Explicit Solutions for Root Optimization of a Polynomial Family
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Abstract— Given a family of real or complex monic poly- the result, and then discuss connections to previous work of
nomials of fixed degree with one fixed affine constraint on Chen.

their coefficients, consider the problem of minimizing the pot Theorem 1: Let By, Bi,..., B, be real scalars (with

radius (largest modulus of the roots) or abscissa (largesteal Bi,...,B, not all zero) and consider the affine family of
part of the roots). We give constructive methods for finding monic bolynomials

globally optimal solutions to these problems. In the real cse,
our methods are based on theorems that extend results in
Raymond Chen’s 1979 PhD thesis. In the complex case, our
methods are based on theorems that are new, easier to statetbu
harder to prove than in the real case. Examples are presented The optimization problem
illustrating the results, including several fixed-order catroller .

optimal design problems. p* = inf p(p)
peP

n
P = {z”+alz”71+...+an,12+an : Bo—i—ZBjaj =0,a; € R}.
=1

. INTRODUCTION has a globally optimal solution of the form

A fundamental general class of problems is as follows: p(2)=(z-—y)"*z+y)eP
given a set of monic polynomials of degreewhose coef- _ )
ficients depend on parameters, determine a choice for thdS& SOMe intégek with 0 < k < n, wherey = p". _
parameters for which the polynomial is stable, or show that Notice thatp™(z) € P if and only if - satisfies a certain
no such stabilization is possible. This is a hard problem jROlynomial equality oncé is fixed. The following corollary
general: indeed, it is NP-hard in certain cases [2], [L2preh 'S @ direct consequence of this fact, showing thain
is, however, one interesting special case in which the probl 1h€orem 1 can be computed explicitly. ,
is directly solvable: when the dependence on parameters iscorollary 2: Let v be the the globally optimal value
affine and the number of parametersris- 1. In fact, in WhOSe existence is asserted in Theorem 1. Thep,is a
this case, the problem of globally minimizing the root raiu "€2! root of smallest magnitude of the polynomials
(maximum of the moduli of the roots) or abscissa (maximum
of the real parts) may be solved explicitly and efficienthe W, (») — Byvy + Byviz + ... + By 1vn_12""" + Bpv,z"
present methods for both the real and complex cases. In the
real case, our methods are based on theorems that extdftere(vo, ..., vy) is the convolution of the vectors
results in Raymond Chen’s 1979 PhD thesis. In the complex
case, our methods are based on theorems that are new, eas(e(rn R NG R .. (- 2)) and ((lg) f(lf) o (71)’“(2))
to state but harder to prove than in the real case. Proofs a}re B
not included in this paper but are given in [3]. ork=0

)

LM
Theorem 1 is related to results in [8], as we now explain.

1. DISCRETETIME STABILITY Let
Let p(p) denote theroot radius of a polynomialp, Hp ={(a1,as,...,a,) | 2" +a12" '+ ...+ a, € P}
) be the set of coefficients of polynomials i The setHp
p(p) = max{[z| : p(z) =0, z € C}. is a hyperplane, by which we mean an— 1 dimensional

] __affine subspace dR™. Let
The following result shows that when the root radius is
minimized over monic polynomials with real coefficients n _
. . . ) i S o= ,G2,. .., an) ER™ | 2" j2" 0 =0 <
subject to a single affine constraint, the optimal polyndmia " (ax, a2 an) = +;ajz = lel<r
can have at most two distinct roots (zeros). Thus, it must h ¢ fici ‘ ) | ials with
have at least one multiple root when> 2. We first state € _t e set of coefficients of monic po ynomiais wit _root
radius smaller than-. Clearly, p* < r if and only if
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Lemma 3: (Chen [8, Lemma 2.1.2]) Let H be a hyper- I1l. CONTINUOUS-TIME STABILITY
plane inR", that is ann — 1 dimensional affine subspace | ot a(p) denote theoot abscissa of a polynomialp,
of R™, and letS C R™ be an open connected set. Then
HNS #0 if and only if H N conv(S) # 0. a(p) = max{Re(z) : p(z) = 0, z € C}.

The setconv(C*) is an open simplex so it is easy to
characterize its intersection witH p:

Theorem 4: (Chen, special case of [8, Prop. 3.1.7]; see
also [10, Prop. 4.1.26] for the case » = 1) We have

We now consider minimization of the root abscissa of a
monic polynomial with real coefficients subject to a single
affine constraint. In this case, the infimum may not be

attained.
conv(C™) = conv(vy, Vo, ..., Upi1) Theorem 7. Let By, Bi,...,B, be real scalars (with
) By, ..., B, not all zero) and consider the affine family of
where the vertices polynomials

n
vi={(a1,az,...,an) €R™ | (2 = )" Fe A+ 1)F = 2"+ 0527}

n
. P={z"+az"""'+.. 4an_12+an: Bo+»_ Bja; =0,a; € R}.
j

j=1

are the coefficients of the polynomials — )" "(z +1)*.  Let k = max{; : B; # 0}. Define the polynomial of degree
Since the optimump™ is attained, the closure ebuv(C7.)

and the hyperplané& » must have a non-empty intersection. n

Theorem 1 says that, in fact, the intersectionfHf with  h(z) = an"+Bn1< )z"‘l +...+Bl<

. n—1

Cj. must contain at least one vertex ofuv(C}.), and _ S

Corollary 2 explains how to find it. In contrast, Chen use§onsider the optimization problem

Theorem 4 to derive a procedure (his Theorem 3.2.2) for

testing whether the minimal valyg of Theorem 1 is greater o = inf a(p).

or less than a given value This could be used to define rer

a bisection method for approximating, but it would not Then

yield the optimal polynomiap*(z). o* = min {5 €R | hD(—B) =0 for some i € {0,. ..,k — 1}}7
Remark 5: The techniques used in Theorem 1 are all

local. Thus, any locally optimal minimizer can be perturbedvhere 1) is the i-th derivative of h. Furthermore, the

to yield a locally optimal minimizer of the form(z — optimal value is attained by a minimizing polynomiat

B)" k(2 + B)¥ € P for some integerk, where § is the if and only if —a* is a root ofh, that isi = 0, and in this

root radius attained at the local minimizer. Furthermote, acase we can take

real roots—g of the polynomialsg; in Corollary 2 define ()= (5 — ) e P

candidates for local minimizers, and while not all of them Pz =(-7"¢

are guaranteed to be local minimizers, those with smallegiith v = o*.

magnitude (usually there will only be one) are guaranteed to The first part of this result, the characterization of the

be global minimizers. infimal value, is due to Chen [8, Theorem 2.3.1]. Further-
The work of Chen [8] was limited to polynomials with real more, he also observed the “if” part of the second statement,

coefficients. A complex analogue of Theorem 1 is simpleshowing [8, p.29] that if—a* is a root of h (as opposed

to state because optimizing the root radius results in @ one of its derivatives), the optimal valug is attained

polynomial with only one distinct root, a multiple root if by the polynomial with a single distinct roat*. However,

n > 1. However, the proof is substantially more complicatedhe noted on the same page that he did not have a general

n

than for the real case. ~ method to construct a polynomial with an abscissa equal to
BTheor%n 6: Let”Bo,Bh---d B, bedcomﬁ)lexf?_cala}rs (V|VIthfa given valued > a*. Nor did he characterize the case
pél’yribhiglsmt all zero) and consider the affine family of \;no the infimum is attained. As in the root radius case,

. two roots play a role, but here one of them may not be
P={z"+az"""+...4an1z+an:Bo+ > Bja; =0,a; cC}. finite. More specifically, the infimum of the root abscissa may

i=1 be arbitrarily well approximated by a polynomial with two
The optimization problem distinct roots, only one of which is bounded, as we explain
© g in the next theorem.
po= ;Ielp p(p) Theorem 8: Assume that-o* is not a root ofh. Let! be
has an optimal solution of the form the smallest integei € {1, .. k= 1} for which —a* is a
root of h(?), Then, for all sufficenty small > 0 there exists
p(z)=(z—y)"€P a real scalat\/, for which
with —~ given by a root of smallest magnitude of the pe(2) = (2 — M)™(z — (a* + €)™ e P

polynomial
wherem =1l orl+1, andM, — —oco ase — 0.

h(z) = ann+Bnl< n )an +.. 4B <">Z+BO. Remark 9: If —_ﬁ is.a real root ofa(z), then(z—3)"™ € P.
n—1 1 Such a polynomial is usually, though not always, a local



minimizer of a(p), but it is a global minimizer if and only with a single affine constraint on the coefficients. Motigate
if —f3 is the largest such real ro@nd no other roots of by numerical experiments, Henrion and Overton [9] con-
derivatives ofh are larger than-g. structed a polynomial with one distinct root with multiplic
Now we consider the optimal abscissa problem witlity 6 and proved its local optimality using techniques from
complex coefficients. In this case, the infimal value is alnonsmooth analysis. Theorem 7 proves its global optimality
ways attained at a polynomial with a single distinct root
Theorem 7 shows that in the real case the infimal value
not attained if and only if the polynomi&l has a derivative
with a real root to the right of the rightmost real root of

h. However, it is not possible that a derivative bfhas a .
complex root to the right of the rightmost complex root ofdegx_) = dedy) and a(zy(az + by.)) < 0. This problem .
emains unsolved. However, inspired by numerical experi-

h. This follows immediately from the Gauss-Lucas theoremr, . = \/—
which states that the roots of the derivative of a polynomid['€Nts: [4] gave a solution foi < § = (1/2)V2+ V2 »

» must lie in the convex hull of the roots of[6], [11]. 0.924. When « is constrained to be a monic polynomial

stample 3. This is derived from a “Belgian chocolate”
stabilization challenge problem of Blondel [1]: givefs) =
s? —28s+1 andb(s) = s? — 1, find the range of real values
of § for which there exist polynomials and y such that

Theorem 10: Let By, Bi,...,B, be complex scalars with degree3 andy to be a constant, the minimization of
(with By, ..., B, not all zero) and consider the affine family a(xzy(ax + by)) reduces to
of polynomials
inf
Inf a(p)

P= {z7L—|—a1z"71+. A an_1z+an : Bo—i—z Bja; = 0,a; € C}.
= where
2
P={(s>=20s+1)(s>+ Z wys®) + (52 = 1) | wo, w1, we,v € C}.
k=0

The optimization problem

o = inf a(p)
per For nonzero fixed), P is a set of monic polynomials with
has an optimal solution of the form degree 5 whose coefficients depend affinely on 4 parame-
Wy n ters, or equivalently with a single affine constraint on the
Pz =(z-7"er coefficients. In [4] a polynomial inP with a distinct root
with v given by a root with smallest real part of theof multiplicity 5 was constructed and proved to be locally
polynomialh(—z) where optimal using nonsmooth analysis. Theorem 7 proves its
global optimality overa; € R and Theorem 10 proves its
h(z) = an"—i—Bn_l( " )z"‘l +...+B (n)z+Bo. global optimality overa; € C. They also apply to the case
n—1 1 when z is constrained to be monic with degree 4; then,

IV. EXAMPLES as shown in [4], stabilization is possible for < 6 =
Example 1. Our first example is from [5], where it was (1/4)v/10 4+ 2v/5 ~ 0.951.

proved using the Gauss-Lucas Theorem fhdt) = z" isa Example 4. The polynomial achieving the minimal root

global optimizer of the abscissa over the set of polynomial&dius may not be unique. L& = {22 + a1z +az | 1 +

3 ay + a2 = 0,a; € R}. We have

P={z"4+a12" "+.. 4a,_12+a, | a1+ay = 0,a; € C}.
p* = inf p(z°—(ag+1)z4a2) = ai2n€pr((Z —a2)(z—1)) =1

We calculateh(z) = (3)z(z + =2;). Theorem 7 proves a2€R
global optimality over; € R and Theorem 10 proves global The minimal value is attained on a continuum of polynomials
optimality overa; € C. of the form(z — az)(z — 1) for any —1 < a» < 1 and hence

Example 2. Consider the problem of finding a fixed-orderMinimizers are not unique. The existence of the minimizers
. 5 . ; )

linear controller that maximizes the closed-loop asyniptot (2 —1)% and (2 + 1)(= — 1) is consistent with Theorem 1.

decay rate for the classical two-mass-spring system. HenriThe same example shows that the minimizer for the radius

and Overton [9] showed that the only order for which ther@Ptimization problem with complex coefficients may not be
is a nontrivial solution is 2, because an order 3 controllefMaue.

can achieve an arbitrarily fast decay rate, while using ordgxample 5. Likewise, a polynomial achieving the minimal
1 the system is not stabilizable. In the case of order 2, thgot abscissa may not be unique. LBt = {22 + a;z +
problem is equivalent to the following optimization proivle , | a1 = 0,ay € R}. We have

9]

1 * = f = 1 f 2 = O
wb o) O el = Mol )
where Here By = By, = 0, By = 1. The optimum is attained at

p*(2) = 22, where—a* = 0 is a root of the polynomial
h(z) = z, as claimed in Theorem 7. However, the optimum
Thus P is a set of monic polynomials with degree 6 whosés attained at a continuum of polynomials of the fozf-as
coefficients depend affinely on 5 parameters, or equivaientfor any as > 0.

P = {(s*+2s?)(zo+a15+5%)+yo+y1s+y2s® | 2o, 21,0, y1,y2 € R}



Contour Plot of Radius of a Two-Parameter family of Monic Cubics

Fig. 1.  Contour plotp(p) for a randomly generated family of monic
cubics with coefficients depending affinely on two real pastars. The
asterisk (right) shows the global minimizer and the cirdkft) shows a
local minimizer.

== =xcomplex case
real case

optimal abscissa

Fig. 2. The optimal root abscissa for a polynomial famify + a;z* +
-+« + a5 with constraintBy + Z?:1 a; = 0, with By varied from—2 to
4. The solid curve (cyan) shows the optimal abscissa for #se€; € R
and the dotted curve (red) for the casge C.

Example 6. In this example, the infimal root abscissa is notlgorithms implicit in Theorems 1, 6, 7 and 10. This code

attained. LetP = {22+ a1z +az | az = —1,a; € R}

*

«

inf a(z?+a1z—1)
a1 ER

—a1 — /a2 _ /2
= inf max a@ o1+ 4, at vy 4
a1 €R 2 2
= 0.

This infimum is not attained, but ag; — oo, settinge =

_ 21 \a?+4 .
‘“+2“1+ — 0 and M, = 4, oo gives

2
(z—€)(z — M) € P as claimed in Theorem 8.

—a1—

Example 7. Figure 1 shows a contour plot gf(p) for a
randomly generated family of monic cubics with coefficient
depending affinely on two real parameters. The asteri
indicates a global minimize: —+;)? and the circle indicates
a local minimizer (z — 72)3. Both —y; ~ —0.541 and

—72 ~ 0.567 are roots ofy, (see Corollary 2 and Remark 5).

Note the steep contours near the global and local minimizers

indicating the non-Lipschitz behavior of the radipss the
triple root splits [7].

Example 8.Consider the monic quintic polynomials subject

to the affine constrainB, +Zf:1 a; = 0. Figure 2 plots the
optimal abscissa, over; € R anda; € C respectively, as
a function of By € [—-2,4]. For By < 1, the largest root of

the polynomialk is real so the optimal abscissa is attained|s]
with the same optimal value for both the real and complex

cases. FoBy = 1, h(z) = (1 + 2)° so all of the roots of
and its derivatives are identical. Furthermore, whign= 1,
the hyperplanéHp = {(a1,as,...,a,) | Bo + Zle a; =
0} contains the extreme lines; of the coneconv(S}) for
1=1,2,3,4 as well as the boundary ebnv(S7) which is
the positive span of the vectors;,7 = 1,2, 3,4, we have
aff(S7") = Hp. As By is increased, the hyperpladép is
translated away froneonv(S7'), and forBy > 1, Hp does
not intersectconv(ST) but it is parallel to it. Thus, for the
real case, the infimum is not attained fBy > 1 and has
the constant value 1.

More examples may be explored by downloading a pulyi1)

licly availablet MATLAB code implementing the constructive

Iwww.cs.nyu.edu/overton/software/affpoly

was used to generate the optimal values plotted in Figure 2
and the global and local minimizers plotted in Figure 1; see
the website for more details. In general, there does not seem
to be any difficulty obtaining an accurate globally optimal
value for the abscissa or radius in the real or complex case.
However, even in the cases where an optimal solution exists,
the coefficients may be large, so that rounding errors in the
computed coefficients result in a large constraint residual
Furthermore, the multiple roots are not robust with respect
to small perturbations in the coefficients. Optimizing the
complex stability radius of the polynomial may be of more
practical use; see [4, Section 1.
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