
Revisiting the Cache Miss Analysis of

Multithreaded Algorithms ⋆

Richard Cole1 and Vijaya Ramachandran2

1 Computer Science Dept., Courant Institute, NYU, New York, NY 10012.
2 Dept. of Computer Science, University of Texas, Austin, TX 78712.

Abstract. This paper revisits the cache miss analysis of algorithms
when scheduled using randomized work stealing (RWS) in a parallel en-
vironment where processors have private caches. We focus on the effect
of task migration on cache miss costs, and in particular, the costs of ac-
cessing “hidden” data typically stored on execution stacks (such as the
return location for a recursive call).
Prior analyses, with the exception of [1], do not account for such costs,
and it is not clear how to extend them to account for these costs. By
means of a new analysis, we show that for a variety of basic algorithms
these task migration costs are no larger than the costs for the remain-
der of the computation, and thereby recover existing bounds. We also
analyze a number of algorithms implicitly analyzed by [1], namely Scans
(including Prefix Sums and Matrix Transposition), Matrix Multiply (the
depth n in-place algorithm, the standard 8-way divide and conquer al-
gorithm, and Strassen’s algorithm), I-GEP, finding a longest common
subsequence, FFT, the SPMS sorting algorithm, list ranking and graph
connected components; we obtain sharper bounds in many cases.
While this paper focusses on the RWS scheduler, the bounds we obtain
are a function of the number of steals, and thus would apply to any
scheduler given bounds on the number of steals it induces.

1 Introduction

Work-stealing is a longstanding technique for distributing work among a collec-
tion of processors [4, 17, 2]. Work-stealing operates by organizing the computa-
tion in a collection of tasks with each processor managing its currently assigned
tasks. Whenever a processor p becomes idle, it selects another processor q and is
given (it steals) some of q’s available tasks. A natural way of selecting q is for p
to choose it uniformly at random from among the other processors; we call this
randomized work stealing, RWS for short. RWS has been widely implemented,
including in Cilk [3], Intel TBB [18] and KAAPI [16]. RWS is also an oblivious
scheduler, in that it does not use system parameters such as block and cache size.
This methodology is continuing to increase in importance due to its applicability
to portable algorithms for multicore computers.

⋆ Richard Cole (cole@cs.nyu.edu) was supported in part by NSF Grant CCF-
0830516. Vijaya Ramachandran (vlr@cs.utexas.edu) was supported in part by NSF
Grant CCF-0830737.

2

RWS scheduling has been analyzed and shown to provide provably good
parallel speed-up for a fairly general class of algorithms [2]. Its cache overhead
for private caches was considered in [1], which gave some general bounds on this
overhead; these bounds were improved in [15] for a class of computations whose
cache complexity function can be bounded by a concave function of the operation
count. However, in a parallel execution, a processor executing a stolen task may
incur additional cache misses while accessing data on the execution stack of the
original task. We will refer to such accesses as “hidden data” accesses. Including
these accesses in the cache miss analysis can cause cache miss costs of different
tasks performing the same amount of work to vary widely, and this can lead
to significant overestimates of the total cache miss cost when using a single
bounding concave function.

To capture the cost of hidden data accesses, we provide a largely new analysis.
These costs, while not explicitly addressed, are covered by the analysis in [1].
However, the tighter bounds in subsequent work (e.g., [15]) overlook them. Our
new analysis accounts for all cache miss costs by identifying a subset of well-
behaved tasks, which we term natural tasks; our analysis shows that the cache
miss costs of HBP algorithms, as defined in Section 2, can be bounded as follows.

Theorem 1. Consider an execution of an HBP algorithm A which incurs S
steals. Then there is a collection of s = O(S) disjoint natural subtasks C =
{ν1, ν2, · · · , νs} such that the cache miss cost of A is bounded by O(S log B +
∑

i C(νi)), where C(νi) is the worst case cost for executing νi sequentially start-
ing with an empty cache, and B is the block size. If A uses linear space, then
the O(S log B) term improves to O(S).

With this theorem in hand, the analysis of an algorithm reduces to deter-
mining its worst case decomposition into disjoint natural tasks and bounding
their costs. This tends to be relatively straightforward. Also, the algorithm de-
sign task amounts to maximizing the size of a worst-case collection C for which
∑

i∈C C(νi) has cost bounded by the cache miss cost of a sequential execution;
this is a standard parallel algorithm design issue.

1.1 Computation Model

We model a computation using a directed acyclic graph, or dag, D (good overviews
can be found in [13, 2]). D is restricted to being a series-parallel graph, where
each node in the graph corresponds to a size O(1) computation. Recall that a
directed series-parallel graph has start and terminal nodes. It is either a single
node, or it is created from two series-parallel graphs, G1 and G2, by one of:

i. Sequencing: the terminal node of G1 is connected to the start node of G2.

ii. A parallel construct (binary forking): it has a new start node s and a new
terminal node t, where s is connected to the start nodes for G1 and G2, and
their terminal nodes are connected to t.

One way of viewing this is that the computational task represented by graph
G decomposes into either a sequence of two subtasks (corresponding to G1 and

3

G2 in (i)) or decomposes into two independent subtasks which could be executed
in parallel (corresponding to G1 and G2 in (ii)). The parallelism is instantiated
by enabling two threads to continue from node s in (ii) above; these threads then
recombine into a single thread at the corresponding node t. This multithreading
corresponds to a fork-join in a parallel programming language.

We will be considering algorithms expressed in terms of tasks, a simple task
being a size O(1) computation, and more complex tasks being built either by
sequencing, or by forking, often expressed as recursive subproblems that can be
executed in parallel. Such algorithms map to series-parallel computation dags,
also known as nested-parallel computation dags.

In RWS, each processor maintains a work queue, on which it stores tasks
that can be stolen. An idle processor C ′ picks a processor C ′′ uniformly at
random and independently of other idle processors, and attempts to take a task
(to steal) from the top of C ′′’s task queue. If the steal fails (either because the
task queue is empty, or because some other processor was attempting the same
steal, and succeeded) then processor C ′ continues trying to steal, continuing
until it succeeds.

We consider a computing environment which comprises p processors, each
equipped with a local memory or cache of size M . There is also a shared memory
of unbounded size. Data is transferred between the shared and local memories
in size B blocks (or cache lines). The term cache miss denotes a read of a block
from shared-memory into processor C’s cache, when a needed data item is not
currently in cache, either because the block was never read by processor C, or
because it had been evicted from C’s cache to make room for new data.

There is another cost that could arise, namely cache misses due to false
sharing. As in [1, 15], we assume that there is no false sharing, perhaps as a
result of using the Backer protocol, as implemented in Cilk [3]. Even when false
sharing is present [10, 12], the cache miss costs as analyzed here remain relevant,
since false sharing can only further increase the costs.

Execution Stacks. Now we explain where the variables generated during the
computation are stored, including the variables needed for synchronization at
joins and for managing procedure calls. In a single processor algorithm a standard
solution is to use an execution stack. We proceed in the same way, with one stack
per thread. Before elaborating we define task kernels.

Definition 1. A task kernel is the portion of a task computation dag that re-
mains after the computation dags for all its stolen subtasks are removed.

The original task in the algorithm and each stolen subtask will have a separate
computation thread. The work performed by a computation thread for a task τ
is to execute the task kernel τK for task τ . Each computation thread will keep
an execution stack on which it stores the variables it creates: variables are added
to the top of the stack when a subtask begins and are released when it ends.

Usurpations. Let C be the processor executing task kernel τK . As τK ’s execu-
tion proceeds, the processor executing it may change. This change will occur at

4

a join node v at which a stolen subtask τ ′ ends, if the processor C ′ that was ex-
ecuting τ ′ reaches the join node later than C. Then, C ′ continues the execution
of τK going forward from node v. C ′ is said to usurp the computation of τK ;
we also say that C ′ usurps C. In turn, C ′ may be usurped by another processor
C ′′. Indeed, if there are k steals of tasks from τ , then there could be up to k
usurpations during the computation of τK .

A usurpation may cause cache misses to occur due to hidden data. By hidden
data we mean undeclared variables stored on a task’s execution stack such as
the variables used to control task initiation and termination. If in cache, this
data can be accessed for free by a processor C, but a usurper C ′ incurs cache
misses in accessing the same data.

1.2 Prior Work

In both [1] and [15] the computation is viewed as being split into subtasks both
at each fork at which there is a steal and at the corresponding join node, and then
the costs of these subtasks are bounded by making a worst case assumption that
each subtask is executed beginning with an empty cache. Further, in [1] and for
most analyses in [15], blocks are assumed to have size O(1). In [1], the following
simple observation is made: whether or not it is stolen, a subtask accessing 2M
or more words would incur the same number of cache misses, up to constant
factors. Thus the cache miss overhead due to the steals is bounded by O(M ·S),
where S is the number of stolen tasks. In [15], improved bounds are obtained
in the case the cache misses incurred by any task in the computation can be
bounded by a concave function Cf of the work the task performs; if W is the
total work, the cache miss cost is bounded by S · Cf (W/S), which can yield
better bounds when the average stolen task size is less than M .

1.3 Our Results

We use the following parameters to specify our results. Let D be the computation
dag of a multithreaded algorithm A. Let n be the input size. Suppose that an
operation on in-cache data takes O(1) time units, that the cost of a cache miss is
O(b) time units, that the cost for an attempted steal of a task, successful or not,
is Θ(cs) time units 3. We will assume that b = O(cs), which seems reasonable as
each successful steal entails at least one cache miss.

The following bound on the runtime of a parallel algorithm A scheduled
using RWS indicates its dependence on the cache miss analysis. Suppose that A
performs W operations in the worst case. Let S be the number of stolen tasks,
let C(S, B) denote an upper bound on the number of cache misses incurred in
a parallel execution with S steals, and let U(p) denote the cost of unsuccessful
steals. Then, since a processor is either computing, accessing data or attempting

3 [10] shows how to generalize the analysis in [1] bounding the number of steals so as
to allow unsuccessful steals to take just O(cs) time units (instead of Θ(cs)).

5

Algorithm Q
C(S, B)

In [1] Our Results

Scans, Matrix Transpose (MT) n
B

Q + M · S Q + S

Depth-n-MM, 8-way MM,
n3/(B

√

M) Q + M · S
Q + S

1

3
n2

B
+ S (in BI) 4

Strassen, I-GEP Q + S
1

3
n2

B
+ S · B (in RM)

Finding LCS sequence n2/(BM) Q + M · S Q + n
√

S + S 4

FFT, SPMS Sort n
B

logM n Q + M · S Q + S · B + n
B

log n
log[(n log n)/S]

List Rank., Graph Connected Comp. See the full paper

Table 1. Bounds for cache miss overhead, C(S, B), under RWS in [1] (column 3, with
B = O(1)) and our results (column 4) for some HBP algorithms; O(·) omitted
on every term. The sequential cache complexity is Q (a term f(r), specified below
in Definition 5, is omitted from Q). Always, the new bound matches or improves the
bound in [1].

to steal at each time step, A runs in time

O

(

1

p
· (W + b · C(S, B) + cs · S + U(p))

)

.

For HBP algorithms, the term U(p) is subsumed by the other terms [10].
Table 1 gives our bounds on C. Previous work in [15] obtained the bounds

for C(S, B) shown under Our Results in Table 1 for the Depth-n Matrix Multi-
ply [14], I-GEP [6] and computing the length of an LCS [5, 7] (and some stencil
computations); as already noted, these bounds overlooked some costs, now in-
cluded. We determine new bounds on C(S, B) for several other algorithms (FFT,
SPMS sort, List Ranking, Connected Components, and others). [1] had obtained
a bound of O(S · M) for every algorithm, assuming B = O(1).

Road-map: In Section 2 we review the definition of HBP algorithms. In Sec-
tion 3 we bound the cache miss costs for BP algorithms, a subset of HBP algo-
rithms; the analysis for HBP algorithms is deferred to the full paper for lack of
space. In Section 4, we then apply this analysis to obtain the cache miss bounds
for FFT; the remaining results are in the full paper.

2 HBP Algorithms

We review the definition of HBP algorithms [11, 9]. Here we define the size of
a task τ , denoted |τ |, to be the number of already declared distinct variables
it accesses over the course of its execution (this does not includes variables
τ declares during its computation). Also, we will repeatedly use the following

4 These bounds were obtained for Depth-n-MM and I-GEP by [15], but with hid-
den costs overlooked, though they do not change the overall bound. For LCS, [15]
bounded the cost of finding the length of the sequence, but not the sequence itself.

6

notation: τw will denote the steal-free task that begins at a node w in a fork
tree, and ends at the corresponding node in the corresponding join tree.

Definition 2. A BP computation π is an algorithm that is formed from the
down-pass of a binary forking computation tree T followed by its up-pass, and
satisfies the following properties.

i. In the down-pass, a task that is not a leaf performs only O(1) computation
before it forks its two children. Likewise, in the up-pass each task performs only
O(1) computation after the completion of its forked subtasks. Finally, each leaf
node performs O(1) computation.

ii. Each node declares at most O(1) variables, called local variables; π may also
use size O(|T |) arrays for its input and output, called global variables.

iii. Balance Condition. Let w be a node in the down-pass tree and let v be a child
of w. There is a constant 0 < α < 1 such that |τv| ≤ α|τw|.

A BP computation can involve sharing of data between the tasks at the two
sibling nodes in the down-pass tree. However, it is not difficult to see that the size
k of a BP computation (i.e., the number of nodes in the down-pass or up-pass
tree) is polynomial in the size n of the task at the root of the BP computation.
As it happens, for all the BP algorithms we consider, k = Θ(n). A simple BP
example is the natural balanced-tree procedure to compute the sum of n integers.
This BP computation has n = Θ(k), and there is no sharing of data between
tasks initiated at sibling nodes in the down-pass tree.

Definition 3. A Hierarchical Balanced Parallel (HBP) Computation is one of
the following:

1. A Type 0 Algorithm, a sequential computation of constant size.

2. A Type 1 Algorithm, a BP computation.

3. Sequencing. A sequenced HBP algorithm of Type t results when O(1) HBP
algorithms are called in sequence, where these algorithms are created by rules 1,
2, or 4, and where t is the maximum type of any HBP algorithm in the sequence.
4. Recursion. A Type t + 1 recursive HBP algorithm, for t ≥ 1, results if, on
an input of size n, it calls, in succession, a sequence of c = O(1) ordered collec-
tions of v(n) ≥ 1 parallel recursive subproblems, where each subproblem has size
Θ(r(n)), where r(n) is bounded by αn for some constant 0 < α < 1.

Each of the c collections can be preceded and/or followed by a sequenced HBP
algorithm of type t′ ≤ t and at least one of these calls is of type exactly t. If there
are no such calls, then the algorithm is of Type 2 if c ≥ 2, and is Type 1 (BP) if
c = 1. Each collection of parallel recursive subproblems is organized in a BP-like
tree Tf , whose root represents all of the v(n) recursive subproblems, with each
leaf containing one of the v(n) recursive subproblems. In addition, we require the
same balance condition as for BP computations for nodes in the fork tree.

Lemma 1. Let u and v be the children of a fork node. Then |τu| = Θ(|τv|).

7

Proof. Let w denote the fork node. |τw| ≤ 1+|τu|+|τv|, since only O(1) variables
are accessed by the computation at node w. As |τv| ≤ α|τw|, |τu| ≥ (1−α)|τw|−1,
and hence |τu| ≥ 1−α

α |τv| − O(1) = Θ(|τv|).

Matrix Multiply (MM) with 8-way recursion is an example of a Type 2 HBP
algorithm. The algorithm, given as input two n× n matrices to multiply, makes
8 recursive calls in parallel to subproblems with size n/2 × n/2 matrices. This
recursive computation is followed by 4 matrix additions, which are BP compu-
tations. Here c = 1, v(n2) = 8, and r(n2) = n2/4. Depth-n-MM [14, 8] is another
Type 2 HBP algorithm for MM with c = 2, v(n2) = 4, and r(n2) = n2/4.

Linear Space Bound. We obtain stronger bounds for computations that are
linear space bounded. Linear space boundedness simply means that the compu-
tation uses space that is linear (or smaller) in the size of its input and output
data, with the additional caveat that in an HBP computation, the linear space
bound also applies to all recursive tasks.

All the algorithms analyzed in this paper are linear space bounded.

Constraint on Accesses to Variables. In order to control cache misses when
a usurpation occurs we limit accesses which are made to local variables (variables
a procedure declares) as follows:
The computation at node v′ in an up-pass tree may access global variables and
those local variables declared either in the corresponding node v in the down-
pass tree or at v’s parent, but no others; note that no variables would be declared
at node v′ for it ends a subcomputation. (While it is natural to limit accesses in
the down-pass in the same way, it is not necessary for our results.)

With the HBP definition in hand, we can now define natural tasks.

Definition 4. A Natural Task is one of the following:

1. A task built by one of rules 1–4 in Definition 3.

2. A task that could be stolen: a task τw beginning at a node w in a fork tree and
ending at the corresponding node of the corresponding join tree and including all
the intermediate computation.

Work Stealing Detail. At a fork node, it is always the right child task that
is made available for stealing by being placed on the bottom of the task queue.
This ensures that in a BP computation, a task kernel τK always comprises a
contiguous portion of the leaves in τ , thereby minimizing cache misses. For an
HBP computation, an analogous requirement applies to each ordered collection
of parallel recursive tasks. As is standard in work stealing, steals are performed
at the top of the task queue, which is a double-ended queue.

3 Bounding the Cache Misses

Some computations such as those on matrices in row major format incur extra
cache miss costs when there is need to access a collection of data that are not

8

packed into contiguous locations. The analysis of such accesses has been studied
widely in sequential cache efficient algorithms (see, e.g., [14]); the notion of a
‘tall cache’ has often been used in this context. In work-stealing this issue is more
challenging, since there is less control over organizing the sequencing of tasks to
minimize these costs. To help bound the cache miss costs of non-constant sized
blocks, we formalize the notion of data locality with the following definition.

Definition 5. A collection of r words of data is f-cache friendly if they are
contained in O(r/B + f(r)) blocks.

The data accessed by the tasks τ in the algorithms we consider are all either
O(1)- or O(

√

|τ |)-friendly.

We limit the analysis to well-behaved functions f , which we call regular f .

Definition 6. A cache-friendliness function f is regular if it is a non-decreasing
polynomially bounded function.

Next, we review the primary problem analyzed in [15] to show why the ap-
proach using concave functions need not yield tight bounds.

Depth-n matrix multiply. Possibly there is a steal of a leaf node task τv

in a final recursive call; if the processor P ′ executing τv usurps the remainder
of the computation, then P ′ is going to carry out the processing on the path
to the root of the up-pass tree, and P ′ could end up executing log n nodes
in the up-pass. All that has to be done at these nodes is to synchronize and
possibly terminate a recursive call, but these both require accessing a variable
stored on the execution stack Eτ for the parent task τ (the one from which
the steal occurred). The variables P ′ accesses will be consecutive on Eτ . This
results in Θ([log n]/B) cache misses. In general, a task that performs x ≥ log n
work may incur Θ(x/[B

√
M] + [log n]/B) cache misses which yields a bound of

Θ(S
1

3
n2

B + [S log n]/B) cache misses rather than O(S
1

3
n2

B + S) as in [15]; the

former is a larger bound when B = o(log n) and S ≥ n3/ log3/2 n.

Our Approach. Our method determines bounds on the worst case number of
natural tasks of a given size, and shows that the cache miss cost of the given
algorithm is bounded by Θ(S) plus the costs of O(S) disjoint natural tasks. For
tasks τ of size 2M or larger, the same cache miss costs would be incurred, up to
constant factors, even if there were no steal, modulo a term O(f |τ |). For smaller
tasks, the incurred costs are a function of the task size, which combined with the
bounds on the number of tasks of a given size, yields bounds on the cache miss
costs as a function of the number of stolen tasks. More specifically, we prove our
bound in three parts:

1. A bound assuming there are no usurpations.

2. A bound on the cost of the up-passes following the usurpations.

3. A bound on the costs of re-accessing data following a usurpation, aside the
costs in (2).

9

For BP computations, which we analyze in the next section, (3) does not
arise; (1) is handled by Lemma 2 below, and (2) by Lemma 3. For HBP compu-
tations the argument is more involved; it is given in the full paper. The analysis
in [15] bounds (1) and (3) accurately, assuming the cache miss function is a tight
concave function of the work, but it does not bound (2).

3.1 Analysis of BP Computations

Let C(τ) denote the worst case cache miss cost for sequentially executing τ
starting with an empty cache. Let Tw denote the subtree of the down-pass tree
rooted at node w. Also, we define a node w to be steal-free if its right child is
not stolen (recall that only w’s right child could be stolen). Analogously, we say
Tx is steal-free if all its nodes are steal-free.

Definition 7. An execution of task kernel τK is usurpation-free if at every join
ending a steal the processor C currently executing τK continues to execute τK

following the join.

Lemma 2. Let τK be a task kernel, and let the cache friendliness function f be
regular. Suppose that τ incurs S ≥ 1 steals in forming τK , and suppose that τK ’s
execution is usurpation-free. Then there is a natural task τu fully contained in τK

such that the execution of τK starting with an empty cache incurs O(S +C(τu))
cache misses.

Proof. Let w be the first steal-free node (a node whose child is not stolen) on
the path P starting at τ ’s root (its start node) and descending to the left. Then
we define node u as follows. If w is a non-leaf node of the down-pass tree, then
u is the left child of w. Otherwise, u is node w itself. τu denotes the natural task
that begins at node u and ends at the corresponding node in the up-pass tree.
Let v denote u’s sibling.

τK incurs at most the following number of cache misses: O(|P | + C(τw)),
since τK completes an initial portion of τw, followed by the O(1) computation
at each node in P . But τw incurs at most O(1+C(τu)+C(τv)) cache misses, and
C(τv) = O(C(τu)), as |τv| = O(|τu|) by Lemma 1, and by the regularity condition
on f(τ). Also, |P | = O(S). Thus τK incurs O(S + C(τu)) cache misses.

Comment. We note that Lemma 2 implies that the analysis in [15] applies to
usurpation-free BP computations.

Lemma 3 bounds the additional costs in BP computations due to usurpations,
namely the costs for executing the nodes on the usurpation path, the path from
the first node at which a usurpation occurs up to the root of the up-pass tree.

Lemma 3. Let τK be a task kernel and let the cache friendliness function f
be regular. Suppose that τ incurs S ≥ 1 steals in forming τK . Then there is a
natural task τu fully contained in τK such that executing τK starting with an
empty stack incurs O(C(τu) + S) cache misses.

10

Proof. w, u, v and τu are defined as in the proof of Lemma 2.
To bound the cost of the usurpation path we partition it into alternating

subpaths heading up to the right and up to the left. Let P ′
Ri

, 1 ≤ i ≤ s, denote
the paths of nodes heading up to the right, P ′

Li
, 1 ≤ i ≤ s′, be the paths heading

up to the left. Note that s − 1 ≤ s′ ≤ s + 1, and that s ≤ S.
We explain where the steals from τK occur in terms of these paths. Let x′

be a node on a path P ′
Ri

and let x be the corresponding node in the down-pass
tree. Then x’s right child is stolen, whereas the nodes y corresponding to nodes
y′ on the paths P ′

Li
are steal-free.

Usurpations occur only at nodes x′ on the paths P ′
Ri

. Following a usurpation
at a node x′ (which we call a usurped node) the remaining work is to traverse
the path from x′ toward the next usurpation site, or to the root of the up-pass
tree, if this is the final usurpation of τK . There are at most O(1) cache misses
for each node traversed, but the bound for the paths P ′

Li
can be smaller.

Traversing the paths P ′
Ri

incurs O(
∑

i |P ′
Ri
|) = O(S) cache misses.

In traversing the paths P ′
Li

there are two possible costs: costs for accessing

global variables and costs for accessing local variables, variables stored on τK ’s
execution stack. We analyze each in turn.

For each node on a path P ′
Li

there could be O(1) accesses to global variables.
Let w′

i be the node on P ′
Li

that is closest to the root, let u′
i and v′i be its left

and right child, respectively, and let ui and vi be the corresponding nodes in
the down-pass tree. Thus, all nodes in the subtrees rooted at ui and u′

i are in
τK , and by the BP balance property, |τui

| = Ω(|τvi
|). Since, for 1 ≤ i ≤ s′, τvi

includes all nodes in P ′
Li

except for w′
i, and as O(1) data is accessed at w′

i, this
implies that the global accesses for nodes on P ′

Li
cost O(C(τui

)). Finally, since
the task sizes decrease geometrically as we descend a BP tree, the sum of these
sizes is dominated by C(τu), since us′ = u by its definition in Lemma 2.

Also, there are O(1) accesses to τK ’s execution stack at each node x′ on
P ′

Li
. These accesses are to the O(1) variables for the corresponding node x

in the down-pass tree, or for x’s parent. For each path P ′
Li

the accesses cost

O(
⌈

|P ′
Li
|/B

⌉

), since the variables for successive nodes are stored consecutively.
Now

∑

i |P ′
Li
|/B = O(ht(Tw)/B) = O([log |τw]/B) (the final inequality follows

from the definition of BP computations). Thus O(
∑

⌈

|P ′
Li
|/B

⌉

) = O(⌈log |τw|/B⌉)
= O(⌈[log |τu| + 1]/B⌉) = O(⌈|τu|/B⌉) = O(C(τu)).

Overall, this totals O(C(τu) + S)) cache misses.

Theorem 2. Let A be a BP algorithm and suppose that its cache friendliness
function f is regular. Consider an execution of A which incurs S ≥ 1 steals.
Then there is a collection C = {ν1, ν2, · · · νs} of s = S + 1 disjoint natural tasks
such that the execution of A incurs at most O(S +

∑

i C(νi)) cache misses.

Proof. Let τ1, τ2, · · · , τS+1 denote the original task and the S stolen tasks in the
execution of A. A collection C is constructed by applying Lemma 3 to each of
the s′ ≤ S tasks τi that incur a steal, and adding the s′ tasks it identifies to C.
In addition, for the remaining S + 1 − s′ tasks τi that do not incur a steal, τi

itself is added to C. Thus |C| = S + 1.

11

HBP Algorithms. The above analysis can be extended to type t ≥ 1 HBP
algorithms, leading to Theorem 1. Its proof is based on showing a bound anal-
ogous to Lemma 2 for natural HBP tasks τ ; the bound will now be of the
form O(s · t log B +

∑

i∈C C(νi)), where s is the number of steals τ incurs and
C = O(s · t) (we consider t to be a constant). The argument is inductive, the
building blocks being BP computations and fork trees incurring steals. We then
combine these units hierarchically into natural tasks, following the structure of
the HBP computation. Let the HBP computation make a sequence of c ≥ 1
calls to ordered collections of parallel recursive tasks. Then, each combination
will require the addition of a further O(c) tasks to C, and either brings together
two sets of steals, or increases the type of the resulting unit, and thereby yields
the bound stated in Theorem 1. The analysis is tighter when the computation
is linear space bounded, reducing the term s · t · log B to s · t, and viewing t to
be a constant, this results in the two versions of the bound in the theorem.

4 Analysis of FFT

We analyze the FFT algorithm described in [14, 8]. The algorithm views the
input as a square matrix, which it transposes, then performs a sequence of two
recursive FFT computations on independent parallel subproblems of size

√
n,

and finally performs a matrix transpose (MT) on the result. This algorithm has
sequential cache complexity Q = O(n

B logM n) [14].
The Type 2 HBP algorithm FFT, when called on an input of length n, makes

a sequence of c = 2 calls to FFT on v(n) =
√

n subproblems of size r(n) =
√

n
with a constant number of BP computations of MT performed before and after
each collection of recursive calls. It has f(r) =

√
r.

Lemma 4. The FFT algorithm incurs O(n
B logM n + S · B + n

B
log n

log[(n log n)/S])

cache misses when it undergoes S steals.

Proof. We apply Theorem 1. Each task νi in C incurs at most |νi|/B + f(|νi|)
more cache misses than would occur in its execution as part of a sequential
execution of the algorithm. As the sequential execution incurs O((n/B) logM n)
cache misses, it follows that

∑

i C(νi) = O((n/B) logM n +
∑

i |νi|/B + f(|νi|)).
For FFT, f(r) = O(

√
r); thus if |νi| < B2 then f(|νi|) = O(B), and if |νi| ≥ B2,

then f(|νi|) = O(|νi|/B); so
∑

i f(|νi|) = O(S · B +
∑

i |νi|/B).
It remains to bound the term

∑

νi∈C |νi|/B. The total size of tasks of size r or
larger is O(n logr n), and there are Θ(n

r logr n) such tasks. Choosing r so that S =
Θ(n

r logr n), implies that r log r = Θ(n log n/S), so log r = Θ(log([n log n/S]).

Thus maxC

∑

νi∈C
|νi|
B = O(n

B logr n) = O(n
B

log n
log[(n log n)/S]).

As shown in the full paper, this yields linear (optimal) speedup for n ≥ p log log n·
(M ǫ +B2 log M) for any fixed ǫ > 0, This improves on the bound of n ≥ pMT∞

in [1], which requires n ≥ p log log n · BM log M for optimal speed-up.

Acknowledgements. We thank the reviewers for their thoughtful suggestions.

12

References

1. U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
Theory of Computing Systems, 35(3):321–347, 2002. Springer.

2. R. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. JACM, pages 720–748, 1999.

3. R. D. Blumofe, C. F. Joerg, B. C. Kuzmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN Not.,
30:207–216, 1995.

4. F. Burton and M. R. Sleep. Executing functional programs on a virtual tree of
processors. In Proc. ACM Conference on Functional Programming Languages and

Computer Architecture, pages 187–194, 1981.
5. R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In

Proc. of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’06, pages 591–600, 2006.

6. R. Chowdhury and V. Ramachandran. The cache-oblivious Gaussian Elimina-
tion Paradigm: Theoretical framework, parallelization and experimental evalua-
tion. Theory of Comput. Syst., 47(1):878–919, 2010.

7. R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming
algorithms for multicores. In Proc. of the Twentieth Annual ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’08, pages 207–216, 2008.
8. R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algo-

rithms for multicores and network of processors. In Proc. 2010 IEEE International

Symposium on Parallel & Distributed Processing, IPDPS ’10, pages 1–12, 2010.
9. R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. In

Proc. of the Thirty Seventh International Colloquium on Automata, Languages

and Programming, ICALP’10, pages 226–237. Springer-Verlag, 2010.
10. R. Cole and V. Ramachandran. Analysis of randomized work stealing with false

sharing. CoRR, abs/1103.4142, 2011.
11. R. Cole and V. Ramachandran. Efficient resource oblivious algorithms for multi-

cores. CoRR, abs/1103.4071, 2011.
12. R. Cole and V. Ramachandran. Efficient resource oblivious algorithms for multi-

cores with false sharing. In Proc. IEEE IPDPS, 2012. To appear.
13. T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

Third Edition. MIT Press, 2009.
14. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In Proc. Fortieth Annual Symposium on Foundations of Computer

Science, FOCS ’99, pages 285–297, 1999.
15. M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivious

algorithms. Theory Comput Syst, 45:203–233, 2009.
16. T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A thread scheduling runtime system

for data flow computations on cluster of multi-processors. In Proc. International

Workshop on Parallel Symbolic Computation, PASCO ’07, pages 15–23, 2007.
17. R. H. J. Halstead. Implementation of Multilistp: Lisp on a multiprocessor. In Proc.

ACM Symposium on LISP and Functional Programming, pages 9–17, 1984.
18. A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work steal-

ing in tbb. In Proc. IEEE International Symposium on Parallel and Distributed

Processing, IPDPS ’08, pages 1–8, 2008.

