
How Does a Box Work? : Appendix. Formal proof of

correctness of plan1

Ernest Davis∗

Dept. of Computer Science

New York University

davise@cs.nyu.edu

September 5, 2008

Note: Unlike the main article, I have not put constant symbols into typewriter font in this proof.
There is only so much time I want to spend making fiddly typographical edits in a document that
probably no one will ever read. I have not tidied up the numbering on lemmas/definitions for the
same reason.

One necessary constraint in the problem specification was accidentally deleted from the current draft
of the paper

P1.37 holds(s1,rccEC#(manipSpace1,oTable2)).

1 Plan Execution

Lemma 1.1:

historyProperPrefix(H1, H2) ⇔
∃HM historyProperPrefix(H1, HM) ∧ historyProperPrefix(HM, H2).

Proof: From definitions TD.15, TD.14, TD.13, axiom T.4, plus transitivity of ordering and the
density of time points, inherited from real numbers.

In general below, I will omit the aspects of proofs that depend purely on unrolling definitions TD.1
– TD.23 or that depend on applying the properties of the real numbers to time points.

Lemma 1.2:

∀P,H,H1 beginsxE(P, H) ∧ historyProperPrefix(H1, H) ⇒ begins(P, H1)

Proof: Suppose that beginsxE(P, H) and historyProperPrefix(H1, H). Using PLD.3, since start(H1)=start(H)
we have beginnable(P ,start(H1)). For any H2, if historyProperPrefix(H2, H1) then by lemma
1.1 historyProperPrefix(H2, H) and holds(start(H),kinematicState), so by PLD.3 baseExec(P, H2).
Hence by PLD.3, begins(P, H1).

Lemma 1.3:

∀P,H beginnable(P ,start(H)) ∧ [∀H1 historyProperPrefix(H1, H) ⇒ beginsxE(P, H1)] ⇒
beginsxE(P, H)

∗This research was supported in part by NSF grants IIS-0097537, and IIS-0534809.

1

Proof: Suppose that ∀H1 historyProperPrefix(H1, H) ⇒ beginsxE(P, H1). Let H2 be any his-
tory such that historyProperPrefix(H2, H). By lemma 1.1, there exists a history H3 such that
historyProperPrefix(H2, H3) and historyProperPrefix(H3, H). Therefore, by assumption beginsxE(P, H3).
By PLD.3, since H2 is a proper prefix of H3, baseExec(P, H2). Therefore, applying PLD.3 from
right to left, beginsxE(P, H).

Lemma 1.4:

∀H,P begins(P, H) ⇒ ∃J historyPrefix(H, J) ∧ attempts(P, J).

Proof: By PLD.3—PLD.8, attempt(P, J) holds if J is a maximal history such that begins(P, H)
holds overall all prefixes or proper prefixes H of J . Axiom HC.3 guarantees the existence of such a
maximal history.

To spell this out in greater detail: Axiom schema HC.3 applied to the formula Φ(·)=begins(P, ·)
gives the statement

∀H begins(P, H) ⇒
∃J historyPrefix(H, J) ∧

∀H1 [historyProperPrefix(H1, J) ⇒ begins(P, H1)] ∧
[historyProperPrefix(J, H1) ⇒
∃H2 historyPrefix(J, H2) ∧ historyPrefix(H2, H1) ∧ ¬begins(P, H2)]].

Assume that begins(P, H) and let J satisfy the right-hand side of the above implication. By PLD.4,
PLD.5, beginnable(P ,start(H)). By lemmas 1.2, 1.3 the property of J

∀H1 [historyProperPrefix(H1, J) ⇒ begins(P, H1)]
is in fact just equivalent to beginsxE(P, J).

The property of J ,
∀H1 [historyProperPrefix(J, H1) ⇒

∃H2 historyPrefix(J, H2) ∧ historyPrefix(H2, H1) ∧ ¬begins(P, H2)]]
is the negation of

∃H1 [historyProperPrefix(J, H1) ∧
∀H2 historyPrefix(J, H2) ∧ historyPrefix(H2, H1) ⇒ begins(P, H2)]]

Since P also begins over all proper prefixes of J , by lemma 1.2, this is equivalent to
∃H1 historyProperPrefix(J, H1) ∧ beginsxE(P, H1).

Now there are two possibilities: either continuableEnd(P, H1) or not. If continuableEnd(P, H1)
then by PLD.6 there exists H2 such that sameUntilEnd(H1, H2) and begins(P, H2).

Lemma 1.5: ∀S,P holds(S,kinematicState) ⇒ ∃J start(J)=S ∧ attempts(P, J).

Proof: Using T.3 choose H1 such that singleHist(H1, S). If ¬beginnable(P, S) then the result is
immediate from PLD.5 with J = H1. Otherwise, it follows from PLD.3 that begins(P, H1) (the
quantified condition holds vacuously), so the result follows from lemma 1.4.

Lemma 1.6:

attempts(P, J1) ∧ historyProperPrefix(J1, J2) ⇒ ¬attempts(P, J2).

Proof: Immediate from PLD.5, PLD.4, PLD.3.

Lemma 1.7:

completes(P, J1) ∧ historyProperPrefix(J1, J2) ⇒ ¬completes(P, J2).

Proof: Immediate from PLD.6, Lemma 1.6.

Lemma 1.8:

2

reactComplete(P, H) ∧ historyProperPrefix(H, H1) ⇒ reactComplete(P, H1).

Proof: Immediate from PLD.1. A time TC and history HC that satisfies the right side of PLD.1
for H also satisfies it for H1.

Lemma 1.9:

baseExec(P, H) ∧ historyPrefix(H1, H) ⇒ ¬completes(P, H1).

Proof: By PLD.1, ¬reactComplete(P, H). By lemma m1, ¬reactComplete(P, H1). The result
follows from PLD.6.

Lemma 1.10: attempts(P, H) ∧ [holds(start(H),kinematicState) ∨ ¬singleHist(H ,start(H))] ⇒
dynamic(H).

Proof: If singleHist(H ,start(H)) then start(H) is kinematic, so by DYN.3 dynamic(H). Otherwise,
the result is immediate from PLD.7, PLD.4, PLD.3.

Lemma 1.11

reactComplete(P, H) ⇒
∃H1 historyPrefix(H1, H) ∧ reactComplete(P, H1) ∧
∀H2 historyProperPrefix(H2, H1) ⇒ ¬reactComplete(P, H2).

Proof: Let Φ(T) be the following property:

startTime(H) ≤ T ∧ ∃HA historySlice(H ,startTime(H),T ,HA) ∧ reactComplete(P, HA).

By lemma 1.8, if Φ(T 1) and T 1 < T 2 then Φ(T 2). Since Φ(endTime(H)), by the Dedekind property
there is a minimal TX dividing the times where Φ holds from those where it does not. By PLD.1,
Φ holds on TX , and the conditions of the lemma hold if H1 is the prefix of H ending at TX .

Lemma 1.12:

reactComplete(P, H) ⇒ endTime(H) − startTime(H) ≥ reactionTime.

Proof: Immediate from PLD.1.

Lemma 1.13:

completes(P, H) ⇒ beginnable(P ,start(H)).

Proof: By PLD.6 attempts(P, H) and reactComplete(P, H). By PLD.5, if attempts(P, H) and
¬beginnable(P ,start(H)) then H is instantaneous, but by Lemma 1.12, the duration of H must be
at least reactionTime. Hence beginnable(P ,start(H)).

Lemma 1.14:

baseExec(P, H) ⇒ ¬∃H1 historyPrefix(H1, H) ∧ completes(P, H1).

Proof: PLD.1, PLD.2, PLD.6, lemma 1.8.

1.1 Control Structures

Lemma 1.15

baseExec(P1, H) ⇒ baseExec(sequence(P1, P2),H)

Proof: Assume baseExec(P1, H). By PLD.2, CTL.2, lemma 1.14, worksOn(sequence(P1, P2),H).
Let H1 be a prefix of H that ends earlier than endTime(H)−reaction Time. By PLD.1, PLD.2,
¬completion(P1, H1). Let HA be any prefix of H . By lemma 1.9, completes(P1, HA) does
not hold; hence by CTL.3, completion(sequence(P1, P2),HA) does not hold; hence by PLD.1
¬reactComplete(sequence(P1, P2),H). By PLD.2, beginnable(sequence(P1, P2),start(H)) and holds(start(H),kinematicState).

3

Thus, we have met all the conditions for
baseExec(sequence(P1, P2),H) on the right side of PLD.2.

Lemma 1.16

completes(P1, H1) ∧ baseExec(P2, H2) ∧ hsplice(H1, H2, H) ⇒
baseExec(sequence(P1, P2),H).

Proof: By lemma 1.10, dynamic(H1) and by PLD.2 dynamic(H2) so by DYN.7 dynamic(H). By
PLD.2, CTL.2 worksOn(sequence(P1, P2),H). By PLD.1, PLD.2, completion(P2, HA) does not
hold for any prefix HA of H2 that ends earlier than endTime(H)−reactionTime. By lemma 1.7,
PLD.3 completion(sequence(P1, P2),HB) does not hold for any prefix HB of H that ends ealier
than endTime(H)− reactionTime. By PLD.1 ¬reactComplete(sequence(P1, P2),H). By lemma
1.12 beginnable(P1,start(H)); hence by CTL.1 beginnable(sequence(P1, P2),start(H)). Thus, we
have met all the conditions for baseExec(sequence(P1, P2),H) on the right side of PLD.2.

Lemma 1.17:

begins(P1, H) ⇒ begins(sequence(P1, P2),H).

Proof: Immediate from CTL.1, PLD.3, lemma 1.15.

Lemma 1.18:

completes(P1, H1) ∧ begins(P2, H2) ∧ hsplice(H1, H2, H) ⇒
begins(sequence(P1, P2),H).

Proof: Immediate from CTL.1, PLD.3, lemma 1.16.

Lemma 1.19: FIX
begins(sequence(P1, P2),J) ⇒
[begins(P1, J) ∧ ¬completes(P1, J)] ∨
[completes(P1, J) ∧ ¬beginnable(P2,end(J))] ∨
[∃H1,J2 completes(P1, H1) ∧ begins(P2, J2) ∧ hsplace(H1, J2, J)].

Proof: There are three cases.

Case 1: There is no prefix H1 of J such that completes(P1, H1). Let HA be any proper prefix of J .
By PLD.3, PLD.2 dynamic(HA) and worksOn(sequence(P1, P2),HA). By CTL.2 worksOn(P1, HA).

Suppose that reactComplete(P1, HA). Using lemma 1.11, let HC be the minimal prefix of HA for
which reactComplete(P1, HA). Then by PLD.9 completes(P1, HC) contrary to assumption. Thus
¬reactComplete(P1, HC). By PLD.3 incompleteExec(P1, HA). By CTL.1, beginnable(P ,start(H)).
Hence by CTL.3 begins(P1, J).

Case 2: There is a prefix H1 of J such that completes(P1, H1). but ¬beginnable(P2,end(H1)). By
PLD.2 ¬baseExec(sequence(P1, P2),H1). Thus by PLD.3 begins(sequence(P1, P2),H2) does not
hold for any proper extension H2 of H1; hence J is not a proper extension of H1; hence J = H1.

Case 3: There is a prefix H1 of J such that completes(P1, H1). and beginnable(P2,end(H1)). Let J2
be the history such that hsplice(H1, J2, H). If J2 consists of a single situation, then begins(P2, H2)
is immediate from CTL.3. Otherwise, let H3 be any history such that H1 is a prefix of H3
and H3 is a proper prefix of J . By PLD.3, PLD.2, worksOn(sequence(P1, P2),H3), so by CTL.2
worksOn(P2, H3). By assumption beginnable(P2, H3). By PLD.1, CTL.3 ¬reactComplete(P2, H3).
By DYN.5 dynamic(H3). Hence by PLD.2 baseExec(P2, H3). Hence by PLD.3 begins(P2, J2).

Lemma 1.20:

begins(sequence(P1, P2),J) ⇔
[begins(P1, J) ∧ ¬completes(P1, J)] ∨
[completes(P1, J) ∧ ¬beginnable(P2,end(J))] ∨
∃H1,J2 completes(P1, H1) ∧ begins(P2, J2) ∧ hsplice(H1, J2, J)].

4

Proof: Putting together 1.17, 1.18, 1.19.

Lemma 1.21:

attempts(sequence(P1, P2),J) ⇔
[attempts(P1, J) ∧ ¬completes(P1, J)] ∨
[completes(P1, J) ∧ ¬beginnable(P2,end(J))] ∨
∃H1,J2 completes(P1, H1) ∧ begins(P2, J2) ∧ hsplice(H1, J2, J)]

Proof: Immediate from lemma 1.20, PLD.5.

Lemma 1.22:

completes(sequence(P1, P2),H) ⇔
∃H1,H2 completes(P1, H1) ∧ completes(P2, H2) ∧ hsplice(H1, H2, H)]

Proof: Immediate from lemma 1.21, PLD.6, CTL.3, PLD.1.

Proof: Straightforward definition chasing through from CTL.6 through CTL.10, PLD.1 through
PLD.3

Definition 1.23:

noopStart(H : history) ≡
dynamic(H) ∧ throughoutxSE(H ,freeGrasp) ∧ endTime(H) ≤ startTime(H) + reactionTime.

Definition 1.24:

noop(H : history) ≡
dynamic(H) ∧ throughoutxSE(H ,freeGrasp)) ∧ endTime(H) = startTime(H) + reactionTime.

Lemma 1.25

begins(if1(Q, P),H) ⇔
[holds(Q,start(H)) ∧ begins(P, H)] ∨
[¬holds(Q,start(H)) ∧ noopStart(H)].

Proof: CTL.7, PLD.1—PLD.4, definition 1.23.

Lemma 1.26:

attempts(if1(Q, P),H) ⇔
[holds(Q,start(H)) ∧ attempts(P, H)] ∨
[¬holds(Q,start(H)) ∧ noop(H).]

Proof: Lemma 1.25, PLD.4, PLD.5, definition 1.24.

Lemma 1.27:

completes(if1(Q, P),H) ⇔
[holds(Q,start(H)) ∧ completes(P, H)] ∨
[¬holds(Q,start(H)) ∧ noop(H)].

Proof: Lemma 1.26, PLD.6.

Lemma 1.28:

attempts(while(Q, P),J) ⇔
[¬holds(start(J),Q) ∧ noop(J)] ∨
[holds(start(J),Q) ∧ attempts(P, J) ∧ ¬completes(P, Q)] ∨
[holds(start(J),Q) ∧ ∃H1,J2 completes(P, H1) ∧ attempts(while(Q, P),J2) ∧ hsplice(H1, J2, J)].

Proof: Axiom CTL.12 together with Lemmas 1.26 and 1.21.

Lemma 1.29:

completes(while(Q, P),J) ⇔
[¬holds(start(J),Q) ∧ noop(J)] ∨

5

[holds(start(J),Q) ∧ ∃H1,J2 completes(P, H1) ∧ completes(while(Q, P),J2) ∧ hsplice(H1, J2, J)].

Proof: Lemmas 1.27 and CS.8.

Lemma 1.30: Let Φ(S:state,X) be an open formula with free variable S and optionally other
variables X . The following holds:

∀
P,P1:plan,H:history,Q:fluent[Bool],X

[P=while(Q, P1) ∧ attempts(P, H) ∧ Φ(start(H),X) ∧
[∀

H1:history [Φ(start(H1),X) ∧ holds(start(H1),Q) ∧ attempts(P1, H1) ⇒

completes(P1, H1) ∧ Φ(end(H1),X)] ∧
[Φ(start(H1),X) ∧ ¬holds(start(H1),Q) ∧ noop(H1) ⇒ Φ(end(H1),X)]

]] ⇒
completes(P, H) ∧ Φ(end(H),X).

Proof: By induction over ⌊(endTime(H)−startTime(H) / reactionTime⌋ (an upper bound on the
number of completed iterations).

Assume that the left-hand side of the implication above holds; that is:

a. P=while(Q, P1) ∧ attempts(P, H) ∧ Φ(start(H),X).

b. ∀H1 Φ(start(H1),X) ∧ holds(start(H1),Q) ∧ attempts(P1, H1) ⇒
[completes(P1, H1) ∧ Φ(end(H1),X)]

c. ∀H1 Φ(start(H1),X) ∧ ¬holds(start(H1),Q) ∧ noop(H1) ⇒ Φ(end(H1),X)]

Base case: If ⌊(endTime(H)−startTime(H) / reactionTime⌋ = 0, and attempts(P, H), then the first
and third disjunctions of lemma 1.28 (the condition fails and a no-op is executed, or the condition
succeeds and the first iteration of P completes) cannot hold, since either a no-op or a complete
execution of a plan takes at least reactionTime (lemma 1.12). Thus the second disjunct must hold;
that is holds(start(J),Q) ∧ attempts(P1, J) ∧ ¬completes(P1, Q). But this contradicts condition
(b) above, so the overall implication is true vacuously.

Inductive case: Assume that the lemma holds for all histories H1 where
⌊(endTime(H1)−startTime(H1)) / reactionTime⌋=K for some value of K. Let H be a history such
that
⌊(endTime(H1)−startTime(H1)) / reactionTime⌋=K + 1 Assume that the left-hand side of the
implication holds. Since attempts(while(Q, P1),H), by 1.28 there are three cases:

Case 1: ¬holds(start(H),Q) and noop(H).
By condition (c) and lemma 1.29 completes(P, H).

Case 2: holds(start(H),Q), attempts(P, H) and ¬completes(P, H).
This is excluded by condition (b).

Case 3: holds(start(J),Q) ∧
∃H1,J2 completes(P, H1) ∧ attempts(while(Q, P),J2). ∧ hsplice(H1, J2, J).
By condition (c), Φ(end(H1),X). By lemma 1.12, H1 has duration at least reactionTime; hence
(endTime(J2)−startTime(J2)) ≤ K, so the inductive hypothesis applies to J2. Clearly J2 sat-
isfies all of conditions (a), (b), and (c); hence by the induction hypothesis completes(P, J2) and
Φ(end(J2),X). Since end(J2)=end(H), we have Φ(end(H),X). By lemma 1.29 we have completes(P, H).

Lemma 1.31:

6

[sort(Q)=fluent[objectSet] ∧ P=while (Q 6=# ∅, P1), J) ∧ attempts(P, J) ∧
[∀J1 historySlice(J1, J) ∧ attempts(P1, J1) ⇒

history(J1) ∧ count(value(end(J1),Q)) < count(value(start(J1),Q))]] ⇒
history(J).

Proof: By a simple induction on count(value(start(J),Q)).

(Note: To aid readability, we are abusing notation here and below in using count(·) as a function
rather than as a two-place predicate.)

Definition 1.32: throughoutxS(H, Q) ⇔
∀T,S stateAt(H, T, S) ∧ startTime(H)< T ⇒ holds(S, Q).

Lemma 1.33:

attempts(waitUntil(Q),J) ⇒
throughoutxS(J ,freeGrasp) ∧
[[unbounded(J) ∧ throughout(J,¬#Q))] ∨
[bounded(J) ∧ completes(waitUntil(Q),J)]].

Proof: Let P=waitUntil(Q). By AC.4 P is always beginnable. Hence, if attempts(P, J) by PLD.7
either [begins(P, J) and ¬continuable(P, J)] or [beginsxE(P, J) and ¬continuableEnd(P, J)]. In ei-
ther case, by PLD.4, PLD.3, prefixes H1 of J , baseExect(P, H1), so by PLD.2 reactComplete(P, H1)
is false and worksOn(P, H1) is true. Hence by AC.5 freeGrasp is true at all times before the end of
J . By AC.6 and PLD.1 if J is unbounded then Q is always false; if J is bounded, then Q is false at
all times before endTime(J)−reactionTime.

Suppose that J is bounded and that the above disjunct beginsxE(P, J) and ¬continuableEnd(P, J)
is true. Let H1 be a history satisfying DYN.10; that is, H1 is identical to J up to but not including
end(J) and holds(end(H1),freeGrasp). By AC.5, worksOn(P, J). By PLD.5 since ¬continuableEnd(P, J),
it follows that ¬baseExec(P, H1). By PLD.2, AC.6, it follows that reactComplete(P, H1). Since H1
and J are identical at all times before endTime(H1), it is immediate from PLD.1 that reactComplete(P, J).
Therefore by PLD.8 completes(P, J).

The argument for the case where the disjunct begins(P, J) and ¬continuable(P, J) holds is almost
identical.

2 Loading loop

Definition 2.1:

Let loadedBelow(DH : distance) be the fluent whose value in S is the set of objects loaded in the
box whose center of mass is below height DH . Formally,
O ∈ value(S,loadedBelow(DH)) ⇔
holds(S,O ∈#loadedCargo ∧# height#(↑centerOfMass(O)) ≤# DH)

(Note: Strictly, establishing the existence of such a fluent would require a comprehension axiom on
fluents like axiom I.5 of [1]. However, nothing in this proof actually demands that these fluents exist
as reified entities; we could just as well define the concept as a predicate loadedBelow(DH, S), and
similarly the fluents defined below. The fluent notation is just to aid readability.)

Definition 2.2:

holds(S,midLoadingPosition) ⇔
[sameStateOn(S,s1,{ oBox, oTable1 } ∪ value(S,unloadedCargo)) ∧
holds(S,isolFluent(problem1)) ∧

7

∀D count(value(S, loadedBelow(bottom(rCuboid)+D−maxCargo))) ≥
min(count(value(S,loadedCargo)),

loadingCount(maxCargoDiam,lCube,wCube,D)))
].

Lemma 2.3:

[throughout(J ,isolated(UM, UF)) ∧ P=waitUntil(stable(UM ∪ UF)) ∧ attempts(P, J) ∧
∀O∈UF fixed(UF)] ⇒
completes(P, J).
(If a set of object UM is isolated from all but a set of fixed objects UF , and the agent waits long
enough, everything will settle down to a stable position.)

Proof: Assume that the left-hand side holds. Suppose that J is unbounded. By lemma 1.33, free-
Grasp and ¬stable(UM ∪UF) hold throughout J . By DYD.1 throughout(J ,isolated(UM, UF)). By
H.3 there exists a suffix J2 of J throughout which stable(UM ∪UF) holds, which is a contradiction.

Thus J is bounded, so by lemma 1.33 completes(P, J).

Lemma 2.4:

∀
O:object,P1 P1 ∈shape(O) ⇒ distance(P1,centerOfMass(O)) ≤ diameter(O).

Proof: Geometrically immediate from CM.2

Lemma 2.5:

holds(S,midLoadingPosition) ⇒
∀K K ≤ count(value(S,loadedCargo)) ⇒
∃U U ⊂value(S,loadedCargo) ∧ count(U) = K ∧

∀O∈U holds(S,top#(↑O) <# bottom(rCuboid) +# maxBottomHeight(K) + 2·maxCargoDiam).

Proof: Let D in definition 2.2 be chosen as maxBottomHeight(N) + 2·maxCargoHeight.
By definition 2.2 the number of loaded cargo objects whose center of mass is below
value(S,bottom(rCuboid)) + D−maxCargoDiam is at least
loadingCount(maxCargoDiam,lCube,wCube,D). By CM.2, PR.7, the top of any object is at most
maxCargoDiam higher than its center of masss; hence the number of loaded cargo objects whose
top is below bottom(rCuboid) + D is at least
loadingCount(maxCargoDiam,lCube,wCube,D); but this is at least N , by an arithmetic combination
of P1.3.1, P1.3.2 and PR.23.

Definition 2.6:

holds(S,freeCuboid(R)) ≡
cuboid(R,maxCargoDiam,maxCargoDiam,2·maxCargoDiam) ∧
R ⊂rCuboid ∧ holds(S,empty(R)) ∧
bottom(R) = bottom(rCuboid) + value(S,maxBottomHeight#(count#(loadedCargo) + 1)))

Lemma 2.7:

holds(S,midLoadingPosition) ⇒ ∃R holds(S,freeCuboid(R)).

Proof: Let N=count(value(S,loadedCargo)) and let K = N + 1−value(S,levelCount).
Let DB= bottom(rCuboid) + value(S,maxBottomHeight#(count#(loadedCargo)))
= bottom(rCuboid) + maxBottomHeight(N + 1). By lemma 2.5, there are at least K loaded cargo
objects whose top is below DB, so there are fewer than levelCount cargo objects with any part
above DB.

Divide the slice of rCuboid between heights DB and DB + 2·maxCargoDiam into cuboids that are
maxCargoDiam wide and deep and 2·maxCargoDiam high. There will 4·levelCount such cuboids.
Clearly any single object can only intersect two cuboids in the x direction and two cuboids in the

8

y-direction, hence can intersect a maximum of four cuboids. Since there are at most (levelCount−1)
objects that intersect this slice, at most 4·(levelCount−1) of these cuboids are intersected by cargo
objects. Thus there at least four cuboids that are not intersected by cargo objects. Since they are
also not intersected by the box or by any unloaded object (Definition 2.2, PR.10, PR.20) or by any
object outside o1 (PR.32, PR.18), they are empty and thus are free cuboids, by definition 2.6.

Lemma 2.8:

holds(S,midLoadingPosition) ∧ holds(S,freeCuboid(R)) ∧
sameSituationExcept(S1, S, O) ∧ holds(S1,↑O ⊂# R) ⇒
holds(S1,freeAbove(O)).

Proof: From the definition of freeAbove (P1.4) together with the fact that the free space above R

is not intersected by any loaded cargo object, any unloaded cargo object or the box (Defn. 2.12,
PR.10, PR.20) or any non-cargo object (PR.33, PR.18).

Lemma 2.9:

∀RO,RB cuboid(RB, L, W, D) ∧ diameter(RO) < min(L, W, D) ⇒
∃M translation(M) ∧ imageMapping(M, RO) ⊂ RB.

Proof: Let M be the translation of RO that moves the bottommost point of RO to the bottom
face of RB, the leftmost point of RO to the leftmost face of RB and the frontmost point of RO to
the frontmost face of RB.

Lemma 2.10:

holds(S,midLoadingPosition) ∧ P ∈manipSpace1 ∧ oTable1Top+boxHeight < height(P) ⇒
¬∃

O:object P ∈value(S,place(O)).

Proof: Geometric from PR18, definition 2.2.

Lemma 2.11:

openBox(RB, RI, PST) ∧
[∀P P ∈ PST ⇒ height(P) = top(RI)] ⇒
∃

P1∈interior(RI),P2∈interior(RB) pointAbove(P1, P2).

Proof: Let PX be any interior point in RI, and let DB be a distance such that the ball of radius
DX around PX is in RI. Let py(D)=PX−D · ẑ for D ≥ 0. We have that py(0) = PX is inside RI,
and, since RI is bounded, py(D) is outside RI for sufficiently large D. Hence there is a DX such
that py(DX) is on the boundary of RI. Since PST is above PX , py(DX) is not in PST ; hence
(axiom SD.1) py(DX) is in boundary(RB). Since RB is regular, we can choose a point P2 in the
interior of RB within DB of py(DX). Let P1 = P2 + DX · ẑ. Since distance(P1, P2) < DB, P1 is
in the interior of R1.

Corollary 2.11.A:

openBox(RB, RI, PST) ∧
[∀P P ∈ PST ⇒ height(P) = top(RI)] ⇒
altogetherAbove(RI, RB).

Proof: Since RI is the closure of interior(RI) and RB is the closure of interior(RB), the result is
immediate from lemma 2.11.

Lemma 2.12:

holds(S,midLoadingPosition) ∧ O ∈value(S,unloadedCargo) ⇒
∃S1,M sameSituationExcept(S1, S, O) ∧ holds(S1,boxLoadingPos(O, QI)) ∧ translation(M) ∧
value(S1,placement(O)) = imageMapping(M ,value(S,placement(O)).

Proof: Use lemma 2.7 and lemma 2.9 to put O low down inside qInsideBox, then move O vertically
downward until it comes into contact with some other object.

9

Formally: Let R1 be a region satisfying lemma 2.7. Let M1 be a translation satisfying Lemma 2.9,
where RB = R1 and RO=value(S,place(O)).

For any D ≥ 0 we will say that D is a dropping of R1 if the following holds:

∀D1≤D,O1∈u1 rccDC(R1 − D1 · ẑ, value(S,place(O1))).

By definition D = 0 is a dropping of R1 and by lemma 2.11, for D sufficiently large, D is not a
dropping of R1, since R1 − D1 · ẑ will overlap with value(S, ↑oBox)). Hence there is a maximum
value of DM of D such that D1 is a dropping of R for all D1 < DM and D1 is not a dropping of
R for all D1 > DM . By continuity, R1 − DM · ẑ is externally connected to some object in u1. Let
M=M1− DM · ẑ and using DYN.1 let S1 be the state such that value(S,placement(O)) = M and
sameStateExcept(S, S1, {O}).

To establish the condition holds(S1,boxLoadingPos(O, QI)), we must verify that
value (S1, height#(↑centerOfMass(O)) ≤ bottom(rCuboid) + maxBottomHeight(N) + maxCargo-
Diam
where N=count(value(S1,loadedCargo)). This follows immediately from the fact that the N − 1
objects in value(S,loadedCargo) are in the same position in S1 as in S, and hence have their center of
mass below the specified height; that N=1+count(value(S,loadedCargo)); that bottom(O) is equal
to or below bottom(R1), which is at bottom(rCuboid)+maxBottomHeight(N); and that
value(S, height#(↑centerOfMass(O)) ≤ bottom(O)+maxCargoDiam.

The remaining conditions of holds(S,boxLoadingPos(O, QI)) and the remaining conditions on the
right side of lemma 2.12 are immediate.

Definition 2.13A:

holds(S,maximalConnectedGroup(U)) ≡
holds(S,connectedGroup(U)) ∧
∀O1 O1 6∈ U ⇒ ¬holds(S,connectedGroup(U ∪ {O1}).

Definition 2.13.B:

parallelMovable(O, S, HT, T) ≡
∃U1,HP O ∈ U1 ∧ holds(S,maximalConnectedGroup(U1)) ∧
start(HP)=S ∧ kinematic(HP) ∧
startTime(HP)=T ∧ sameMotion(HP, HT, {O}, 0) ∧
[∀O1∈U1 parallelMotion(O1, O, HP)] ∧
[∀

O1∈objectsOf(HP)−U1 motionless(O1, HP)].

Lemma 2.13:

sameStateOn(start(HT),start(H),{ O }) ∧ attempts(move(O, HT),H) ∧
endTime(H)−startTime(H) < endTime(HT)−startTime(HT) ⇒
¬ parallelMovable(O,end(H),HT ,endTime(H)).

Proof: Let P=move(O, HT). Let D=startTime(H)−startTime(HT). By AC.3, ¬completion(P, H1)
for any prefix H1 of H , so by PLD.1 ¬reactComplete(P, H1) for any prefix H1 of H . By AC.1
beginnable(P ,start(H)). By PLD.7, either [beginsxE(P, H) and ¬continuableEnd(P, H)] or [begins(P, H)
and ¬continuable(P, H)].

In either case (PLD.5) beginxE(P, H). Let H1 be a proper prefix of H . By PLD.4, PLD.3, PLD.2
worksOn(P, H1). By AC.2, sameMotion(H1, HT, {O}, D) and throughoutxSE(H1,grasping(O)).
By continuity (K.5) placement(O) is the same in end(H) as in end(HT); thus sameMotion(H, HT, {O}, D).
By DYN.11 there exists HX such that sameUntilEnd(HX, H) and holds(HX ,grasping(O)). By
AC.2, worksOn(move(O, HT),HX). By PLD.2, PLD.5, PLD.6, continuableEnd(P, H).

10

Therefore, we have begins(P, H) and ¬continuable(P, H). By PLD.3, PLD.4, PLD.5 baseExec(P, H1)
holds over every proper prefix H1 of J , but there is no proper extension H2 of J such that
begins(P, H2).

Suppose that parallelMovable(O, end(H), HT ,endTime(H)). Let HP, U satisfy the conditions of defi-
nition 2.13.B. Clearly HP satisfies the conditions on HK in DYN.14. Let H2 satisfy the conclusion of
DYN.14. Using T.5, let H3 be the splicing of H1 followed by H2. By DYN.6, dynamic(H3). It is im-
mediate by construction that sameMotionOn(H3, HT, {0}, D), and by DYN.14 throughoutxSE(H3,grasping(O)),
hence beginsxE(move(O, HT),H3). But then if H4 is an extension of H and a proper prefix of H3,
we have begins(move(O, HT),H4), so continuable(move(O, HT),H), which is a contradiction.

Definition 2.14:

swathe(PS: pointSet; D: distance; V̂ : vector) → pointSet.
P ∈swathe(PS, D, V̂) ⇔ ∃P1∈PS,D1 0 ≤ D1 ≤ D ∧ P = P1 + D · V̂ .

Definition 2.15:

lineTranslation(O:object, H :history, D: distance, V :vector) ≡
∀T1,T2,S1,S2 T 1 < T 2 ∧ stateAt(H, T 1, S1) ∧ stateAt(H, T 2, S2) ⇒

∃D1 0 < D ≤ D1 ∧ value(S2,placement(O)) = value(S1,placement(O)) + D1 · V̂ .

Lemma 2.16:

lineTranslation(O, H, D, V) ∧ stateAt(H, T, S) ∧ convex(R) ∧
value(start(H),place(O)) ⊂ R ∧ value(end(H),place(O)) ⊂ R ⇒
swathe(value(start(H),place(O)),D, V) ⊂ R.

Proof: Immediate from 2.14, 2.15, definition of convexity.

Definition 2.17:

horizontalVec(V : vector) ≡ ∀P height(P + V) = height(P).

Definition 2.18:

loadingTrajectory(O, H) ≡
∃H1,H2,H3,D1,D2,D3,V hsplice(H1, H2, H3, H) ∧ lineTranslation(O, H1, D1, ~z) ∧
lineTranslation(O, H3, D3,−~z) ∧ lineTranslation(O, H2, D2, V) ∧ horizontalVec(V) ∧
height(bottom(O),start(H2)) > value(start(H),top#(↑oBox)) ∧
throughout(H ,↑O ⊂#manipSpace1).

Lemma 2.18.1:

∀
O∈uCargo holds(s1,rccC#(↑O, ↑oTable1))

Proof: From PR.11, H.1, HD.3, HD.1.

Lemma 2.18.2: ∀
O∈uCargo holds(s1,bottom#(O) ≤# top#(oTable1))

Proof: From 2.18.1.

Lemma 2.18.3:

holds(s1,top#(↑qInsideBox) ≤ top#(↑oBox).

Proof: Geometric from PR.4, PR.9, SD.1 (EXPAND?) ‘

Lemma 2.19:

∀SA,SB,O,M O ∈uCargo ∧ value(SA,placement(O)) = value(s1,placement(O)) ∧
value(SA,placement(oBox)) = value(SB,place(oBox)) = value(s1,placement(oBox)) ∧
holds(SB,O ⊂# ↑qInsideBox) ∧
translation(M) ∧ imageMapping(M ,value(SA,placement(O)) = value(SB,placement(O)) ⇒
∃H loadingTrajectory(O, H) ∧ start(H)=SA ∧ end(H)=SB.

11

Proof: Bottom(O) is lower than top(oBox) in SA, by lemma 2.18.2, PR.17, and in SB by both SA

and SB.
Let DH=(value(s1,top(oBox)) + top(manipSpace1) − maxCargoHeight)/2.
Let H1 be such that lineTranslation(O, H1, DH−value(SA,bottom(O)),ẑ).
Let H3R be such that lineTranslation(O, H3R, DH−value(SB,bottom(O)),ẑ).
Let H3 be the time reversal of H3R, placed at a time interval after endTime(H1).
By definition 2.15 value(end(H1),bottom(O)) = value(start(H3),bottom(O)) = DH .
Let H2 be the linear translation of O from end(H1) to start(H3); it is immediate that the rigid
motion involved is translation, and that it is horizontal. Let H be the splicing of H1, H2, H3. The
existence of histories H1, H2, H3 and H is guaranteed by axiom HC.2.

Let DG= (top(manipSpace1) − (value(s1,top(oBox)) + maxCargoHeight)) / 2 > 0 by PR.17.
By PR.16 value(end(H1),top(O)) ≤ value(end(H1),bottom(O)) + maxCargoHeight =
DH+maxCargoHeight = top(manipSpace1) − DG < top(manipSpace1).
Also value(end(H1),bottom(O)) = DH = value(s1,top(oBox)) + DG >

value(s1,top(oBox)).

By PR.19, O is inside manipSpace1 throughout H1. It is easily shown from PR.4 and PR.10 that
any point above any subset of qInsideBox is above oBox; hence O is inside manipSpace1 throughout
H3. Finally using lemma 2.16 and axom PR.18 it is easily shown that O is inside manipSpace2
throughout H2.

Lemma 2.20:

holds(start(H),midLoadingPosition) ∧ O ∈value(start(H),unloadedCargo) ∧
holds(end(H),boxLoadingPos(O,qInsideBox)) ∧ loadingTrajectory(O, H) ∧
[∀O1 O1 6= O ⇒ motionless(H, O1)] ⇒
moveTrajectory(H, O, ∅,start(H),manipSpace1).

Proof: By definition 2.18, O is inside manipSpace1 throughout H . By PR.34, it does not overlap
any object not in u1 ∪ { oTable1 }. Let H be decomposed into upward motion H1, horizontal
motion H2, and downward motion H3 as in definition 2.18. By definition 2.2 and PR.14, no object
in u1 comes into contact with O during H1. By PR17.5 and definition 2.18, no object in u1 ∪ {
oTable1 } comes into contact with O during H2, because the objects in o1 are all lower than the
top of oBox and O is higher than the top of oBox. By P1.4, P1.3 the swathe from O’s position at
end(H) upward to the top of manipSpace1 is clear of other objects in u1; hence no object comes
into contact with O during H3. Hence all the conditions of moveTrajectory in P1.5 are met.

Lemma 2.21 deliberately omitted.

Lemma 2.22:

[holds(S,midLoadingPosition) ∧ O ∈value(S),unloadedCargo)] ⇒
∃H loadBoxConditions(O, H ,unloadedCargo, qInsideBox,manipSpace1,S)

Proof: Immediate from axioms P1.9, definition 2.18, lemmas 2.12, 2.19, 2.20.

Lemma 2.23:

holds(S,midLoadingPosition) ∧ value(S,unloadedCargo) 6= ∅ ⇒
beginnable(loadBox(unloadedCargo,qInsideBox,manipSpace1),S).

Proof: Immediate from Lemma 2.22, axiom P1.10.

Lemma 2.24:

∀O O ∈ uCargo ∪ {oTable1} ⇒ holds(s1,rccDC#(↑O, ↑qInsideBox)).

Proof: Immediate from corollary 2.11.A, PR.13.

12

Lemma 2.25:

worksOn(move(O, HT),H) ⇔
∃D D =startTime(H)−startTime(HT) ∧
[endTime(H) < endTime(HT) ∧
∃H2 historyPrefix(H2, HT) ∧ sameMotionOn(H2, H, {O}, D) ∧ throughout(H ,grasping(O))] ∨
[endTime(HT) ≤ endTime(H) ∧
∃HA,HB hsplice(HA, HB, H) ∧ sameMotionOn(HA, HT, {O}, D) ∧
throughoutxSE(HA,grasping(O)) ∧ throughout(HB,freeGrasp).

Proof: Immediate from axiom AC.2 by a simple temporal argument.

Lemma 2.26:

beginnable(loadBox(U, QI, RM),start(H)) ∧ attempts(loadBox(U, QI, RM),H) ⇒
∃O,H2 loadBoxConditions(O, H2, U, QI, RM) ∧ attempts(move(O, H2),H).

Proof: Assume that beginnable(loadBox(U, QI, RM),start(H)) and attempts(loadBox(U, QI, RM),H).
By PLD.2–PLD.7, for any proper prefix H1 of H , worksOn(loadBox(U, QI, RM),H1). By P1.11 for
any such H1 there exists O, H1T such that loadBoxCondition(O, H1T, U, QI, RM), worksOn(move(O, H1T),H1).
The difficulty at this point of the proof is that each such H1 may correspond to a different O and
H1T ; we need to show that there is a single O and H1T that works for all such prefixes H1. There
are two cases:

Case 1: For some such H1 and H1T , end(H1T) ≤ end(H1). By lemma 2.25, there exists HA, HB, D,
such that hsplice(HA, HB, H1), sameMotionOn(HA, H1T, {O}, D), throughoutxE(HA,grasping(O))
and throughout(HB,freeGrasp). It is immediate from AC.2, DYD.4, DYD.2 that, for every proper
prefix H2 of H1, worksOn(move(O, H1T),H2).

By PLD.8 since attempts(loadBox(U, QI, RM),H) it must either be the case that
¬continuable(loadBox(U, QI, RM)) or that ¬continuableEnd(loadBox(U, QI, RM)). Since continu-
ing working on loadBox(U, QI, RM) only involves maintaining freeGrasp, which is always dynami-
cally possible (DYN.12, DYN.10, DYN.6), it must be the case that
reactComplete(loadBox(U, QI, RM),H), which means that completion(loadBox(U, QI, RM),H) holds
at endTime(H)−reactionTime. By P1.12, for some HX , loadBoxCondition(O, HX, U, QI, RM) and
completion(H2,move(O, HX),H); by AC.3, for some D, sameMotionOn(HX, H, {O}, D). By the
above argument for every proper prefix H3 of H , workOn(move(O, HX),H3) and ¬reactComplete(move(O, HX),H3).
Hence attempts(move(O, HX),H).

Case 2: For all such H1 and H1T , end(H1) < end(H1T). Define the formula Ψ(O1, T, M, HX, OX)
as follows:

[O1 = OX ⇒ ∃S stateAt(HX, T, S) ∧ M=value(S,placement(OX))] ∧
[O1 6= OX ⇒ M=placement(start(HX),O1)]

It is immediate that for HX = H , OX = O, the formula Ψ defines a unique mapping and sat-
isfies the Lipschitz condition throughout the time interval from start(H) to end(H). Hence by
axom HC.2 there exists a history H2 corresponding to Ψ. Using the construction in lemma 2.19,
let H3 be a trajectory that translates O from its position at end(H2) to a position satisfying
boxLoadingPos(O, QI). Let H3 be the splice of H followed by H2. It is easily verified that
loadBoxConditions(O, H3, U, QI, RM), and that for every prefix H4 of H , worksOn(move(O, H3),H4).

By PLD.4 since attempts(loadBox(U, QI, RM),H) it must be the case that either
¬continuableEnd(loadBox(U, QI, RM),H) or ¬continuable(loadBox(U, QI, RM),H). By DYN.11
there exists a history H1 which is identical to H up until its end and for which holds(end(H1),grasping(O)).
By continuity (K.5), the position of O at endTime(H) must be the same in H1, H , and H1T . There-
fore baseExec(loadBox(U, QI, RM),H1), hence by PLD.5, continuableEnd(loadBox(U, QI, RM),H).

13

The remaining possibility is ¬continuable(loadBox(U, QI, RM)). Since the condition for loadBox(U, QI, RM)
is certainly not satisfied in H , it must be the case that there is no extension HE of H such that
worksOn(loadBox(U, Q, RM),HF) is dynamically possible for every prefix HF of HE. In particular,
this must hold for all the extensions HE that correspond to the continued execution of move(O, H3).
Thus, we have established that worksOn(move(O, H3),H4) is achieved for every prefix H4 of H and
is not achievable throughout any extension H4 of H ; hence attempts(move(O, H3),H).

Lemma 2.27:

holds(start(J),midLoadingPosition) ∧ value(start(J),unloadedCargo) 6= ∅ ∧
holds(start(J),stable(u1 ∪ { oTable1 }) ∧ isolationConditions(J ,problem1) ∧
attempts(loadBox(unloadedCargo,qInsideBox,manipSpace1),J)

⇒
completes(loadBox(unloadedCargo,qInsideBox,manipSpace1),J) ∧
∃O,H2,S2 completes(move(O, H2),J) ∧

loadBoxConditions(O, H2,unloadedCargo,qInsideBox,manipSpace1) ∧
stateAt(J ,endTime(H2),S2) ∧ sameStateExcept(S2,start(J),{O}) ∧
holds(S2,boxLoadingPos(O,qInsideBox)).

Proof: By lemma 2.23, beginnable(loadBox(unloadedCargo,qInsideBox,manipSpace1),start(J)).
By lemma 2.26, there exist H2 and O such that
loadBoxConditions(O, H2,unloadedCargo,qInsideBox,manipSpace1) and attempts(move(O, H2),J).
It follows from lemma 2.26 that J is bounded.

By lemma 2.25, throughout J the agent is either grasping O or has a free grasp; therefore he is never
grasping any object in u1 other than O (G.1).

Let J2 be the prefix of J with endTime(J2)=endTime(H2); that is, the part of J in which O is car-
rying out the motion in H2 and excluding any part of J after the motion is complete waiting for reac-
tionTime to pass. Let UUN=value(start(J),unloadedCargo)−{O} and ULD=value(start(J),loadedCargo).
We claim the following is true:

CLAIM.1:
[∀O1 O1 ∈u1−{O} ⇒ motionless(J2, O1)] ∧
[∀O1 O1 ∈ UUN ⇒
throughoutxSE(J2,isolated({O1}, { oTable1 }) ∧
throughoutxSE(J2,isolated(ULD ∪ { oBox }, { oTable1 }))

The proof of CLAIM.1 is by contradiction: We posit that CLAIM.1 becomes false at some point,
consider the greatest lower bound T 0 of the times on which it is false, and show that if CLAIM.1
is true until T 0 then it continues to be true both at T 0 and for some time afterward. Specifically:
Suppose that CLAIM.1 is false. Define the formula Φ(T) as follows.

Φ(T) ≡
∃S stateAt(J, T, S) ∧

[[∃O1∈u1−{O} value(S,placement(O1)) 6= value(start(J),placement(O1)] ∨

[∃O1,O2 O1 ∈ UUN ∧ O2 6=oTable1 ∧ O2 6= O1 ∧ holds(S, rccC#(↑O2, ↑O1))] ∨

[∃
O1,O2:object O1 ∈ ULD ∪ { oBox } ∧ O2 6∈ ULD ∪ { oBox, oTable1} ∧ holds(S, rccC#(↑O2, ↑O1))]

If CLAIM.1 is false, then Φ(T) must hold for some T such that startTime(J) ≤ T <endTime(J2).
Let T 0 be the greatest lower bound on all times on which Φ holds. Since O1 remains at the same
position as in start(J) up until T 0, it follows by continuity (K.5) that it is in the same position in
T 0. By definition 2.2, oBox and the cargo objects that are unloaded at start(J) are all in the same
position as in s1; hence, by PR.12 none of these are touching one another. By definition the loaded

14

cargo objects are inside qInsideBox; hence, by lemma 2.24, none of the unloaded objects are touching
any loaded objects. By PR.33 any object that is not in u1 and is not oTable1 is outside manipSpace1
and hence is not in contact with any of the objects in u1. By P1.8, O itself is not in contact with
any objects in u1 during J . Therefore in start(J) each of the unloaded cargo objects is isolated
except for oTable1 and the loaded cargo plus box is collectively isolated except for oTable1. Since
the cargo objects and box remain motionless from start(J) through T 0, these isolation conditions
hold at T 0.

Since each unloaded object is a finite distance from every other object except oTable1, and since
the loaded cargo objects plus box are a finite distance form every other object except oTable1, by
continuity, a finite time must pass until any of these excluded contacts occur. Thus, these isolation
conditions must in fact hold over the interval from start(J) to T 1 where T 1 > T 0.

By assumption, the objects in u1 are all in stable positions at start(J); hence by H.2 all the objects
except O are in the identical stable positions at T 0. Hence by axiom H.2, the objects in u1 remain
motionless over the entire interval from start(J) to T 1. By the identical argument as above, the
isolation conditions likewise hold over the entire interval from start(J) to T 1; but that contradicts
the construction of T 0. This completes the proof of CLAIM.1.

Suppose that the action move(O, H2) does not complete in J . Then endTime(J) = endTime(H2)
= endTime(J2) By lemma 2.13 ¬parallelMovable(O,end(J),H2,endTime(H2); however, by P1.5,
before the end of H2, O is in fact isolated from all other objects, so parallelMovable is satisfied triv-
ially, with U1 = {O} and HP being the history in which O follows H2 and all other objects remain
motionless. This is a contradiction; therefore, move(O, H2) does complete in J . By P1.8, P1.9,
P1.10 it follows directly that completes(loadBox(unloadedCargo,qInsideBox,manipSpace1),JP).

Lemma 2.28

∀
OB,OC:object,QI,QTOP,QPC:pseudo,H:history

openBox(OB, QI, QTOP) ∧ OB = source(QI) = source(QTOP) ∧
source(QPC)=OC ∧ point(QPC) ∧ QPC ∈ OC ∧
holds(start(H),↑QPC ∈# ↑QI − ↑QTOP) ∧ ¬holds(end(H),↑QPC ∈# ↑QI) ⇒
∃T,S stateAt(H, T, S) ∧ holds(S,↑QPC ∈# ↑QTOP).

Proof: Let us first consider the case where shape(QPC) is a point in the interior of OC. Since
QPC and QIN both move continuously, and QPC goes being in QI to being outside QI, it must
at the boundary of QI at some state S in between. By SP.1, QPC is either at the boundary of OB

or in QTOP .

Suppose that QPC is at the boundary of OB in S. Since QPC is in the interior of shape(OC), there
exists an open neighborhood RC of value(S,place(QPC)) which is a subset of value(S,place(OC)).
in (QPC) ∈ RC ⊂ OC. Since OB is regular, there exists an open set RB ⊂value(S,place(OB))
such that value(S,place(QPC)) is in the closure of RB. But then RB and RC must overlap and so
must OB and OC, which is impossible since S is kinematic.

Suppose now that shape(QPC) is a point on the boundary of OC. Since OC is regular, there
exists an open set RC ⊂ shape(OC) such that shape(QPC) ∈ boundary(RC). Suppose that QPC

is never in QTOP during H . Since QTOP is topologically closed, there must exist a positive
minimum distance D such that distance(QPC, QTOP) is at least D throughout H . But that is
impossible, since by the previous argument every point in interior(OC) is in QTOP at some time
in H , and there are points in interior(OC) that are arbitrarily close to QPC.

Lemma 2.29

15

∀
OB,OC:object,QI,QTOP :pseudo,H:history

openBox(OB, QI, QTOP) ∧ OB = source(QI) = source(QTOP) ∧
kinematic(H) ∧ holds(start(H),↑OC ⊂# ↑QI) ∧ holds(end(H),¬#[OC ⊂# QI]) ∧ [motionless(H, OB)
∨ goodBoxTrajectory(H, OB, QIN, QTOP, {O})] ⇒
∃H1 historyPrefix(H1, H) ∧ upwardMotion(O, OB, H1)

Proof: First, a simple trigonometric formula: let PA and PB be any two points and let Q be a
coordinate system whose z axis is angle θ away from the vertical. Then
zCoor(PA, Q)−zCoor(PB, Q) ≥
(height(PA)−height(PB)) cos(θ) − distance(xyProj(PA),xyProj(PB))sin(θ).

Using CM.1, let QPC be any point in OC. By lemma 2.28 there is a state S at some time
T 1 in H at which QPC is in QTOP . Let H1 be the prefix of H ending at T 1. Let T be
any time between startTime(H) and T 1; let ST be the state of H at T ; let QCS be a co-
ordinate system attached to oBox whose z axis is vertically aligned in start(H), and let QCT

be a coordinate sytem attached to oBox whose z axis is vertically aligned in ST By P1.16, if
goodBoxTrajectory(H, OB, QIN, QTOP, {O}) then the angular difference θ between the z axis of
QCT and the z axis of QCS satisfies safeBoxTilt(θ,start(H),QIN, QTOP, O); if motionless(OB, H)
then θ = 0.

Now, let QPT be the pseudo-object such that source(QPT)=oBox and value(end(H1),place(QPT))
= value(end(H1),place(QPC)). Note that shape(QPT) ∈ shape(QTOP).
Let PM1=value(start(H),centerMass(O)); PC1=value(start(H),place(QPC));
PT 1=value(start(H),place(QPT)); PC2=value(end(H1),place(QPC));
PT 2=value(end(H1),place(QPT)); and PM2=value(end(H1),centerMass(O).

Thus we have the following constraints:
zCoor(PM2, QCT) ≥ zCoor(PC2, QCT)−diameter(O) by lemma CM.1.
PT 2 = PC2 by construction.
zCoor(PT 1, QCT) = zCoor(PT 2, QCT), since QPT and QCT both move with oBox.
zCoor(PT 1, QCT) − zCoor(PM1, QCT) ≥

(height(PT 1)−height(PM1)) cos(θ) − distance(xyProj(PT 1),xyProj(PM1))sin(θ).

Therefore zCoor(PM2, QCT)− zCoor(PM1, QCT) ≥
(height(PT 1)−height(PM1)) cos(θ) − distance(xyProj(PT 1),xyProj(PM1))sin(θ)− diameter(O).

Since PM1 ∈value(start(H),QIN) and since PT 1 ∈value(start(H),QTOP), it follows that
distance(xyProj(PA),xyProj(PB)) ≤ diameter(xyProj(QIN ∪ QTOP)).
Moreover if bottom1(value(S,place(QTOP)),D1) then height(PT 1) ≥ D1.

Hence, by P1.16, P1.17 zCoor(PM2, QCT)− zCoor(PM1, QCT) > 0, so by UD.1 O undergoes an
upward motion relative to { oBox } in H1.

Lemma 2.30:

P= sequence(loadBox(unloadedCargo,qInsideBox,manipSpace1),J),
waitUntil(stable(u1 ∪ { oTable1 }))) ∧

UUL=value(start(J),unloadedCargo) 6= ∅ ∧
holds(start(J),midLoadingPosition) ∧ holds(start(J),stable(u1 ∪ { oTable1 }) ∧
noAnomaly2(J) ∧ noAnomUpwardMotion(J) ∧ throughout(J ,isolFluent(problem1)) ∧
attempts(P, J)

⇒

16

completes(P, J) ∧ holds(end(J),midLoadingPosition) ∧
∃1

O∈UUL value(end(J),unloadedCargo) = UUL − {O}.

Proof: By lemmas 2.27 and 1.21 there exist H1, J2 such that J is the splice of HA and JB,
the loadBox completes in HA, freeGrasp holds throughout J2 and either waitUntil(stable(u1 ∪ {
oTable1 })) completes in J2 or J2 is unbounded and stable(u1 ∪ { oTable1 }) is forever false.

Using the conclusions of lemma 2.27 let O be the object that was loaded into the box and let
H2 be the trajectory of motion, and let S2 be the state of J at endTime(H2). By lemma 2.27,
holds(S2,loadingPos(O)). As in the proof of lemma 2.27, let ULD=value(start(J),loadedCargo) and
let UUN=value(start(J),unloadedCargo).

By P1.7 O is in contact, either with oBox or with one of the other loaded cargo objects. Note that
value(end(J2),loadedCargo)=ULD ∪ {O}.

Let J3 be the slice of J from endTime(H2) to endTime(J). Thus J3 consists of the splice of the
end of HA, in which the movement of O has finished and the agent is waiting for reactTime to pass
for the action to be complete, followed by JB in which the agent is waiting for the objects u1 ∪
oTable1 to attain a stable state. Note that in both of these parts of J3 the agent is not grasping
anything. We now make a claim about the behavior of the objects in J3:

CLAIM.2:
[∀O1∈UUN motionless(J3, O) ∧ throughout(J3,isolated({O1}, {oTable1}) ∧
throughout(J3,isolated(ULD ∪ {O, oBox}, { oTable1 }) ∧
motionless(J3,oBox) ∧
∀O1∈ULD∪{O} throughout(J ,↑O ⊂# ↑qInsideBox).

The structure and many of the details of the proof of CLAIM.2 is the same as for CLAIM.1. Suppose
that CLAIM.2 is false. Define the formula Φ(T) as follows.

Φ(T) ≡
∃S stateAt(J3, T, S) ∧

[[∃O1∈UUN ∧ value(S,placement(O1)) 6= value(start(J3),placement(O1)] ∨
value(S,placement(oBox)) 6= value(start(J3),placement(oBox)) ∨

[∃O1,O2 O1 ∈ UUN ∧ O2 6=oTable1 ∧ O2 6= O1 ∧ holds(S, rccC#(↑O2, ↑O1))] ∨
[∃O1,O2 O1 ∈ ULD ∪ { oBox } ∧ O2 6∈ ULD∪ { oBox, oTable1} ∧

holds(S, rccC#(↑O2, ↑O1))] ∨
[∃O1∈ULD∪{O} ¬holds(S,↑O ⊂# ↑qInsideBox)]
].

Suppose that Φ(T) holds for some T ; let T 0 be the greatest lower bound over times on which Φ
holds. By continuity, all the objects in UUN and oBox are still in the same position in T 0 as in
start(J3), and the objects in ULD are still inside qInsideBox. The argument that the isolation
conditions still hold in T 0 and therefore until some time T 1 > T 0 is the same as in the proof of
CLAIM.1 above.

Let J4 be the prefix of J3 ending at T 1. By HD.6 and UD.3, ¬anomaly2(J4) and
¬anomalousUpwardMotion(J4). By axiom PR.11, in start(J4) the condition of HD.5, that oBox is
stably supported by oTable1 ignoring the loaded cargo objects, is satisfied. Therefore all the con-
juncts in the definition of anomaly2(J4) are satisfied except possibly ¬throughout(J4, motionless(OB)).
Since ¬anomaly2(J4), it follows that throughout(J4, motionless(OB)).

Since the objects in ULD are in the same positions in start(J3) as in start(J) and since in start(J3)
O is in contact either with one of the objects in ULD or with oBox, it follows from HD.3 that all of
the objects in ULD∪{O} are in a heap supported by oBox. Since oBox is motionless throughout J4,

17

any coordinate system aligned with oBox at any time throughout J4 has a vertical z-axis throughout
J4. By UD.2, UD.1, none of the objects in ULD ∪ {O} increase their z-coordinate with respect
to oBox during J4. Therefore, by lemma 2.29, they all remain inside the box. Thus, all of the
conditions of Φ(T) are satisfied at least until time T 1; but that contradicts the construction of T 0.
This completes the proof of CLAIM.2.

Using the same argument as in the previous paragraph, it follows that no object in ULD ∪ {O} has
its center of mass rise during J3. Hence boxLoadingPos still holds at the end of J3.

It follows from lemma 2.3 that waitUntil(stable(u1 ∪ {oTable1})) completes in JB. Hence, it follows
from lemma CS.8 that completes(P, J). The conditions in definition 2.2 for holds(end(J),midLoadingPosition)
have all been established above.

Define the following constant:

loadLoop=
while(unloadedCargo 6=# ∅,

sequence(loadBox(unloadedCargo,qInsideBox,manipSpace1),
waitUntil(stable(u1 ∪ { oTable1 })))).

Lemma 2.31:

start(J)=s1 ∧ attempts(loadLoop,J) ∧
isolationCondition(J ,problem1) ∧ noAnomaly2(J) ∧ noAnomUpwardMotion(J)

⇒
completes(loadLoop,J) ∧ holds(end(J),midLoadingPosition) ∧
∀

O∈uCargo holds(end(J), O ⊂qInsideBox)

Proof: From 1.30, where the loop invariant Φ(S) is holds(S,midLoadingPosition), together with
lemma 2.30 and lemma 1.31. The conclusion that all the cargo object end up in the box follows from
the fact that it is easily shown that the formula value(S,unloadedCargo) ∪ value(S,loadedCargo) =
u1 is a loop invariant, and that value(S,unloadedCargo)=∅ at the end of the loop.

3 Carrying

Let H be any history such that start(H)=s1, isolationCondition(H ,problem1), and completes(loadLoop,H).
Let sLoaded=end(H).

Let pCarry=carryBox(oBox,qInsideBox,qTopBox,uCargo,oTable2,manipSpace2)

Lemma 3.1:

carryBoxConditions(carryingPath,oBox,qInside,qTop,uCargo,manipSpace2,oTable2, sLoaded).

Proof: Immediate from axioms PR.25 through PR.32. Note that by PR.32, the vertical tilt of the
box throughout carryingPath is zero. Therefore the condition in goodBoxTrajectory becomes that
the height difference between qTop and the center of mass of any of the cargo objects O is at least
diameter(O), but this is guaranteed by the fact that midLoadingPosition holds in sLoaded (lemma
2.31).

Lemma 3.2:

beginnable(pCarry,sLoaded).

Proof: Immediate from P1.16, lemma 3.1.

18

Lemma 3.3:

beginnable(pCarry,start(H)) ∧ attempts(pCarry,H) ⇒
∃O,H2 carryBoxConditions(H2,oBox,qInside,qTop,uCargo,manipSpace2,oTable2, sLoaded) ∧

attempts(move(oBox,H2),H).

Proof: Exactly analogous to the proof of 2.26.

(Presumably both lemma 3.3 and lemma 2.26 are instances of some more general meta-level lemma
about plans that are instantiated as moves satisfying certain kinds of conditions, but I have not
attempted to formulate this.)

Lemma 3.4:

∀
O∈uCargo ∃UH O ∈ UH ∧ holds(sLoaded,heap(UH ,{oBox})).

Proof: Since the cargo objects are all inside qInsideBox in s1, by PR.33, PR.19 they are not touching
any object other than oTable1 and oBox and by lemma 2.24 they are not touching oTable1; thus,
the cargo objects are only touching one another and oBox. Let O be a cargo object. Since u1 ∪
oTable1 is stable in sLoaded, by HD.4, H.1 O is part of some heap UH that is supported by a set
US of objects not free to move. There are two cases:

• Case 1: The agent is grasping oBox in sLoaded. Then since all the objects in uCargo are free,
US must consist of objects not in uCargo. Since the only object not in uCargo that any object
in uCargo is touching is oBox, by HD.3 UH = { oBox }.

• Case 2: The agent is not grasping oBox in sLoaded. Then since all the objects in u1 are free,
US must consist of objects not in u1. (Actually, of course US = { oTable1 }, but we will
not need that here.) Since oBox is the only object in u1 that is touching any object not in
u1, by HD.3, oBox is in UH . Let UH1 be the maximal connected group of objects in uCargo
containing O. Since UH1 is maximal, and since the objects in uCargo are separated from
every object not in uCargo except oBox, by HD.1, HD.3, UH1 is a heap with support { oBox
}.

Lemma 3.5:

start(J)=sLoaded ∧ throughout(J ,isolFluent(problem1)) ∧ noAnomaly2(J) ∧
noAnomUpwardMotion(J) ∧ attempts(pCarry,J)

⇒
completes(pCarry,J) ∧
∃O,H2,S2 completes(move(O, H2),J) ∧

carryBoxConditions(H2,oBox,qInside,qTop,uCargo,manipSpace2,oTable2, sLoaded) ∧
stateAt(J ,endTime(H2),S2) ∧
∀

O∈uCargo holds(S2, O ∈qInsideBox).

Proof: (Note: This is analogous to the proof of lemma 2.27, though certainly different in detail.)

By lemma 3.2, beginnable(pCarry,sLoaded). By lemma 3.3 there exists H2 such that
carryBoxConditions(H2,oBox,qInside,qTop,uCargo,manipSpace2,oTable2, sLoaded) and
attempts(move(oBox,H2),H).

I claim that the following holds:

CLAIM.3:
throughout(H ,isolated(u1,{oTable1, oTable2}) ∧
∀

O∈uCargo throughout(H ,↑O ⊂# ↑qInsideBox)

The proof of CLAIM.3 is by contradiction. Suppose it is false. Let Φ(T) be the formula

19

Φ(T) ≡
∃S stateAt(H, T, S) ∧

[[∃
O1,O2:object O1 ∈ u1 ∧ O2 6∈ u1 ∪ { oTable1, oTable2 } ∧ holds(SrccEC#(↑O1, ↑O2))] ∨

[∃
O1∈uCargo ¬holds(S,O1 ⊂qInsideBox)]].

If CLAIM.3 is false, then Φ(T) must hold for some T . Let T 0 be the greatest lower bound on all
times T such that Φ holds. By continuity, the objects in u1 remain separated from any object not
in u1 ∪ { oTable1, oTable2 } up through some time T 1 > T 0. Since the agent is grasping oBox
throughout H , by G.1 he does not grasp any object in uCargo at any time in H . By lemma 3.4 the
cargo objects are in heaps supported by oBox in sLoaded. By lemma 2.29, UD.3, UD.2, the objects
in uCargo all remain inside the box though time T 1; but this contradicts the construction of T 0.
This completes the proof of CLAIM.3

Suppose that the action move(oBox,H2) does not complete in J . Then endTime(J) = endTime(H2)
= endTime(J2) By lemma 2.13, at end(J), ¬ parallelMovable(oBox,end(J),H2,endTime(J)). How-
ever, throughout J the cargo is isolated from any object except oBox, and oBox is isolated from
any objects except oTable1 and oTable2. Moreover, the continuation of H2 does not bring oBox
into contact with any objects except oTable2 at the end of H . Therefore, the history that moves
oBox along the continuation of H2 and moves all of the cargo in parallel and keeps everything else
motionless is kinematically possible. The existence of this history is guaranteed by HC.2. Note that
it is easily shown that qInsideBox lies inside the convex hull of oBox. Since all the points in oBox
are moving no faster than maxSpeed (HC.1), any point inside the convex hull of oBox is likewise
moving no faster than maxSpeed. Thus all the conditions of parallelMovable in definition 2.13.B are
met, which is a contradiction.

Thus, move(O, H2) does complete in J . By PL.19–PL.22 it follows that pCarry completes in J .

Definition 3.6.A holds(S,goalState) ≡ ∀
O∈uCargo holds(S,altogetherAbove(O,oTable2)/

Lemma 3.6:

start(J)=sLoaded ∧ completes(pCarry,J) ∧
throughout(J ,isolFluent) ∧ noAnomaly2(J) ∧ noAnomUpwardMotion(J) ⇒
holds(end(J),goalState).

Proof: Let H2 be as in Lemma 3.5. By lemma 3.5, all the cargo objects are inside qInsideBox in
J at time endTime(H2). By an argument exactly analogous to the proof of lemma 16, the objects
remain inside qInsideBox during the “reaction” interval between endTime(H2) and endTime(J). by
P1.15 and a simple geometric argument, all the objects in uCargo are above oTable2 at end(H).

Lemma 3.7:

start(J)=s1 ∧ attempts(plan1,J) ∧
throughout(J ,isolFluent) ∧ noAnomaly2(J) ∧ noAnomUpwardMotion(J) ⇒
completes(plan1,J) ∧ holds(end(J),goalState).

Proof: From lemmas 1.21, 2.31, 3.2, and 3.6.

Define the uhistory j1 to satisfy the following axiom:

J1.1 start(j1)=s1 ∧ attempts(plan1,j1).

Note that the existence of such a j1 is guaranteed by lemma 1.5.

Theorem 1:

isolationConditions(j1,problem1) ⇒ completes(plan1,j1) ∧ holds(end(j1),goalState).

20

Proof: It is easily seen that the propositions “noAnomaly2(j1)” and “noAnomUpwardMotion(j1)”
are consistent with the our axioms and with Newtonian mechanics. (E.g. Consider the case where
oBox is a rectangular box with a rectangular inside; the cargo objects are all rectangular cuboids;
the cargo objects are loaded neatly in the box from bottom to top; and the box is moved smoothly
and without tilting from oTable1 to oTable2.) Therefore, the default rules H.4 and UP.1 allow us to
infer noAnomaly(j1) and noAnomUpwardMotion(j1). The result then follows from lemma 3.7.

References

[1] E. Davis, “Knowledge and Communication: A First-Order Theory,” Artificial Intelligence, vol.
166 nos. 1-2, 2005, pp. 81-140.

21

