

type of the function call that created each activation

record cart be reconstructed. If so, then Theorem 1 and

Theorem 2 show that the type of each reachable object in

each activation record, such that the object’s value will

be passed to a primitive operator (i.e. it is non-garbage),

will be reconstructed.

This is easily proved by induction on the distanced

of the activation record from the bottom of the stack.

.

.

d=O: The activation record at distance Ofrom the bot-

tom of the stack is the procedure representing the pro-

gram. It is called with no parameters and has a known

return type (void, or possibly some value).

Assume that for all activation records at a distance k

or less from the bot~m of the stack, the type of every

reachable non-garbage object in the activation record

can be reconstructed. This means that the types of the

parameters and result type of the function call corre-

sponding to the activation record at distance k+l can

be reconstructed.

62

s By Theorem 1 and Theorem 2, since the types of the

parameters and the result type of the call to the func-

tion has been reconstructed, the types of non-garbage

objects reachable from the activation record can be

reconstructed.

6. Implementation Issues

Theorem 3 indicates that if the type of an object can-

not be reconstructed during garbage collection, then it

can be discarded. For a copying garbage collector, this

simply means that any such object need not be copied

into TO space. There are some difficult implementation

issues that arise, however, when such an object is not

copied, especially when that object is an element of some

larger aggregate structure.

Consider the following program:

let

funfx=

fn z => if length x

then z+l

else z-1

val L = [[1,2], [3,4]]

val g = if . . . then f [1,2,3]

else f L

in

g (hd (Map hd L))

end

This is the same example as we saw earlier, except that

now the value of the variable x, which is a list whose el-

ement types cannot be reconstructed, is the shared list L

whose elements are needed in another part of the pro-

gram (in this case, in (hd (map hd L))).

A problem arises if garbage collation occurs during

the execution of map. When the gc_routine for g is exe-

cuted, it only copies the spine of L into TO space. When

the gc_routine for map is subsequently executed, it sees

that the first cell in L is in TO space and would normally

assume that the entire list has already been copied.

The most straightforward, and costly, solution to this

problem is to remove the assumption that if a cons cell

has already been copied to TO space, then the garbage

collector need not trace the car and cdr of the cell. Not

only is this terribly inefficient, but may lead to infinite

garbage collections on circular structures.

Note however, that if the gc_routine for map had

copied the entire list L into TO space before the gc_rou-

tine for g attempted to copy its spine, then g’s gc_routine

would see that the first cell of the list had been copied

into TO space and would correctly assume that the whole

spine had been. Thus, a second solution to the above

problem would be to make sure that if a list (or another

aggregate structure) is shared, then the gc_routine that

copies the most of the list would do so first.

One way of doing this would be to defer the partial

copying of any structure until it is certain that the struc-

ture will not be fully copied during the current garbage

collection. This can be done by keeping a defer-list at

garbage collection time of the structures that need to be

partially copied and inserting the addresses of the struc-

tures onto the list, along with a type descriptor. This is a

solution similar to that used for weak pointers in many

LISP and Smalltalk systems.

After the garbage collector has finished traversing

the stack, it copies the structures on the defer-list, if nec-

essary. Notice that the garbage collector might attempt to

place a structure on the defer-list more than once. Even

worse, the garbage collector might attempt to partially

copy a structure several times in several different ways.

For example, in the program

let

fun f[]n=n

I f((x,_) ::l)n=x+fl(n+l)

fung[]n=n

I g ((_, Y) ::l)n=

i.f y then n else g 1 (n+l)

in

(fn L=> [f L, gL])

[(l, false) , (2, true) , (3, false)]

end

If garbage collection occurs after the application of f and

g to L then the type of the list [(1, false) ,

(2, true) , (3, f alse)] is reconstructed as (int * a)

list in the closure for f and as (~ * bool) list in the closure

for g, Thus, a pointer to the list will be placed on the de-

fer-list two different times with two different types.

If a pointer to the list appears with two different types

on the defer-list then the problem of recognizing when

the list has been copied is compounded. The solution is

63

to place each structure on the defer-list at most once, and

to unify the types of the different reconstructions of the

structure. In the above example, the list would first be

placed on the defer-list with the type (int * et) list. Then,

when the collector tries to place the same list on the de-

fer-list with type (~ * bool) list, the two types would be

unified to (int * bool) list and the list would only appear

once on the defer-list. The defer-list should probably be

implemented as a hash table in order to recognize when

the same structure is encountered twice with two differ-

ent partial types.

But, there is even a more serious difficulty. Suppose

a list S is shared ketween two structures A and B that are

to be partially copied. When A is partially copied, it

might copy the spine of S. However, B might require

more of S to be copied. When B sees that the first cons

cell of S has been copied, it still can’t make any assump-

tion that S has been copied sufficiently. The problem is

that the types of the two structures A and B put on the de-

fer-list will not be unified in order to determine the max-

imum copying of S required. At this point, we do not

have a reasonable solution, although one possibility is to

leave type information in the evacuated cells so that the

garbage collector can later determine how much of a

structure was actually copied.

7. Sharing Analysis to Optimize

Polymorphic Tag-Free GC

Many papers (e.g. [Deutsch90], [ISY881, [JLM891,

[Park9 1]) have been published recently describing algo-

rithms for detecting sharing of aggregate structures in a

program, We do not describe a new method for detecting

sharing, but show how sharing detection could be used to

improve tag-free garbage collection.

A difficulty arises, as described in the previous sec-

tion, when an aggegate structure that is shared is only

partially copied into TO space. Thus, to avoid this prob-

lem, the structure is placed on a defer-list, (or some other

way of ordering the copying of structures must be used).

Sharing analysis can solve this problem, because it

can often determine when an aggregate structure is not

shared. When an unshared aggregate structure is encoun-

tered such that the structure needs only to be partially

copied, then the structure can be copied as soon as it en-

countered by the garbage collector.

8. Operator Overloading and Type

Classes

In languages like Haskell, operators which reference

the value of their operands can be dymmically overload-

ed (much like the= operator is for equality types in Stan-

dard ML). This is accomplished in the type system by de-

fining type classes, which are sets of types over which

certain operators and functions are defined. For any two

types in a class, the definition of the same operator may

be different.

The theorems proved in section 5 rely on the fact that

an object’s value can’t be referenced within a function

without inducing a specific (ground) type on the object.

Thus, our garbage collection method would not be cor-

rect in the presence of dynamic overloading. However,

this is easily fixed.

In order to implement type classes, the code for a par-

ticular operation is determined at run-time. In order to

accomplish this each function, whose parameter type t

can be any member of a certain type class, contains an

implicit extra argument - a dictionary containing the

code for the operations supported by the class. When an

operator is applied to elements oft, the code for that op-

erator is found in the dictionary.

In languages like Haskell, the encoding for a given

type can simply be associated with the method dictionary

for the type. The garbage collector, as it traverses the

stack, can examine the method dictionaries stored in

each activation record to determine how the variables of

each type should be traced.

A similar method can be used to implement the poly-

morphic equivalence operator in Standard ML. Each

function expecting parameters with equality types could

be passed the appropriate equality operator. Each equal-

ity operator could have type information associated with

it for the garbage collector to use.

It is worth noting that a method dictionary can be

considered a kind of tag that is associated with values

during execution. In that sense, our garbage collection al-

gorithm is no longer “tag-ffee”, since it relies on the

64

method dictionaries. If a language’s type system requires

tagged data, there is certainly nothing a garbage collector

can do to remove that requirement!

9. A Final Word

The reader of this paper is probably left with a feeling

that type reconstruction by the garbage collector is prob-

ably so expensive, with its liberal use of unification, that

any benefit of omitting tagged data is outweighed by the

cost of reconstruction. That may be true, but it is worth

noting that the examples used in this paper were unusual

in the number of C1OSUXKXused and the extent of recon-

struction required. Much like static type inference, type

reconstruction by the garbage collector is typically much

easier than in the worst case. Naturally, experiments are

needed to quantify this.

References

[Appe189]
Appel, A.W. Rtmtime Tags Aren’t Necessary. In Lisp
and Symbolic Computation, 2, 153-162, 1989.

[BL70]
Branquart, P. and Lewi, J. A Scheme of Storage
Allocation and Garbage Collection for Algol-68. In
Algol-68 Implementation, North-Holland Publishing
Company, 1970.

[Britton75]
Britton, D.E. Heap Storage Management for the
Programming Language Pascal. Master’s Thesis,
University of Arizona, 1975.

[CW86]
Cardelli, L. and Wegner, P. On understanding types,
data abstraction, and polymorphism. Computing
Surveys, 17,4, 1985,

[Deutsch90]
Deutsch, A. On determining lifetime and aliasing of

dynamically allocated data in higher order functional
specifications. Proceedings of the 1990 ACM
Conference on Principles of Programming
Languages, January 1990.

[Goldberg91]
Goldberg, B. Tag-free garbage collection for strongly
typed programming languages. Proceedings of the
ACM SIGPLAN’91 Symposium on Programming
Language Design and Implementation, June 1991.

[Goldberg92]
Goldberg, B. Incremental Garbage Collection Without
Tags. Proceedings of the 1992 European Symposium

on Programming, Feb. 1992.

[ISY88]
Inoue, K., Seki, H. , and Yagi, H. Analysis of
Functional Prgrams to detect run-time garbage cells.
ACM TOPLAS, Vol. 10, No. 4, pp 555-578,1988.

[JLM891
Jones, S.B. and Le Metayer. Compile-time garbage
collection by sharing analysis. Proceedings of (he
1989 Conference on Functional Programming
Languuges and Computer Architecture, Sept. 1989.

mitchel190]
Mitchell, J.C. Type Systems for Programming
Languages. In Handbook of Theoretical Computer
Science, (J. van Leeuwen, cd.), Elsevier Science
Publishers, 1990.

[MLH90]
Milner, R., Tofte, M., and Harper, R. The Definition of
Standard ML. MIT Press. 1990.

Park91]
Park, Y.G. Semantic Analyses for Storage
Management Optimization in Functional Language
Implementations, Ph,D, Thesis, New York University,
1991.

PJS89]
Peyton Jones, S. L and Salkid, J. The spineless tagless
G-machine. Proceedings of the 1989 Conference on
Functional Programming Languages and Computer
Architecture, Lundon, Sept. 1989.

65

