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is false.
Proof. At w2 in the previous proof,:Succ(Kill(O;K))(1)

is true and9x(Succ(Kill(x;K))(1) ^ x 6= O) is false.�
Alternatively, suppose that Oswald succeeded in killing

Kennedy at time1, and that someone else attempted to kill
Kennedy at time1:

�11:3 = �11 [ fSucc(Kill(O;K))(1);
9x(Occ(Kill(x;K))(1) ^ x 6= O)g:

Then�11:3 predicts:

:Succ(Kill(O;K))(1) +
9x(Succ(Kill(x;K))(1) ^ x 6= O)

Proof. �11:3 is non-deterministic. Any actual worldw0 in
a causal model for�11:3 can be represented as follows:

fAlive(K)(1);Occ(Kill(O;K))(1);
Occ(Kill(A;K))(1);:Alive(K)(2); : : : g:

whereA denotes some object in the domain other than that
denoted byO. Note that sinceSucc(Kill(O;K))(1) is true
atw0, it follows from the law of change and inertia and the
definition ofNCausethatQual(Kill(A;K))(1) is true atw0;
Oswald’s success preempts that of would-be assassinA.

Let w1 be a closest world beloww0 at which
�Succ(Kill(O;K))(1), is true. Thenw1 can be represented
as follows:

fAlive(K)(1);Occ(Kill(A;K))(1);:Alive(K)(2); : : : g:

As in the penultimate proof,Occ(Kill(O;K))(1) is unde-
fined atw1, and consequently assassinA now succeeds.

Let w2 be a closest world abovew1 at which
:Succ(Kill(O;K))(1) is true. Thenw2 can be represented
as:

fAlive(K)(1);:Occ(Kill(O;K))(1);
Occ(Kill(A;K))(1);:Alive(K)(2); : : : g:

or as:

fAlive(K)(1);Occ(Kill(O;K))(1);Qual(Kill(O;K))(1)
Occ(Kill(A;K))(1);:Alive(K)(2); : : : g:

In either case9x(Occ(Kill(x;K))(1)^x 6= O) is true atw2,
and consequently so is9x(Succ(Kill(x;K))(1) ^ x 6= O).

It follows that:

:Succ(Kill(O;K))(1) *
9x(Succ(Kill(x;K))(1) ^ x 6= O)

is true atw1. So the required contrafactual is true atw0. �
Clearly also�11:3 predicts that the contrafactual:

:Succ(Kill(O;K))(1) +
:9x(Succ(Kill(x;K))(1) ^ x 6= O)

is false.
Proof. At w2 in the previous proof,:Succ(Kill(O;K))(1)

is true and:9x(Occ(Kill(x;K))(1) ^ x 6= O) is false.� �

7 Concluding remarks
This paper has proposed a formal theory of causal counterfac-
tuals which combines a partial-worlds semantics for counter-
factuals with a formal pragmatics for common sense reason-
ing about actual events, in order to provide a unified frame-
work for formal reasoning about actual and counterfactual
events.

The question of the logic of the new conditionals is an in-
teresting one. However it seems that finding an axiomati-
zation (and an appropriate proof-theoretic pragmatics for the
axioms of causal theories) is not a necessary preliminary to
implementation. The causal models for a causal theory�
differ only in inessential detail. In practice, it is possible to
fix a single, canonical, interpretation of those components of
models which do not figure in the definition of the equiva-
lence relation��; thus time is taken to be isomorphic to the
natural numbers (or the integers, etc.) and temporal terms
are interpreted accordingly, the objects denoted by the names
of material objects are fixed (“symbol grounding”), etc. The
canonical interpretation results in the��-relation containing
a single equivalence class. Moreover, this class contains a
��-maximal element, which consists of the “union” of all of
the models in the class, and which can be called the canon-
ical causal model for�. Consequently it seems that the
model-building approach described in[18] can be extended,
and that appropriate parts of the canonical causal model for a
causal theory can be constructed chronologically. The evolv-
ing partial models of causal theories in[18] provide the actual
world(s) of the model, and it seems that these can be used as
a basis for building sufficient counterfactual worlds in order
to evaluate the new conditionals correctly.

It will also be interesting to apply the present theory to
the formalization of reasoning about plans as suggested in
the introduction; this may involve adding temporal intervals
and complex events to the language ofMT C, but doing so is
straightforward.

Another development will be a theory ofintentional con-
ditionals. This will combine the semantics for conditionals
given here with an appropriate formal theory for reasoning
about actual intentional states (such as beliefs, goals and obli-
gations), in order to provide a formal analysis of counterfac-
tuals such as “If John had known that Mary had done�, then
he would have done�”.
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did. Accordingly, an indicative analysis of the conditional
can be given. Let�11:1 = �11 [ f:Alive(K)(2)g. Then
�11:1 predicts:

:Succ(Kill(O;K))(1)!
9x(Succ(Kill(x;K))(1) ^ x 6= O)

Proof. Let w0 be a chronologically minimial�11:1-world
in a causal model for�11:1. By the inertia axiom and the law
of change and inertia,9eCause(Occ(e)(1); �Alive(K)(2)) is
true atw0. So, by the definition ofSCause, there must be
some individualA such thatSucc(Kill(A;K))(1) is true at
w0. If :Succ(Kill(O;K))(1) is true atw0, then it must also
be the case thatA 6= O. Consequently the desired conditional
is true atw0.

Note that�11:1 is non-deterministic; there may be many
candidates for the actual world in a causal model for�11:1.
This is appropriate: if the assassinA is not Oswald, thenA’s
identity is unknown.�

By contrast, the second conditional is counterfactual. It is
evaluated on the basis that Oswald did kill Kennedy. Thus
if Oswald acted alone it should be false, while if there was
another assassin it should be true. Similarly the third condi-
tional is counterfactual. Given that Oswald did kill Kennedy,
it should be true if he acted alone, and false if there was an-
other assassin.

These counterfactuals were used by Lewis[8, p. 71] against
metalinguistic theories of counterfactuals, and in turn by Ben-
nett [3] to raise the “future similarity” objection to Lewis’
own analysis[8]; recall from Section 2 that this depends on
the notion of comparative overall similarity, with (classical)
possible worlds being ordered according to their comparative
overall similarity to the actual world.

Lewis believes that Oswald killed Kennedy and that he
acted alone. Consequently he considers that the first of the
pair of Oswald-Kennedy counterfactuals is false and that the
second is true;[8, p. 3, p. 71]. However, Bennett objects that
among the worlds in which Oswald did not kill Kennedy, the
worlds in which someone else did seem to be more similar
to the actual world than those worlds in which noone else
did; a world in which a Dallas policeman decided to kill
Kennedy on the spur of the moment and in which the course
of events then reconverged with that of the actual world seems
to be more similar to the actual world than a world in which
Kennedy was not killed and the course of events continued to
diverge from that of the actual world thereafter. So, accord-
ing to Lewis’ analysis and contrary to his opinion, it seems
that the first of the Oswald-Kennedy counterfactuals should
be true and that the second should be false.

Lewis counters that we need to respect the “extreme shifti-
ness and context-dependence of similarity” and be careful to
distinguish between “the similarity relations that guide our
offhand explicit [similarity] judgements and those that govern
our counterfactuals in various contexts”[9, p. 466]. He then
proceeds to develop a set of constraints which further restrict
the choice of comparative similarity relations for counterfac-
tuals such as these. However these are not formal and have
proved contentious.

By contrast, the formal pragmatics of causal theories has
been developed in response to the extreme shiftiness and

context-dependence of common sense causal reasoning. Its
use as a formal pragmatics for causal counterfactuals results
in the correct evaluation of the Oswald-Kennedy counterfac-
tuals, and, more generally, it is evident that it is not prone to
the future-similarity objection.

In order to see this, suppose firstly that Oswald succeeded
in killing Kennedy at time1, and that noone else attempted to
kill Kennedy at time1:

�11:2 = �11 [ fSucc(Kill(O;K))(1);
:9x(Occ(Kill(x;K))(1) ^ x 6= O)g:

Then�11:2 predicts:

:Succ(Kill(O;K))(1) +
:9x(Succ(Kill(x;K))(1) ^ x 6= O)

Proof. �11:2 is deterministic. The actual world,w0, in a
causal model for�11:2 can be represented as follows:

fAlive(K)(1);Occ(Kill(O;K))(1);
:Occ(Kill(Ai;K))(1);:Alive(K)(2); : : :g:

where:Occ(Kill(Ai;K))(1) represents every literal of the
form:Occ(Kill(A;K))(1) which is such thatA andO de-
note different domain objects.

Let w1 be the closest world beloww0 at
which Æ:Succ(Kill(O;K))(1), or equivalently
�Succ(Kill(O;K))(1), is true. Thenw1 can be repre-
sented as follows:

fAlive(K)(1);:Occ(Kill(Ai;K))(1); Alive(K)(2); : : : g:

In order to see that the atomOcc(Kill(O;K))(1) is un-
defined atw1, suppose that this is not the case. Then, as
w1 �P w0, it follows by Proposition 9, that the atom is true
atw1. But then, as the preconditionAlive(K)(1) is true at
w1, it follows from the truth of�Succ(Kill(O;K))(1) that
Qual(Kill(O;K))(1) is true atw1. But then by Proposi-
tion 9 it follows thatQual(Kill(O;K))(1) is true atw0, and
this contradicts the truth ofSucc(Kill(O;K))(1) atw0.

Let w2 be a closest world abovew1 at which
:Succ(Kill(O;K))(1) is true. Thenw2 can be represented
as:

fAlive(K)(1);:Occ(Kill(O;K))(1);
:Occ(Kill(Ai;K))(1); Alive(K)(2); : : :g:

or as:

fAlive(K)(1);Occ(Kill(O;K))(1);Qual(Kill(O;K))(1);
:Occ(Kill(Ai;K))(1); Alive(K)(2); : : :g:

In either case,:9x(Occ(Kill(x;K))(1) ^ x 6= O) is true at
w2, and consequently so is:9x(Succ(Kill(x;K))(1) ^ x 6=
O).

It follows that:

:Succ(Kill(O;K))(1) *
:9x(Succ(Kill(x;K))(1) ^ x 6= O)

is true atw1. So the required contrafactual is true atw0. �
Clearly also�11:2 predicts that the contrafactual:

:Succ(Kill(O;K))(1) +
9x(Succ(Kill(x;K))(1) ^ x 6= O)



the lot. As this is all that is known, it is reasonable to pre-
dict that the car will still be there at time2. Given that it is,
and again that nothing else is known, it is again reasonable to
predict that the car will still be there at time3.

Nevertheless, given that the car has gone at time4, it also
seems reasonable to maintain that the carcould have been
stolen at time1 or time2 or time3; as any of these events, to-
gether with inertia, would explain the car’s absence at time4.

This apparent paradox can be resolved by distinguishing
between predicting on the basis of the current state of the ac-
tual world, and retrospectively seeking all of the reasonable
explanations for some given aspect of the actual world. Given
that the car is in the lot at time1 and that is is gone at time4,
the explanatory problem is to produce all of the reasonable
explanations for the car’s disappearance. It is thus neces-
sary to consider all of the events whichmighthave caused it.
The emphasized modalities in the above discussion suggest
that explanatory reasoning is a form of counterfactual reason-
ing. Moreover, as the events in question should be compat-
ible with what is known of the actual world, it suggests that
complefactuals can be used to generate explanations. And,
indeed, assuming that a finite number of events are involved,
it is possible to use complefactuals in order to give a formal
definition of explanation.

The occurrence of evente at timet is an explanation for
� at the later timet0 at a worldw if and only if the closest
worlds abovew in which e occurs att: e causes� at t + 1,
and no subsequent evente0 occurring before timet0 causes
��:1

Expl(Occ(e)(t); �(t0)) � (12)

t < t0 ^

(Occ(e)(t) * (Cause(Occ(e)(t); �(t+ 1)) ^

�9e0; t00(t < t00 < t0 ^

Cause(Occ(e0)(t00); ��(t00 + 1))))

Note that a weaker notion of explanation based on sufficient
causation can be provided usingSCauseinstead ofCause.

As there are a finite number of such explanations, they can
be collected together as a disjunction representingtheexpla-
nation:

Expls(�;  (t)) � (13)

(� �
_
fOcc(e)(t0) : Expl(Occ(e)(t0);  (t))g)

These two definitions form a theory of explanation,�E .
Let �10:2 = �E [�10:1, and letM be a causal model for

�10:2. Then, as required,�10:2 j�
M

P Expls(Occ(Steal)(1) _
Occ(Steal)(2) _Occ(Steal)(3);:In(4)).

Proof. The closest world abovew0 at whichOcc(Steal)(3)
is true can be represented as follows:

fIn(1); In(2); In(3);Occ(Steal)(3);:In(4); : : :g

Indeed, this world isw0 itself. As in the previous proof,
In(3) is true atw0. And, asw0 is a �10:2-world, :In(4)
is true atw0. So it follows from the contrapositive of the

1The notation�(t) is used to denote any formula in which the
temporal variablet occurs free.

inertia axiom thatAff(In)(3) is true atw0. As this is the
case, it follows from the law of change and inertia that
9eCause(Occ(e)(3); �In(4)) is true atw0. Moreover, it fol-
lows from the definition ofSCausethat e = Steal. So
Cause(Occ(Steal)(3);:In(4)) is true atw0. Clearly also
Expl(Occ(Steal)(3);:In(4)) is true atw0.

The closest world abovew0 at which Occ(Steal)(2) is
true, call itw1, can be represented as follows:

fIn(1); In(2);Occ(Steal)(2);:In(3);:In(4); : : :g:

At any time point qualifications are minimized before affec-
tations (change is preferred to inertia). Thus the steal event
succeeds at time2 and its postconditions are true at time3.
The definition of�P ensures that no other events occur at
time 2 or subsequently. SoCause(Occ(Steal)(2);:In(3))
is true atw1 andExpl(Occ(Steal)(2);:In(4)) is true atw0.

Similarly, the closest world abovew0 at which
Occ(Steal)(1) is true, call it w2, can be represented as
follows:

fIn(1);Occ(Steal)(1);:In(2);:In(3);:In(4); : : :g:

The definition of�P ensures that no other events occur at
time 1 or subsequently. SoCause(Occ(Steal)(1);:In(2))
is true atw2, andExpl(Occ(Steal)(1);:In(4)) is true atw0.

Note thatw0 �P w1 �P w2 and that the steal events occur
at progressively earlier times at the worlds along this chain.
Note also that�10:2 is deterministic. Any world inM which
differs fromw0 is not a chronologically minimal world for
�10:2. � �

In this example alternative worlds could be found which
diverged from the actual world at some earlier point in its
history, and consequently complefactuals could be used to re-
fer to such worlds. The next example illustrates the use of
contrafactuals when referring to worlds which have a com-
mon history with the actual world, but which differ from it at
the present moment.

Example 11. The following conditionals have been much
discussed:

If Oswald did not kill Kennedy, then someone else
did.
If Oswald had not killed Kennedy, then someone
else would have.
If Oswald had not killed Kennedy, then noone else
would have.

They will be discussed here in the context of the causal
theory�11 = �C [ f(14); (15); (16)g; where:

Alive(K)(1) (14)

Pre(Kill(x; y))(t) � Alive(y)(t) (15)

Post(Kill(x; y))(t) � :Alive(y)(t) (16)

The first two conditionals are given by Adams[1] in or-
der to illustrate the distinction between indicative condition-
als and subjunctive (counterfactual) conditionals.

Given that the actual world is one in which Kennedy was
killed, the first conditional is indicative: someone killed
Kennedy, so if Oswald did not kill him, then someone else



to the world. Having thus fixed the facts and events att, as-
sumptions are made which affect the world’s future. First it
is assumed that the events occurring att succeed if there is
no evidence to the contrary. Then it is assumed that the facts
which hold att persist if there is no evidence to the contrary.
Clearly it is reasonable to fix the facts and events att before
speculating about the future, as such speculations should not
alter the present. It also seems natural to assume that events
succeed before assuming that facts persist, to prefer change
to inertia; see the examples in Section 6. The final clause in
the definition of�P simply restricts the higher-order atoms
which hold at the world att to those which follow from the
interpretation of�.

If there is a single chronologically minimal world for�
in each causal model for�, then� can be considered to be
deterministic; as� uniquely determines which world is the
actual world. Otherwise� is non-deterministic, and any one
of the chronologically minimal�-worlds in the model may
be the actual world.

Now, the pragmatic consequences of� in a causal model
for � can be defined to be the consequences of� in all
chronologically minimal�-worlds in the model, and the
pragmatic consequences of� simpliciter can be defined to
be those which follow in all such worlds in all of the causal
models for�.

Definition 8. Let� be a causal theory with causal modelM ,
and let� be a sentence. Then� predicts� relative toM ,
written� j�MP �, if � is true in all chronologically minimal
worlds for� in M , and� predicts�, written� j�

P
�, if

� j�M
0

P � for every causal modelM 0 of �.

A example of the use of this pragmatics for reasoning about
actual events (events which occur in the actual world) is given
in the next section; many further examples from[2] are read-
ily adapted.

6 Counterfactual events
In addition to providing a pragmatics for reasoning about ac-
tual events, causal models also provide a pragmatics for rea-
soning about counterfactual events. The definition of�P has
the effect that as one proceeds up any chain of worlds above
a chronologically minimal�-world w in a causal model
for � one encounters worlds in which additional literals are
true. Moreover these additions arise antichronologically; the
higher one ascends, the earlier the additions. Thus the worlds
abovew represent the various ways in which the history of
w would differ, in accordance with the laws of�, as a re-
sult of additions introduced at progressively earlier moments.
Similarly, as one proceeds down a chain of worlds beloww
one encounters worlds in which fewer literals are true, and
in which the deletions are antichronlogical. Thus the worlds
beloww represent the various ways in which the history ofw
would differ, in accordance with the laws of�, as a result of
deletions made at progressively earlier moments.

Thus in addition to the “horizontal” persistence by de-
fault of Kleene literals from one time point to the next
within a world, there is also a limited form of the “ver-
tical” persistence of the information models of Section 3.

Let a temporal literal be any first-order literal of the
form �r(u1; : : : ; un)(t) or higher-order literal of the form
�hr(e1; : : : ; en; `1; : : : ; `m)(t); where� is either the strong
negation operator (:) or the null string. Moreover, for model
M , worldw in M and time pointt, letM;w=t be the set of
temporal literals which are true atw up tot; that is:

M;w=t = f�(t0) : t0 � t andM;w j= �(t0)g

Then the following limited form of vertical persistence ob-
tains in causal models:

Proposition 9. LetM be a causal model, and letw andw0

be worlds inM such thatw �P w0. Then there is a time
pointt such that:

M;w=t� 1 = M;w0=t� 1 and M;w=t �M;w0=t:

Thus, if in a causal modelM , w �P w0 is true, then the
worldsw andw0 have a common history up to some time
point t, and every temporal literal�(t) which is true atw
is also true atw0. The�P -closest worlds above a worldw
at which an additional temporal literal�(t) is true can thus
be regarded as the most similar worlds tow at which�(t)
is true, as these worlds share a common history withw up
to timet and otherwise differ minimally fromw in that they
are governed by the laws of� thereafter. Similarly the�P -
closest worlds beloww in which a temporal literal�(t) is no
longer true can be regarded as the most similar worlds tow in
which�(t) is not true.

Two examples of the use of counterfactuals are now given.
The first illustrates actual predictive reasoning and the use of
the complefactual conditional in order to provide alternative
possible explanations.

Example 10. The stolen car problem, suggested by Kautz
[6], is commonly believed to be a decisive objection to the
principle of chronological minimization. A car is in a park-
ing lot at time1, but is no longer there when its owner returns
at time4. As chronological minimization has the effect of
delaying change, it will result in the prediction that the car
is still in the lot at time3. But this seems to be contrary to
intuition, as the car could have been stolen at time1 or time2.

This example can be represented by the theory�10:1 =
�C [ f(9); (10); (11)g; where:

In(1) ^:In(4) (9)

Pre(Steal)(t) � In(t) (10)

Post(Steal)(t) � :In(t) (11)

Then, indeed,�10:1 predicts that the car will still be in the
lot at time3: for any causal modelM for �10:1, �10:1 j�

M

P

In(3).
Proof. �10:1 Let w0 be a chronologically minimal�10:1-

world in a causal modelM for �10:1. ThenIn(1) is true at
w0, asw0 is a�10:1-world. It is consistent to assume that
?Aff(In)(1) is true atw0, so it follows by the inertia axiom
thatIn(2) is true atw0. Similarly,In(3) is true atw0. �

It is difficult to disagree with these predictions if one rea-
sons in the evolving partial epistemic context of the actual
world. At time1 all that is known is that the car is parked in



M;w; g j=  * � iff M;w; g j= Æ and for everyw0 such thatw � w0 andM;w0; g j=  

there is aw00 such thatw � w00 � w0 andM;w00; g j=  

and for everyw000 such thatw � w000 � w00;M;w000; g j=  ! �

M;w; g =j * � iff M;w; g j= Æ and there is aw0 such thatw � w0 andM;w0; g j=  ^ :�

and there is now00 such thatw � w00 � w0 andM;w00; g j=  ^ �

M;w; g j=  + � iff M;w; g j= : and for everyw0 such thatw0 � w andM;w0; g j= Æ 

there is aw00 such thatw0 � w00 � w andM;w00; g j= Æ 

and for everyw000 such thatw00 � w000 � w;M;w000; g j= Æ ! ( * �)

M;w; g =j + � iff M;w; g j= : and there is aw0 such thatw0 � w andM;w0; g j= Æ ^ :( * �)

and there is now00 such thatw0 � w00 � w andM;w00; g j= Æ ^ ( * �)

M;w; g j=  )� iff M;w; g j=  * � orM;w; g j=  + �

M;w; g =j )� iff M;w; g =j * � orM;w; g =j + �

Table 2: Satisfaction and violation conditions for complefactuals, contrafactuals and counterfactuals (see Definition 2).

M;w; g j=  * � iff M;w; g j= Æ and " ( ;w; g) � [[�]]Mg

M;w; g =j * � iff M;w; g j= Æ and " ( ;w; g) � [[:�]]Mg

M;w; g j=  + � iff M;w; g j= : and # (Æ ;w; g) � [[ * �]]Mg

M;w; g =j + � iff M;w; g j= : and # (Æ ;w; g) � [[:( * �)]]Mg

Table 3: Simplified satisfaction and violation conditions for complefactuals and contrafactuals (see Definition 4).

In order to define the causal models for causal theories, it
is sufficient to specify appropriate world frames for them.

The worlds in a causal model for a causal theory� should
satisfy the laws of�. Thus, ifLaws(�) = �C[fPre(e)(t) �
� 2 �g [ fPost(e)(t) � � 2 �g, then a causal model
for � should be aLaws(�)-model; that is, all of the worlds
in the model should beLaws(�)-worlds. In order to en-
sure that all such worlds are considered, a causal model
should be one in which the world set is otherwise maxi-
mal. These requirements are formalized as follows. The
modelsM andM 0 are�-equivalent, writtenM �� M 0,
if and only if M andM 0 areLaws(�)-models, andM and
M 0 differ at most on world frames or the interpretation of
relations; that is,M andM 0 agree except perhaps on their
respective componentshW;�;R;HR;VR;VHRi and hW0;
�0;R0;HR0;V0

R
;V0
HR

i. Then a modelM with world setW
is said to be�� maximal if and only if for every modelM 0

with world setW0 such thatM �� M 0, it is the case that
W0 � W.

The closeness relation on a maximal world setW is based
on the principle of prioritized chronological minimization; a
refinement of the form of chronological minimization sug-
gested by Shoham[14] which is discussed further in[2]. The
relation�P partially orders worlds on the basis of (a particu-
lar form of) information growth over time. Thus ifw �P w0

thenw is, in the appropriate sense, chronologically less de-
fined thanw0. Let w �P w0 if and only if w andw0 are
worlds inW which agree on the interpretation of all relations

up to some time pointt, and:

� at least one more atom of the formr(u1; : : : ; un)(t) or
Occ(e)(t) is defined (is either true or false) atw0, or

� w andw0 agree on all of the above atoms, and at least
one more atom of the formQual(e)(t) is defined atw0,
or

� w andw0 agree on all of the above atoms, and at least
one more atom of the formAff(`)(t) is defined atw0, or

� w andw0 agree on all of the above atoms, and at least one
more atom of the formhr(e1; : : : ; en; `1; : : : ; `m)(t) is
defined atw0.

Definition 6. AnMT C-modelM with world-framehW;�i
is said to bea causal modelfor a causal theory� if M is��

maximal and� is the order�P onW.

The selected worlds in a model for a causal theory� are
the chronologically least defined�-worlds.

Definition 7. Let� be a causal theory with causal modelM .
Then a worldw inM is achronologically minimal world for
� in M if M;w j= � and there is no other worldw0 in M
such thatM;w0 j= � andw0 �P w.

The chronologically minimial worlds for� are chosen be-
cause each represents an interpretation of� which can be
regarded as being constructed chronologically and parsimo-
niously. At each time pointt only those facts and events
which follow from the earlier interpretation of� are added



M;w; g j= t < t0 iff Vg(t) �T Vg(t
0)

M;w; g =j t < t0 iff Vg(t) 6�T Vg(t
0)

M;w; g j= u = u0 iff Vg(u) is Vg(u0)

M;w; g =ju = u0 iff Vg(u) is notVg(u0)

M;w; g j= r(u1; : : : ; un)(t) iff VR(r; w;Vg(t))(Vg(u1); : : : ;Vg(un)) = true

M;w; g =j r(u1; : : : ; un)(t) iff VR(r; w;Vg(t))(Vg(u1); : : : ;Vg(un)) = false

M;w; g j= v(t) iff v 2 VL andM;w; g j= Vg(v)(t)

M;w; g =j v(t) iff v 2 VL andM;w; g =j Vg(v)(t)

M;w; g j= hr(e1; : : : ; en; `1; : : : ; `m)(t) iff VHR(hr;w;Vg(t))(Vg(e1); : : : ;Vg(en);Vg(`1); : : : ;Vg(`m)) = true

M;w; g =jhr(e1; : : : ; en; `1; : : : ; `m)(t) iff VHR(hr;w;Vg(t))(Vg(e1); : : : ;Vg(en);Vg(`1); : : : ;Vg(`m)) = false

M;w; g j= : iff M;w; g =j 

M;w; g =j : iff M;w; g j=  

M;w; g j= ? iff neitherM;w; g j=  norM;w; g =j 

M;w; g =j ? iff eitherM;w; g j=  orM;w; g =j 

M;w; g j=  ^ � iff M;w; g j=  andM;w; g j= �

M;w; g =j ^ � iff M;w; g =j orM;w; g =j�

M;w; g j= 8v iff M;w; g0 j=  for all g0 such thatg
v
� g0

M;w; g =j 8v iff M;w; g0 =j for someg0 such thatg
v
� g0

Table 1: Satisfaction and violation conditions for theT C fragment ofMT C (see Definition 2).

this view, a cause is typically neither a necessary condition
for the effect (as typically some other event could, had it oc-
curred, also have caused the effect), nor is a cause a sufficient
condition for the effect (as typically there are many condi-
tions which would, had they obtained or not obtained, have
prevented the cause from having the effect). Consequently,
Mackie defines a cause to be an insufficient but necessary part
of an unnecessary but sufficient condition for its effect.

The formal definition of causation assumes the setting of a
finite causal theory�, which may include definitions of the
preconditions and postconditions of events. The definition
begins with the requirement that a cause is part of an unnec-
essary but sufficient condition for its effect. Intuitively, the
occurrence of evente at timet is asufficient causeof effect
� if and only if e succeeds att and� is physically necessary
given the postconditions ofe at t + 1. A physical necessity

operator can be defined as follows:��
def
= ��)�; thus��

is true at a worldw if and only if every accessible world above
and beloww is a�-world. And, as� is assumed to be finite,
the postcondition definitions in� can be represented by the
T C sentencePost(�) =

V
fPost(e)(t) � � 2 �g. Conse-

quently, sufficient causation can be defined as follows:

SCause(Occ(e)(t); �) � (5)

Succ(e)(t) ^�(Post(�) ^ Post(e)(t + 1)! �)

Turning now to the requirement that a cause is an insuffi-
cient but necessary condition for its effect, the occurrence of
e at t is anecessary causeof effect� if and only ife succeeds
att and no other evente0 which occurs att is a sufficient cause

of �:

NCause(Occ(e)(t); �) � (6)

Succ(e)(t) ^ �9e0(e 6= e0 ^ SCause(Occ(e0)(t); �))

Combining these two conditions gives the definition of
causation:

Cause(Occ(e)(t); �) � (7)

SCause(Occ(e)(t); �) ^ NCause(Occ(e)(t); �)

A law governing change and inertia can now be stated:

Aff(`)(t) � `(t) ^ 9eCause(Occ(e)(t); �`(t + 1)) (8)

Thus the law states that Kleene literal` is affected at timet
if and only if ` is true att and some event causes` to have a
different truth value att+1. Less formally, the law states that
nothing changes without a cause, or that every change has a
cause.

A causal theoryis any set of of sentences ofMT C which
contains the causal axioms�C = f(1); : : : ; (8)g.

The intended interpretation of causal theories is obtained
by defining a suitable pragmatics for them. This is done by
first defining the set ofcausal modelsfor a causal theory�
and then considering the consequences of� at a set of se-
lected�-worlds in each of its causal models. The aim in
defining the pragmatics is thus that the selected worlds in
each causal model for� are just those worlds at which the
axioms in�, especially the change and inertia axioms, are
interpreted as intended.



M;w; g =j�) according to the clauses given in tables 1 and
2.

A formula� is true at a possible partial worldw in an
MT C-modelM (writtenM;w j= �) if M;w; g j= � for all
variable assignmentsg. A formula� is falseatw inM (writ-
tenM;w =j�) if M;w; g =j� for all variable assignments
g.

Proposition 3. LetM be anMT C-model containing world
w, and let� be a sentence ofMT C. Then eitherM;w j= �
or M;w j= :� or M;w j= ?�.

Thus, for a worldw in anMT C-modelM , the truth and
falsity conditions for sentences ofMT C can be stated in-
formally as follows. A sentence of the formt < t0 is true
at w if and only if the time point denoted byt precedes
that denoted byt0, and is false atw otherwise. Similarly,
the sentenceu = u0 is true atw if u and u0 denote the
same object, and is false atw otherwise. An atomic sentence
r(u1; : : : ; un)(t) it true atw if it is true that the relation holds
between the objects denoted byu1; : : : ; un at timet, is false
at w if it is false that the relation holds att, and is unde-
fined atw otherwise. Similarly, a higher-order atomic sen-
tencehr(e1; : : : ; en; `1; : : : ; `m)(t) is true atw if it is true
that the higher-order relationhr holds between event types
e1; : : : ; en and the Kleene literals (see Section 5)`1; : : : ; `m
at timet, false atw if it is false that the relation holds att,
and is undefined atw otherwise. The clauses for negation,:,
conjunction,̂ , and the universal quantifier,8, follow those
of Kleene. A sentence of the form? is true atw if the truth
value of is undefined atw, and is false inw otherwise. Fi-
nally, the clauses for* and+ generalize those given in the
previous section in a manner suggested by the semantics for
classical counterfactuals given by Lewis[8] and Burgess[4].

The simpler truth conditions for counterfactuals which
were given in the previous section can be stated formally us-
ing selection functions.

Definition 4. LetM be a model,� be a formula,g be a vari-
able assignment, and[[�]]Mg denote the setfw : M;w; g j= �g
of all worlds inM at whichg satisfies�. Then" (�;w; g) =

fw0 : w � w0 ^ w0 2 [[�]]M
g
^ :9w00(w � w00 � w0 ^w00 2

[[�]]Mg )g; thus the function" selects the closest worlds above
w at whichg satisfies�. And # (�;w; g) = fw0 : w0 �

w^w0 2 [[�]]M
g
^:9w00(w0 � w00 � w^w00 2 [[�]]M

g
)g; thus

the function# selects the closest worlds beloww at whichg
satisfies�. Finally, for setsS andT , S �T (“ S overlapsT ”)
if and only ifS \ T 6= ;. Then the simplified satisfaction
and violation conditions for complefactuals and contrafactu-
als are given in Table 3.

Proposition 5. If the limit assumption, LA, holds, then the
simplified satisfaction and violation conditions for contrafac-
tuals and complefactuals given in Table 3 are equivalent
to the general satisfaction and violation conditions for con-
trafactuals and complefactuals given in Table 2.

5 Actual events
A fairly comprehensive theory of common sense reasoning
about actual events is developed in[2]; according to which

events are defeasible, they may be non-deterministic, they
may have context-dependent effects, and they may occur si-
multaneously. This section shows how the sub-theory of “pri-
mary” events can be embedded inMT C; the inclusion of the
rest of the theory being straightforward.

Primary events can be thought of as defeasibleSTRIPS
events. Thus they are defined by specifying their precon-
ditions and their postconditions; examples of these are(10)
and(11) in the following section. The axiom of change then
states that if evente occurs at timet and the preconditions of
e are true att and it is not true thate is qualified att then the
postconditions ofe are true att+ 1:

Pre(e)(t) ^Occ(e)(t) ^ �Qual(e)(t)! Post(e)(t + 1)

(1)

Intuitively, e is qualified att if there is some reason whye
should not succeed att. The intention is to use this axiom
positively whenever possible: givenPre(e)(t) andOcc(e)(t),
?Qual(e)(t) should be assumed and the axiom used to con-
cludePost(e)(t + 1), if doing so is consistent. Thus on the
intended interpretation of the axiom events normally succeed
if their preconditions are true when they occur. Qualifications
apply only to events which would otherwise succeed:

Qual(e)(t) ! Pre(e)(t) ^Occ(e)(t) (2)

And the distinction between the occurrence of an event and
its success is highlighted by the following axiom:

Succ(e)(t) � Pre(e)(t) ^Occ(e)(t) ^ �Qual(e)(t) (3)

Inertia is represented by means of a common sense inertia
axiom. Intuitively, if an atom of the formr(u1; : : : ; un)(t)
is true, and there is no reason to doubt that the relation
r(u1; : : : ; un) persists, we should conclude that it does so;
that is, thatr(u1; : : : ; un)(t + 1) is true. Similarly, negated
atoms of this form should persist by default. In order to
formalize this, the non-temporal componentr(u1; : : : ; un)
of an atomr(u1; : : : ; un)(t) is called aKleene atom, and a
Kleene literalis either a Kleene atom or its negation. Then,
for Kleene literal` and timet, Aff(`)(t) states that̀ is af-
fected att; that is, that there is reason to doubt that that the
truth value of̀ persists beyondt. The inertia axiom is thus as
follows:

`(t) ^ �Aff(`)(t) ! `(t+ 1) (4)

Thus the axiom states that if the Kleene literal` is true at
time t and it is not true that̀ is affected att then` remains
true att + 1. The intention is that the axiom should be used
positively whenever possible: giveǹ(t), ?Aff(`)(t) should
be assumed and the axiom used to conclude`(t + 1) if doing
so is consistent.

We are now in a position to give a definition of direct causa-
tion. The relationCauseholds between sentences of the form
Occ(e)(t) and sentences ofMT C. The intended reading of
a sentence of the formCause(Occ(e)(t); �) is thus that the
occurrence of evente at timet is the (direct) cause of�. The
definition can be seen as a formalization of Mackie’s char-
acterization of causes asINUS conditions[10]. According to



conditional of this kind will be called acontrafactual, as the
truth of its antecedent contradicts what is true atw, and will
be written� +  . The contrafactual� +  should thus be
false atw if at least one of the closest worlds beloww where
where� is not false is a:(� *  )-world.

Consequently a counterfactual�) should be true atw if
either the complefactual� *  is true atw or the contrafac-
tual � +  is true atw, and�) should be false atw if
either� *  or � +  is false atw.

The semantics for* may give unintuitive results if there
are infinitely descending sequences of�-worlds abovew, as
there may then be�-worlds abovew, but noclosest�-worlds
abovew. Similarly the semantics for+ may give unintuitive
results if there are infinitely ascending sequences of�-worlds
beloww. In many practical applications there are no such
sequences, so the following counterpart of Lewis’ Limit As-
sumption holds:

(LA) For every�-worldw0 such thatw � w0 there
is a worldw00 such thatw � w00 � w0 which is
a closest�-world abovew. For every�-worldw0

such thatw0 � w there is a worldw00 such that
w0 � w00 � w which is a closest�-world beloww.

More general semantics are given in Section 4 which do not
depend on condition LA, but which reduce to the simpler
closest-world semantics given here when LA does hold.

4 The modal temporal calculus
In order to represent reasoning about events ateach possible
partial world, the modal language of the previous section is
now combined with the Temporal Calculus, orT C [2], result-
ing in the modal temporal calculus, orMT C.

Recall the practical, resource-bounded, interpretation of
T C. Thus a sentence� is true (false) if the truth (falsity) of�
is relevant and can be established given the limited resources
available, and is undefined otherwise. Recall also that the un-
defined operator,?, significantly increases the expressiveness
of the language, as illustrated by the following definitions:

Æ�
def
= ?� _ �

��
def
= ?� _:�

!�
def
= :?�

�!  
def
= �� _ :� 

� �  
def
= (:�� ^:� ) _ (:Æ� ^ :Æ ) _ (?� ^ ? )

Thus, for sentence�, Æ� states that� is not false (that� is
either undefined or true),�� states that� is not true (that� is
either undefined or false), and!� states that the truth value of
� is defined (is either true or false). For sentences� and ,
the conditional�!  is false if� is true and is not, and is
true otherwise. Thus, in keeping with the resource-bounded
interpretation, the conditional can be thought of as expressing
a constraint which must be met if the antecedent is true, but
which can otherwise be ignored. Finally, for sentences� and
 , the equivalence� �  is true if � and have the same
truth value (true, false, undefined).

The languageMT C is obtained by adding the binary con-
nectives*, + and) to T C.

The semantics ofMT C is given by combining the seman-
tics of the previous section with the semantics ofT C.

Definition 1. A modelforMT C is a structure:

M = hW;�;D; E ; T ;�T ;F ;R;HR;Vi,

where:

� W,D, E andT are mutually disjoint non-empty sets,

� � is a strict partial order onW; thus,� is a binary
relation on� which is irreflexive and transitive,

� �T is a binary relation onT which is discrete and lin-
ear,

� F = hFD;FT ;FEi, whereFS is a set ofn-ary func-
tions of typeSn ! S, for n � 1 and hS;Si 2
fhD;Di; hT; T i; hE; Eig,

� R is a set of partialn-ary functions of typeDn !
ftrue; falseg for n � 0,

� HR is a set of partialn+m-ary functions of typeEn�
Lm ! ftrue; falseg for n+m � 1,

� V = hVD ;VT ;VE ;VL;VFD ;VFT ;VFE ;VR;VHR; i is
an interpretation function such that:

– VS : S ! S for hS;Si 2 fhD;Di; hT; T i;
hE; Eig,

– VL : L! L is the identity function,
– VFS : FS ! FS for hS;Si 2 fhD;Di; hT; T i;
hE; Eig,

– VR : R�W � T ! R, and
– VHR : HR�W � T ! HR.

Intuitively, W is a set of partial possible worlds and� is
the closeness relation on worlds; thus ifw � w0 � w00, then
w0 is, in the appropriate sense, closer tow thanw00 is. The
reflexive closure of� is defined in the usual way; thusw �
w0 if and only if eitherw � w0, orw 2 W andw = w0. The
members ofD should be thought of as material objects, while
the members ofE should be thought of as event types. Note
that, for simplicity, the set of domain objects and event types
is fixed across worlds. Time is represented by the temporal
framehT ;�T i, whereT is a set of time points and�T is the
before-after relation. Note that all worlds share a common
time. The interpretation functionV is defined so as to allow
the extension of first-order and higher-order relations to vary
across worlds and times while, again for simplicity, keeping
the denotation of constants and functions fixed across worlds
and times.

Terms are interpreted in the standard way with the excep-
tion of Kleene literals (see Section 5), which are “interpreted”
as themselves. The formal definitions follow those forT C
given in[2] and so will not be repeated here.

The truth and falsity of sentences at each world is defined
by means of the intermediary notions of the satisfaction and
violation of formulas at that world.

Definition 2. Let M = hW;�;D; E ; T ;�T ;F ;R;HR;Vi
be anMT C-model,g be a variable assignment forM , and
� be anMT C-formula. Theng satisfies� at a worldw in
M (writtenM;w; g j= �) or violates� at w in M (written



is a�-worldw0 which is accessible fromw and every�-world
w0 which is at least as similar asw0 is tow is also a -world.
Once again, a number of semantic conditions are imposed in
order to ensure the semantic integrity of the pragmatic param-
eter. Thus each comparative similarity relation�w is required
to be a weak order on the set of accessible worldsWw (a lin-
ear order on equivalence classes ofWw) which is centered on
w (that is,w 2 Ww and, for anyw0 2 Ww,w �w w0).

However, the vagueness which gives these analyses their
strength is also their weakness. In order to evaluate a coun-
terfactual it is necessary to choose an appropriate value for
the pragmatic parameter. But while the semantic conditions
constrain the choice of this value, they do not determine it.
Thus Stalnaker defines the pragmatic problem of counterfac-
tuals to be that of finding and defending criteria for choosing
appropriate values for the pragmatic parameter.

This has typically been done informally. For example,
Lewis notes that if in choosing a similarity relation “we try
too hard for exact similarity in one respect, we will get exces-
sive differences in some other respects”; for example, a world
in which kangaroos have no tails and everything else is as it
actually is, is a world with physics and genetics which are
very different from those of the actual world[8, p. 9]. Con-
sequently, “respects of similarity and difference trade off”,
[8, p. 9], and “[o]verall similarity among worlds is some sort
of resultant of similarities and differences of many different
kinds” [9, p. 465].

Lewis counts it as a virtue of his analysis that the com-
parative similarity relation is not specified more formally: “I
have not said what system of weights or priorities should be
used to squeeze these [similarities and differences] down into
a single relation of overall similarity.: : : Counterfactuals are
both vague and various. Different resolutions of the vague-
ness of overall similarity are appropriate in different contexts”
[9, p. 465].

However, the vagueness of the notion comparative similar-
ity has proved problematic, as the discussion in Example 11
in Section 6 shows. Moreover if counterfactuals are to be
of use in Artificial Intelligence, then it is necessary to pro-
vide formal pragmatics for them. This will be done for causal
counterfactuals. But, before doing so, an appropriate partial
semantics is defined for them.

3 Complefactuals and contrafactuals
The concept of causation arises from the need to reason about
events and their effects on the basis of incomplete, or partial,
information, and consequently any formal treatment of cau-
sation should reflect this. However classical logic assumes
complete, or total, information, and consequently any attempt
to use it to represent causality, and indeed common sense rea-
soning generally, involves some means for introducing par-
tiality. Thus, for example, possible worlds are total, in the
sense that the truth value of each proposition is decided (as
either true or false) at that world. Partiality can be introduced
by considering what is true (false) in a set of possible worlds,
however it is desirable to represent partiality in a direct and
less artificial way. Thus we begin with the idea of apossible
partial world.

A possible partial worldw can be thought of as a set of
classical possible worlds; some sentences may be true atw,
others false, and yet others may be undefined (neither true
nor false). Accordingly the semantics of the language ofeach
possible partial world is that proposed by Kleene[7], which
agrees with the classical truth-functional semantics wherever
possible. Thus, an atomic sentencep may be either true, false
or undefined atw; a sentence:� is true atw if � is false at
w, false if� is true atw, and is undefined otherwise; and a
sentence� ^  is true atw if � and are both true, false
atw if either is false, and is undefined atw otherwise. The
connectives_ and� can be defined in the same way as their
classical counterparts; thus, for example,� _  is defined as
:(:� ^ : ). For the sake of convenience, possible partial
worlds will often be referred to simply as “worlds”, and a
world at which sentence� is true will be referred to as a “�-
world”.

A possible partial worlds model is a tripleM = hW;�;Vi,
whereW is a nonempty set of possible partial worlds,� is
a binary relation onW, andV is a function with domainW.
For eachw 2 W, Vw is a partial function which assigns at
most one of the valuestrue or falseto each atomic sentence
p. In order to represent the growth of information,� can
be thought of as an information ordering on worlds. Thus a
possible partial worlds modelM is said to be aninformation
modelif � is a strict partial order onW (if � is irreflexive
and transitive) andV satisfies the following condition:

(Persistence) If w � w0 thenVw � Vw0 ;

whereVw � Vw0 if Vw0 extendsVw ; that is, if Vw0(p) =
Vw(p) wheneverVw(p) = trueorVw(p) = false, and there is
at least onep such thatVw(p) is undefined andVw0(p) is not.
Thus ifw � w0 and the atomic sentencep is true (or false)
atw, then the truth value ofp persists atw0. It follows that if
w � w0 and the sentence� is true (false) atw, then its truth
value persists atw0. So if w � w0, thenw0 contains more
information thanw; that is,w0 is a better approximation of a
classical possible world thanw is.

The question now arises: what semantics can be given for
counterfactuals in information models? By analogy with the
classical analysis, a counterfactual�) should be true if
the truth of� and non-truth of is, in some sense, a remoter
possibility than the truth of� ^  . However, in view of per-
sistence, it seems that there are two possibilities.

If � is not false at a worldw, then the counterfactual�) 
should be true atw just in case all of the closest�-worlds
above� are also -worlds; wherew0 is a closest�-world
abovew if w � w0, � is true atw0, and there is no other
�-world w00 such thatw � w00 � w0; wherew � w0 if
w � w0, orw = w0 andw 2 W. A conditional of this kind
will be called acomplefactual, as the truth of its antecedent
complements what is true atw, and will be written� *  .
The complefactual� *  should thus be false atw if at least
one of the closest�-worlds abovew is a: -world.

Alternatively, if � is false atw, then the counterfactual
�) should be true atw just in case all of the closest worlds
beloww where� is not false are all� *  -worlds; wherew0

is aclosest�-world beloww if w0 � w, � is true atw0, and
there is no other�-world w00 such thatw0 � w00 � w. A
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Abstract

The formal possible-worlds analysis of counterfac-
tuals has tended to concentrate on their semantics
and logic, with their pragmatics being given infor-
mally. However, if counterfactuals are to be of use
in Artificial Intelligence, it is necessary to provide
formal pragmatics for them. This is done in this
paper by combining work on the representation of
common sense reasoning about events with an ap-
propriate semantics for counterfactuals. The result-
ing combination provides a unified framework for
formal reasoning about actual and counterfactual
events.

1 Introduction
Counterfactuals play an essential role in practical reasoning.
Intelligent agents need to be able to reason counterfactually
about the consequences of actions and events. For example, a
planning agent needs to be able to reason that a plan is likely
to achieve a goal if it is executed, and if the plan has to be
revised during execution, that the revised plan will proba-
bly succeed. An agent which can reason counterfactually in
this way can also benefit from the ability to form contingency
plans, to reason that if a plan were to go awry at some stage
of its execution, then an alternative plan would be appropri-
ate. An agent of this kind can also benefit from hindsight. If
a plan has failed, the agent can learn from this experience by
considering which alternative plans would have succeeded.

The importance of counterfactuals in Artificial Intelligence
has long been recognized; for example in[11]. Recent work
includes Pearl’s probabilistic theory[12; 13], and Costello
and McCarthy’s Cartesian counterfactuals[5].

This paper presents a theory ofcausal counterfactuals,
which combines an appropriate semantics for counterfactu-
als with the theory of common sense reasoning about actual
events which is developed in[2]. The semantics of the the-
ory can be seen as a development of the classical possible-
worlds semantics of Stalnaker, Thomason, and Lewis[8; 15;
16], which are outlined in the next section. The new seman-
tics are then presented informally in Section 3 in the general
setting of information models[17]. In Section 4 the seman-
tics is combined with the language used for reasoning about
actual events in[2], resulting in a language called the Modal

Temporal Calculus, orMT C. In Section 5 the common sense
theory of events developed in[2] is embedded inMT C, and
an appropriate formal pragmatics is given for the new set-
ting. The pragmatics is appropriate for reasoning about actual
events, and, as Section 6 suggests, for causal counterfactuals
and reasoning about counterfactual events.

2 Classical semantic theories
Counterfactuals are notoriously vague and context-
dependent. Nevertheless, Stalnaker[15] argues that it
is possible to give a semantic analysis of them which
includes what might be called a pragmatic parameter. Thus
his truth conditions include a selection function on possible
worlds which, for each possible worldw and proposition�
selects the closest�-world tow; where a�-world is a world
at which� is true. Then a conditional sentence� >  is true
at a possible worldw if and only if the selected�-world is
also a -world. In order to ensure that an appropriate world
is selected, Stalnaker imposes a number of general, semantic,
conditions on the selection function; for example, ifw is a
�-world, then it should be selected as the closest�-world to
itself.

Stalnaker argues that the advantage of such an analysis is
that it is possible to draw a clear distinction between the se-
mantics of counterfactuals and their pragmatics. The seman-
tics for counterfactuals brings out the common structure of
their truth conditions by giving the counterfactual connective
a single meaning and making their pragmatics a parameter
of the interpretation. Consequently it is possible to define
semantical notions such as validity and consequence, and to
give sound and complete axiomatizations for counterfactuals;
as is done by Stalnaker and Thomason in[16].

Lewis [8] argues that there is typically not a single closest
�-world to a given worldw, but rather a set of such worlds.
Consequently he generalizes Stalnaker’s analysis by having
the selection function return the set of closest�-worlds tow.
He also gives an alternative semantics, in which worlds are
ordered according to their comparative overall similarity to
the actual world. Thus it is assumed that for each possible
worldw the setWw of all worlds which are accessible from
w can be ordered by the comparative similarity relation�w ,
wherew0 �w w00 holds if and only ifw0 is at least as similar
tow asw00 is. The counterfactual��!  is then true atw if
and only if either no�-worlds are accessible fromw, or there


