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Abstract— Given a family of real or complex monic poly-
nomials of fixed degree with one fixed affine constraint on
their coefficients, consider the problem of minimizing the root
radius (largest modulus of the roots) or abscissa (largest real
part of the roots). We give constructive methods for finding
globally optimal solutions to these problems. In the real case,
our methods are based on theorems that extend results in
Raymond Chen’s 1979 PhD thesis. In the complex case, our
methods are based on theorems that are new, easier to state but
harder to prove than in the real case. Examples are presented
illustrating the results, including several fixed-order controller
optimal design problems.

I. I NTRODUCTION

A fundamental general class of problems is as follows:
given a set of monic polynomials of degreen whose coef-
ficients depend on parameters, determine a choice for these
parameters for which the polynomial is stable, or show that
no such stabilization is possible. This is a hard problem in
general; indeed, it is NP-hard in certain cases [2], [12]. There
is, however, one interesting special case in which the problem
is directly solvable: when the dependence on parameters is
affine and the number of parameters isn − 1. In fact, in
this case, the problem of globally minimizing the root radius
(maximum of the moduli of the roots) or abscissa (maximum
of the real parts) may be solved explicitly and efficiently. We
present methods for both the real and complex cases. In the
real case, our methods are based on theorems that extend
results in Raymond Chen’s 1979 PhD thesis. In the complex
case, our methods are based on theorems that are new, easier
to state but harder to prove than in the real case. Proofs are
not included in this paper but are given in [3].

II. D ISCRETE-TIME STABILITY

Let ρ(p) denote theroot radius of a polynomialp,

ρ(p) = max {|z| : p(z) = 0, z ∈ C} .

The following result shows that when the root radius is
minimized over monic polynomials with real coefficients
subject to a single affine constraint, the optimal polynomial
can have at most two distinct roots (zeros). Thus, it must
have at least one multiple root whenn > 2. We first state
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the result, and then discuss connections to previous work of
Chen.

Theorem 1: Let B0, B1, . . . , Bn be real scalars (with
B1, . . . , Bn not all zero) and consider the affine family of
monic polynomials

P = {zn +a1zn−1 + . . .+an−1z+an : B0 +
n

X

j=1

Bjaj = 0, ai ∈ R}.

The optimization problem

ρ∗ := inf
p∈P

ρ(p)

has a globally optimal solution of the form

p∗(z) = (z − γ)n−k(z + γ)k ∈ P

for some integerk with 0 ≤ k ≤ n, whereγ = ρ∗.
Notice thatp∗(z) ∈ P if and only if γ satisfies a certain

polynomial equality oncek is fixed. The following corollary
is a direct consequence of this fact, showing thatγ in
Theorem 1 can be computed explicitly.

Corollary 2: Let γ be the the globally optimal value
whose existence is asserted in Theorem 1. Then,−γ is a
real root of smallest magnitude of the polynomials

gk(z) = B0v0 + B1v1z + . . . + Bn−1vn−1z
n−1 + Bnvnzn,

where(v0, . . . , vn) is the convolution of the vectors
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for k = 0, . . . , n.
Theorem 1 is related to results in [8], as we now explain.

Let

HP = {(a1, a2, . . . , an) | zn + a1z
n−1 + . . . + an ∈ P}

be the set of coefficients of polynomials inP . The setHP
is a hyperplane, by which we mean ann − 1 dimensional
affine subspace ofRn. Let

Cn
r =

8

<

:

(a1, a2, . . . , an) ∈ R
n | zn +

n
X

j=1

ajzn−j = 0 ⇒ |z| < r

9

=

;

be the set of coefficients of monic polynomials with root
radius smaller thanr. Clearly, ρ∗ < r if and only if
HP ∩Cn

r 6= ∅. The root optimization problem is then equiv-
alent to finding the infimum ofr such that the hyperplane
HP intersects the setCn

r . The latter set is known to be
nonconvex, characterized by several algebraic inequalities,
so this would appear to be difficult. However, sinceCn

r is
open and connected, it intersects a given hyperplane if and
only if its convex hull intersects the hyperplane:



Lemma 3: (Chen [8, Lemma 2.1.2]) Let H be a hyper-
plane in Rn, that is ann − 1 dimensional affine subspace
of Rn, and let S ⊂ Rn be an open connected set. Then
H ∩ S 6= ∅ if and only if H ∩ conv(S) 6= ∅.

The setconv(Cn
r ) is an open simplex so it is easy to

characterize its intersection withHP :
Theorem 4: (Chen, special case of [8, Prop. 3.1.7]; see

also [10, Prop. 4.1.26] for the case r = 1) We have

conv(Cn
r ) = conv(ν1, ν2, . . . , νn+1)

where the vertices

νk = {(a1, a2, . . . , an) ∈ R
n | (z − r)n−k(z + r)k = zn +

n
X

j=1

ajzj}

are the coefficients of the polynomials(z − r)n−k(z + r)k.
Since the optimumρ∗ is attained, the closure ofconv(Cn

ρ∗)
and the hyperplaneHP must have a non-empty intersection.
Theorem 1 says that, in fact, the intersection ofHP with
Cn

ρ∗ must contain at least one vertex ofconv(Cn
ρ∗), and

Corollary 2 explains how to find it. In contrast, Chen uses
Theorem 4 to derive a procedure (his Theorem 3.2.2) for
testing whether the minimal valueρ∗ of Theorem 1 is greater
or less than a given valuer. This could be used to define
a bisection method for approximatingρ∗, but it would not
yield the optimal polynomialp∗(z).

Remark 5: The techniques used in Theorem 1 are all
local. Thus, any locally optimal minimizer can be perturbed
to yield a locally optimal minimizer of the form(z −
β)n−k(z + β)k ∈ P for some integerk, where β is the
root radius attained at the local minimizer. Furthermore, all
real roots−β of the polynomialsgk in Corollary 2 define
candidates for local minimizers, and while not all of them
are guaranteed to be local minimizers, those with smallest
magnitude (usually there will only be one) are guaranteed to
be global minimizers.

The work of Chen [8] was limited to polynomials with real
coefficients. A complex analogue of Theorem 1 is simpler
to state because optimizing the root radius results in a
polynomial with only one distinct root, a multiple root if
n > 1. However, the proof is substantially more complicated
than for the real case.

Theorem 6: Let B0, B1, . . . , Bn be complex scalars (with
B1, . . . , Bn not all zero) and consider the affine family of
polynomials

P = {z
n + a1z

n−1 + . . . + an−1z + an : B0 +
n

X

j=1

Bjaj = 0, ai ∈ C}.

The optimization problem

ρ∗ := inf
p∈P

ρ(p)

has an optimal solution of the form

p∗(z) = (z − γ)n ∈ P

with −γ given by a root of smallest magnitude of the
polynomial

h(z) = Bnzn +Bn−1

(

n

n − 1

)

zn−1 + . . .+B1

(

n

1

)

z +B0.

III. C ONTINUOUS-TIME STABILITY

Let α(p) denote theroot abscissa of a polynomialp,

α(p) = max {Re(z) : p(z) = 0, z ∈ C} .

We now consider minimization of the root abscissa of a
monic polynomial with real coefficients subject to a single
affine constraint. In this case, the infimum may not be
attained.

Theorem 7: Let B0, B1, . . . , Bn be real scalars (with
B1, . . . , Bn not all zero) and consider the affine family of
polynomials

P = {zn +a1zn−1 + . . .+an−1z+an : B0 +
n

X

j=1

Bjaj = 0, ai ∈ R}.

Let k = max{j : Bj 6= 0}. Define the polynomial of degree
k

h(z) = Bnzn +Bn−1

(

n

n − 1

)

zn−1 + . . .+B1

(

n

1

)

z +B0.

Consider the optimization problem

α∗ := inf
p∈P

α(p).

Then

α∗ = min
n

β ∈ R | h(i)(−β) = 0 for some i ∈ {0, . . . , k − 1}
o

,

where h(i) is the i-th derivative of h. Furthermore, the
optimal value is attained by a minimizing polynomialp∗

if and only if −α∗ is a root ofh, that is i = 0, and in this
case we can take

p∗(z) = (z − γ)n ∈ P

with γ = α∗.
The first part of this result, the characterization of the

infimal value, is due to Chen [8, Theorem 2.3.1]. Further-
more, he also observed the “if” part of the second statement,
showing [8, p.29] that if−α∗ is a root of h (as opposed
to one of its derivatives), the optimal valueα∗ is attained
by the polynomial with a single distinct rootα∗. However,
he noted on the same page that he did not have a general
method to construct a polynomial with an abscissa equal to
a given valueα̃ > α∗. Nor did he characterize the case
when the infimum is attained. As in the root radius case,
two roots play a role, but here one of them may not be
finite. More specifically, the infimum of the root abscissa may
be arbitrarily well approximated by a polynomial with two
distinct roots, only one of which is bounded, as we explain
in the next theorem.

Theorem 8: Assume that−α∗ is not a root ofh. Let l be
the smallest integeri ∈ {1, . . . , k − 1} for which −α∗ is a
root of h(i). Then, for all sufficenty smallǫ > 0 there exists
a real scalarMǫ for which

pǫ(z) := (z − Mǫ)
m(z − (α∗ + ǫ))n−m ∈ P

wherem = l or l + 1, andMǫ → −∞ as ǫ → 0.
Remark 9: If −β is a real root ofh(z), then(z−β)n ∈ P .

Such a polynomial is usually, though not always, a local



minimizer of α(p), but it is a global minimizer if and only
if −β is the largest such real rootand no other roots of
derivatives ofh are larger than−β.

Now we consider the optimal abscissa problem with
complex coefficients. In this case, the infimal value is al-
ways attained at a polynomial with a single distinct root.
Theorem 7 shows that in the real case the infimal value is
not attained if and only if the polynomialh has a derivative
with a real root to the right of the rightmost real root of
h. However, it is not possible that a derivative ofh has a
complex root to the right of the rightmost complex root of
h. This follows immediately from the Gauss-Lucas theorem,
which states that the roots of the derivative of a polynomial
p must lie in the convex hull of the roots ofp [6], [11].

Theorem 10: Let B0, B1, . . . , Bn be complex scalars
(with B1, . . . , Bn not all zero) and consider the affine family
of polynomials

P = {zn+a1z
n−1+. . .+an−1z+an : B0+

n
X

j=1

Bjaj = 0, ai ∈ C}.

The optimization problem

α∗ := inf
p∈P

α(p)

has an optimal solution of the form

p∗(z) = (z − γ)n ∈ P

with γ given by a root with smallest real part of the
polynomialh(−z) where

h(z) = Bnzn +Bn−1

(

n

n − 1

)

zn−1 + . . .+B1

(

n

1

)

z +B0.

IV. EXAMPLES

Example 1. Our first example is from [5], where it was
proved using the Gauss-Lucas Theorem thatp∗(z) = zn is a
global optimizer of the abscissa over the set of polynomials

P = {zn+a1z
n−1+. . .+an−1z+an | a1+a2 = 0, ai ∈ C}.

We calculateh(z) =
(

n

2

)

z(z + 2
n−1 ). Theorem 7 proves

global optimality overai ∈ R and Theorem 10 proves global
optimality overai ∈ C.

Example 2. Consider the problem of finding a fixed-order
linear controller that maximizes the closed-loop asymptotic
decay rate for the classical two-mass-spring system. Henrion
and Overton [9] showed that the only order for which there
is a nontrivial solution is 2, because an order 3 controller
can achieve an arbitrarily fast decay rate, while using order
1 the system is not stabilizable. In the case of order 2, the
problem is equivalent to the following optimization problem
[9]

inf
p∈P

α(p)

where

P = {(s4+2s2)(x0+x1s+s2)+y0+y1s+y2s2 | x0, x1, y0, y1, y2 ∈ R}.

ThusP is a set of monic polynomials with degree 6 whose
coefficients depend affinely on 5 parameters, or equivalently

with a single affine constraint on the coefficients. Motivated
by numerical experiments, Henrion and Overton [9] con-
structed a polynomial with one distinct root with multiplic-
ity 6 and proved its local optimality using techniques from
nonsmooth analysis. Theorem 7 proves its global optimality.

Example 3. This is derived from a “Belgian chocolate”
stabilization challenge problem of Blondel [1]: givena(s) =
s2 −2δs+1 andb(s) = s2 −1, find the range of real values
of δ for which there exist polynomialsx and y such that
deg(x) ≥ deg(y) and α(xy(ax + by)) < 0. This problem
remains unsolved. However, inspired by numerical experi-
ments, [4] gave a solution forδ < δ̄ = (1/2)

√

2 +
√

2 ≈
0.924. When x is constrained to be a monic polynomial
with degree3 and y to be a constant, the minimization of
α(xy(ax + by)) reduces to

inf
p∈P

α(p)

where

P = {(s2 −2δs+1)(s3 +
2

X

k=0

wksk)+(s2 −1)v | w0, w1, w2, v ∈ C}.

For nonzero fixedδ, P is a set of monic polynomials with
degree 5 whose coefficients depend affinely on 4 parame-
ters, or equivalently with a single affine constraint on the
coefficients. In [4] a polynomial inP with a distinct root
of multiplicity 5 was constructed and proved to be locally
optimal using nonsmooth analysis. Theorem 7 proves its
global optimality overai ∈ R and Theorem 10 proves its
global optimality overai ∈ C. They also apply to the case
when x is constrained to be monic with degree 4; then,
as shown in [4], stabilization is possible forδ < δ̃ =

(1/4)
√

10 + 2
√

5 ≈ 0.951.

Example 4. The polynomial achieving the minimal root
radius may not be unique. LetP = {z2 + a1z + a2 | 1 +
a1 + a2 = 0, ai ∈ R}. We have

ρ
∗ = inf

a2∈R

ρ(z2−(a2+1)z+a2) = inf
a2∈R

ρ ((z − a2)(z − 1)) = 1.

The minimal value is attained on a continuum of polynomials
of the form(z − a2)(z − 1) for any−1 ≤ a2 ≤ 1 and hence
minimizers are not unique. The existence of the minimizers
(z − 1)2 and (z + 1)(z − 1) is consistent with Theorem 1.
The same example shows that the minimizer for the radius
optimization problem with complex coefficients may not be
unique.

Example 5. Likewise, a polynomial achieving the minimal
root abscissa may not be unique. LetP = {z2 + a1z +
a2 | a1 = 0, a2 ∈ R}. We have

α∗ = inf
p∈P

α(p) = inf
a2∈R

α(z2 + a2) = 0.

Here B0 = B2 = 0, B1 = 1. The optimum is attained at
p∗(z) = z2, where−α∗ = 0 is a root of the polynomial
h(z) = z, as claimed in Theorem 7. However, the optimum
is attained at a continuum of polynomials of the formz2+a2

for any a2 > 0.



Contour Plot of Radius of a Two−Parameter family of Monic Cubics
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Fig. 1. Contour plotρ(p) for a randomly generated family of monic
cubics with coefficients depending affinely on two real parameters. The
asterisk (right) shows the global minimizer and the circle (left) shows a
local minimizer.

Example 6. In this example, the infimal root abscissa is not
attained. LetP = {z2 + a1z + a2 | a2 = −1, a1 ∈ R}
α∗ = = inf

a1∈R

α(z2 + a1z − 1)

= inf
a1∈R

max

{

−a1 −
√

a2
1 + 4

2
,
−a1 +

√

a2
1 + 4

2

}

= 0.

This infimum is not attained, but asa1 → ∞, settingǫ =
−a1+

√
a2

1
+4

2 → 0 and Mǫ =
−a1−

√
a2

1
+4

2 → −∞ gives
(z − ǫ)(z − Mǫ) ∈ P as claimed in Theorem 8.

Example 7. Figure 1 shows a contour plot ofρ(p) for a
randomly generated family of monic cubics with coefficients
depending affinely on two real parameters. The asterisk
indicates a global minimizer(z−γ1)

3 and the circle indicates
a local minimizer (z − γ2)

3. Both −γ1 ≈ −0.541 and
−γ2 ≈ 0.567 are roots ofg0 (see Corollary 2 and Remark 5).
Note the steep contours near the global and local minimizers,
indicating the non-Lipschitz behavior of the radiusρ as the
triple root splits [7].

Example 8.Consider the monic quintic polynomials subject
to the affine constraintB0 +

∑5
i=1 ai = 0. Figure 2 plots the

optimal abscissa, overai ∈ R and ai ∈ C respectively, as
a function ofB0 ∈ [−2, 4]. For B0 ≤ 1, the largest root of
the polynomialh is real so the optimal abscissa is attained
with the same optimal value for both the real and complex
cases. ForB0 = 1, h(z) = (1 + z)5 so all of the roots ofh
and its derivatives are identical. Furthermore, whenB0 = 1,
the hyperplaneHP = {(a1, a2, . . . , an) | B0 +

∑5
i=1 ai =

0} contains the extreme linesLi of the coneconv(Sn
1 ) for

i = 1, 2, 3, 4 as well as the boundary ofconv(Sn
1 ) which is

the positive span of the vectorsLi, i = 1, 2, 3, 4, we have
aff(Sn

1 ) = HP . As B0 is increased, the hyperplaneHP is
translated away fromconv(Sn

1 ), and forB0 > 1, HP does
not intersectconv(Sn

1 ) but it is parallel to it. Thus, for the
real case, the infimum is not attained forB0 > 1 and has
the constant value 1.

More examples may be explored by downloading a pub-
licly available1 MATLAB code implementing the constructive

1www.cs.nyu.edu/overton/software/affpoly
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Fig. 2. The optimal root abscissa for a polynomial familyz5 + a1z4 +
· · · + a5 with constraintB0 +

P5
i=1 ai = 0, with B0 varied from−2 to

4. The solid curve (cyan) shows the optimal abscissa for the caseai ∈ R

and the dotted curve (red) for the caseai ∈ C.

algorithms implicit in Theorems 1, 6, 7 and 10. This code
was used to generate the optimal values plotted in Figure 2
and the global and local minimizers plotted in Figure 1; see
the website for more details. In general, there does not seem
to be any difficulty obtaining an accurate globally optimal
value for the abscissa or radius in the real or complex case.
However, even in the cases where an optimal solution exists,
the coefficients may be large, so that rounding errors in the
computed coefficients result in a large constraint residual.
Furthermore, the multiple roots are not robust with respect
to small perturbations in the coefficients. Optimizing the
complex stability radius of the polynomial may be of more
practical use; see [4, Section II].
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