
Analysis of Randomized Work Stealing with False Sharing

Richard Cole
Computer Science Dept.

Courant Institute of Mathematical Sciences, NYU
New York, NY 10012, USA

Email: cole@cs.nyu.edu

Vijaya Ramachandran
Dept. of Computer Science

University of Texas at Austin
Austin, TX 78712, USA

Email: vlr@cs.utexas.edu

Abstract—This paper analyzes the overhead due to false
sharing when parallel tasks are scheduled using randomized
work stealing (RWS). We obtain high-probability bounds on
the cache miss overhead, including the overhead due to
false sharing, for several parallel cache-efficient algorithms
when scheduled using RWS. These include algorithms for
fundamental problems, such as matrix computations, FFT,
sorting, basic dynamic programming, list ranking and graph
connected components. Our main technical contribution, from
which these results follow, is the derivation of nontrivial high-
probability bounds on the number of steals incurred by these
algorithms in the presence of false sharing, when using RWS.

Keywords-Randomized work stealing; false sharing; perfor-
mance analysis;

I. INTRODUCTION

Work-stealing is a longstanding technique for distributing
work among a collection of processors [1], [2], [3]. Work-
stealing operates by organizing work in tasks, with each
processor managing its currently assigned tasks. Whenever
a processor C becomes idle, it selects another processor
C ′ and is given (it steals) some of C ′’s available tasks. A
natural way of selecting C ′ is for C to choose it uniformly at
random from among the other processors. To emphasize the
inherent randomization in this process, we call it randomized
work stealing, RWS for short. RWS is a simple, lightweight,
distributed scheduler; to our knowledge there is no similarly
effective deterministic scheduler. It has been implemented
multiple times, including in Cilk [4], Intel TBB [5] and
KAAPI [6].

RWS scheduling has been analyzed and shown to provide
provably good parallel speed-up for a fairly general class of
algorithms [3]. Its cache miss overhead for private caches
was considered in [7], which gave some general bounds on
this overhead; these bounds were improved in [8] for a class
of computations whose cache complexity function can be
bounded by a concave function of the operation count, and
further improved for a larger class of algorithms in [9].

These analyses assume that there is no false sharing. False
sharing refers to the risk of creating an apparent inconsis-
tency when two different processors seek to access distinct
locations in the same block: when one or both performs a
write, this may create unnecessary overhead due to methods

in place for preventing or managing potential inconsisten-
cies. There are various methods, such as cache coherence,
that are used in practice to avoid memory inconsistencies
and that also prevent false sharing; in general, these methods
can reduce the possible parallelism and potentially increase
algorithm runtime.

In this paper, we analyze the efficiency of algorithms
when scheduled using RWS, taking account of delays due
to false sharing. Past work has assumed that false sharing is
prevented at the level of the operating system, e.g. by means
of the Backer protocol, as implemented in some versions
of Cilk [4]. Another approach is to engineer the memory
layout to avoid false sharing. While potentially reasonable
for high-performance computing, this is less appealing for
general purpose programming.

Instead of assuming that false sharing is prevented through
other means, in this paper we obtain bounds on the over-
head due to false sharing as a function of the worst-case
delay due to a single fs miss. We leverage an algorithmic
approach for controlling the costs of fs misses, encapsulated
in the class of block-resilient Hierarchical Balanced Parallel
(HBP) algorithms [10]. These algorithms are highly cache-
efficient with good parallelism, and also have a relatively
low overhead for false sharing. This class includes Sample,
Partition, and Merge Sort [11], SPMS for short, standard
divide and conquer algorithms for matrix multiply and FFT,
basic dynamic programming such as LCS, and some list and
graph algorithms (other than SPMS, these algorithms are at
most modest modifications of already known algorithms). It
is shown in [10] that these algorithms have a false sharing
cost of only O(B · S) cache misses, where B is the size of
a block and S is the number of steals. However, there still
remains the task of bounding the number of steals under
RWS when false sharing could be present, and this is the
task we address in this paper.

Our main contribution is the derivation of nontrivial high
probability upper bounds on the number of steals in the
presence of false sharing, when using RWS. As mentioned
above, the cache and fs miss overhead for a variety of
algorithms was bounded by a function of the number of
steals in [10]. By combining our new bounds on the number
of steals under RWS with the results in [10], we obtain

nontrivial bounds on the cache and fs miss overhead of these
algorithms when using RWS. It should be noted that the
RWS scheduler remains unchanged; our contribution lies in
the analysis that bounds the number of steals in the presence
of false sharing, when using the standard RWS scheduler.

A. Computation Model

We use a directed acyclic graph, or dag, D, to model
the computation induced by a program. (Good overviews of
this approach can be found in [12], [3].) D is restricted
to being a series-parallel graph, where each node in the
graph corresponds to a size O(1) computation. Recall that
a directed series-parallel graph has start and terminal nodes.
It is either a single node, or it is created from two series-
parallel graphs, G1 and G2, by one of:

i. Sequencing, where the terminal node of G1 is connected
to the start node of G2.

ii. A parallel construct (binary forking), with a new start
node s and a new terminal node t, where s is connected
to the start nodes for G1 and G2, and their terminal
nodes are connected to t.

One way of viewing this is that the computational task
represented by graph G decomposes into either a sequence
of two subtasks (corresponding to G1 and G2 in (i)) or
decomposes into two independent subtasks which could be
executed in parallel (corresponding to G1 and G2 in (ii)).
The parallelism is instantiated by enabling two threads to
continue from node s in (ii) above; these threads then
recombine into a single thread at the corresponding node t.
This multithreading corresponds to a fork-join in a parallel
programming language.

Processing Environment: We consider a computing environ-
ment which comprises p processors, each equipped with a
local memory or cache of size M . There is also a shared
memory of unbounded size. Data is transferred between the
shared and local memories in size B blocks (or cache lines).

In RWS, each processor maintains a work queue, on which
it stores tasks that can be stolen. When a processor C
generates a new stealable task it adds it to the bottom of
its queue. If C completes its current task, it retrieves the
task τ from the bottom of its queue, and begins executing
τ . The steals, however, are taken from the top of the queue.

An idle processor C ′ picks a processor C ′′ uniformly
at random and independently of other idle processors, and
attempts to take a task (to steal) from the top of C ′′’s
task queue. If the steal fails (either because the task queue
is empty, or because some other processor was attempting
the same steal, and succeeded) then processor C ′ continues
trying to steal, continuing until it succeeds.

Cache and False Sharing Misses: We distinguish between
two types of cache-related costs, as discussed in [10].

The term cache miss denotes a read of a block from
shared-memory into processor C’s cache, when a needed

data item is not currently in cache, either because the
block was never read by processor C, or because it was
evicted from C’s cache to make room for new data. This
is the standard type of cache miss that is accounted for in
sequential cache complexity analysis and in earlier work on
RWS [7], [8].

False sharing of a block β occurs when two or more
processors access different locations in β, with at least one
of them performing a write. More specifically, suppose a
processor C ′ updates an entry in block that is in processor
C’s cache. If cache coherency is supported [13], this results
in block β being invalidated, and results in processor C
needing to read in block β the next time it accesses data
in this block. This is done so that data consistency is
maintained within the elements of a block across all copies
in caches at all times. This type of ‘cache miss’ does not
occur in a sequential computation, and we refer to it as an
fs miss. There are other ways of dealing with fs misses, but
we believe that the fs miss cost with our invalidation rule
based on cache coherence is likely as high as (or higher than)
that incurred by other mechanisms. Thus, our upper bounds
should hold for most of the coping mechanisms known for
handling fs misses.

A series of fs misses could occur when two processors
share a block and the block repeatedly ping-pongs between
their caches as they alternate accesses. It could also arise
when multiple processors each executing small tasks all
share the same block, and the block then rotates from
one processor’s cache to another. We do not make any
assumptions about the protocol used to transfer a block from
one processor to another when several processors need to
access data within that block. Our one assumption is that
a processor cannot unduly delay transferring a requested
block. For specificity, we assume that this delay is of the
same magnitude as the cache miss delay. Thus an fs miss
incurs a delay of at least one cache miss, but without further
assumptions, as shown in [10], it can also be unboundedly
expensive. In this paper, we assume that the computation
scheduled by RWS has an upper bound on the worst case
cost for an fs miss, achieved, for instance, by using the
algorithmic techniques developed in [10], [11], and we
measure the cost of fs misses in units of cache miss cost.

B. Our Results

An Example: We illustrate the potential impact of fs misses
with an example. Consider the standard Depth-n matrix
multiply (Depth-n-MM) algorithm (e.g., [14], [8], [15],
[10]). This recursive algorithm, given two n×n matrices to
multiply, makes, in succession, two collections of parallel
calls each to 4 subproblems of size n/2 × n/2, with the
results being accumulated in a single output n × n array;
the sets of subproblems are chosen so that their writes
are disjoint. We will suppose the algorithm uses the Bit

2

Interleaved (BI) format (as opposed to Row Major) as this
minimizes fs misses1.

Consider a parallel execution of this algorithm on p
processors with an “ideal” scheduler, i.e. with each processor
executing a sequence of size (n/

√
p)×(n/

√
p) subproblems.

Each processor updates a disjoint output matrix of size n2/p,
and due to the BI format, it shares just at most blocks with
other processors. But a processor will update each entry
in the portion of the output matrix assigned to it n/

√
p

times as it performs its computation, and under an adverse
asynchronous execution, each of its updates to the shared
block may entail false sharing with the other processor that
shares this block. Across the p processors, this could result in
n ·B ·√p transfers of blocks due to false sharing. The entire
computation performs a sequence of

√
p parallel executions

of this type, resulting in a worst-case fs miss bound of n·B·p
cache misses.

But with an RWS scheduler it is unclear if even this bound
can be achieved, as the sizes of the allocated tasks are now
likely to vary and so the above analysis no longer suffices.
In fact, under adversarial stealing and an adversarial cache
coherence protocol, one could create a single false sharing
miss which incurs a delay of Θ(n) cache misses.

The approach used in prior work for RWS (that considered
only the cost of cache misses and no false sharing) was
to to bound the longest time duration t of any path in the
computation dag D: this bound can then be used to bound
the expected number of successful steals by O(pt/s), where
p is the number of processors and s is the time taken by a
successful steal [3], [7]. To bound t in the presence of false
sharing requires a bound on the possible delay due to fs
misses faced by a single computation step. But given the
high worst-case cost of Ω(n) cache misses for a single false
sharing miss in the standard Depth-n-MM algorithm, this
approach gives an unacceptably high bound for t and does
not lead to reasonable bounds for the number of steals under
RWS.

In contrast to the above setting, it is shown in [10] that a
small modification to the standard Depth-n-MM algorithm
that enforces ‘limited writes’ results in a block-resilient
version that can reduce the overhead of false-sharing to the
cost of O(B) cache misses per task, and hence also to at
most a cost of O(B) cache misses per fs miss. As shown in
[10] this results in a worst-case fs miss cost for the block-
resilient Depth-n-MM of only the cost of O(p3/2 ·B) cache
misses when using an ideal scheduler, which is a significant
improvement over the n ·B ·p bound for the standard Depth-
n-MM.

We do not expect to match the bounds achieved with an
ideal scheduler when using RWS, given the distributed and
randomized nature of RWS. On the other hand, the results

1In BI format, an n× n matrix A = (Aij) for 1 ≤ i, j ≤ 2, is stored
as the sequence A11, A12, A21, A22, where the Aij are themselves stored
recursively.

presented in this paper allow us to obtain nontrivial upper
bounds on the overhead due to false sharing under RWS for
any series-parallel computation dag, and improved bounds
for block-resilient computations. In particular, for block-
resilient Depth-n-MM, we are able to obtain, with high
probability in n, a bound of S = O(n·p·

√
B) on the number

of steals under RWS. This in turn implies, a high probability
bound of O(n · p · B3/2) cache miss cost for fs misses in
the block-resilient version of Depth-n-MM. Further, in the
absence of a bound on the number of steals in the presence
of false sharing, even the earlier bounds for cache miss
overhead are not valid, since they bounded the largest delay
in a computation path without taking into account the delays
due to false sharing. With our high probability bound on S,
and using the results in [9], we are also able to obtain a
high probability bound of O(S1/3 · (n2/B) +S) cache miss
overhead (outside of the cost due to false sharing) due to
steals.
End of example

We assume a standard memory allocation in which blocks
are allocated and deallocated as the computation proceeds.
Let Γ(D,B), Γ for short, be an upper bound on the number
of transfers of any single block β from one cache to
another during a single allocation of β in the execution of
computation dag D. We use Γ and the following parameters
to specify our results: We suppose that an operation on in-
cache data takes O(1) time units, that the cost of a cache
miss is O(b) time units, that the cost for a successful steal
of a task is Θ(s) time units, and the cost for an unsuccessful
steal is O(s) time units2. We will assume that s ≥ b, since
a successful steal would incur a delay of at least one cache
miss. Finally, let T∞ be the maximum number of nodes on
any path descending D, and let n be the size of the input
plus output.

We prove two bounds on the number of steals that occur
in our algorithms when scheduled under RWS. We begin
with a result that bounds the number of steals in a general
series-parallel dag, the setting analyzed in [7], but when
false sharing is present with a bound of Γ on the number of
transfers of any single block from one cache to another.

Theorem I.1. Let D be a series-parallel computation dag
scheduled by RWS. Then, with high probability in n (i.e. for
any fixed c > 0, with probability 1−1/nc), the computation
of D incurs at most the following number S of successful
steals:

S = O

(
p · T∞ · (1 +

b

s
Γ(D,B))

)
.

In addition, with high probability in n, the time spent on all
steals, successful and unsuccessful, is O(s · S).

The bound in Theorem I.1 can be obtained by extending

2This generalizes prior work, which required unsuccessful steals to also
take Θ(s) time units.

3

the analysis in [7] using the parameter Γ(D,B), but only
when the cost of an unsuccessful steal is required to be Θ(s)
time units. We provide a new proof for this theorem, which
generalizes the earlier proof to allow for two different types
of phases in the analysis (the analysis in [7] has only one
type of phase). We need the two different types of phases
for our second, and main, theorem, and by using these two
types of phases in the proof of Theorem I.1 we are also able
to handle the more general O(s) bound on the cost of an
unsuccessful steal.

In general, Γ(D,B) can be unbounded, but as mentioned
above, Γ(D,B) = O(B) for the class of algorithms we ana-
lyze, called block-resilient HBP algorithms [10]. In a block-
resilient algorithm, each block, during a single allocation,
will store O(B) variables; while noting that this property
is somewhat challenging to guarantee on execution stacks
due to natural space reuse, [10] nevertheless gives simple
algorithmic constraints ensuring this property. In addition,
each writable variable can be accessed only O(1) times.
Together, these ensure that Γ = O(B).

Theorem I.1 implies that for block-resilient algorithms the
presence of false sharing increases the number of steals by
at most an O(B) factor (strictly, an O(1 + b

sB) factor)
over the case analyzed in [7] when no false sharing is
present. Theorem I.2 will show a smaller factor increase
than B. The reason the bound in Theorem I.1 can be unduly
pessimistic is that it does not make use of the fact that,
at each occurrence of an fs miss, one processor does, in
fact, succeed in accessing a block (at the cost of at most a
cache miss). By exploiting this fact, we are able to establish
sharper bounds on S for block-resilient HBP algorithms.
We introduce a new parameter, l(D), which captures the
contribution of fs misses incurred during accesses to ‘global
data’, and bounds the number of steals more precisely. l(D)
is defined precisely in Section IV; to a first approximation,
it is the maximum number of distinct BP computations —
tree-like HBP computations — along any computation path
in D. We will prove the following theorem.

Theorem I.2. Let D be the computation dag of a block-
resilient HBP algorithm. Then, when scheduled using RWS,
with high probability in n, the computation of D incurs at
most the following number S of successful steals:

S = O

(
p · T∞ ·

(
1 +

b

s
·B · l(D)

T∞

))
In addition, with high probability in n, the time spent on

all steals, successful and unsuccessful, is O(s · S).

For block-resilient HBP algorithms, as Γ(D,B) = O(B),
Theorem I.2 replaces the term p · bs ·B · T∞ in Theorem I.1
by the term p · bs ·B · l(D). A gain occurs when b

s ·B = ω(1)

3These are variants of the standard algorithms which ensure that each
writable variable is written O(1) times.

because, as we will establish, l(D) = o(T∞). For example,
for BP algorithms we have T∞ = Θ(log n), and we will
establish that l(D) = O(1). Thus, while Theorem I.1 bounds
S for BP computations by S = O(p · log n · (1 + b

sB)),
Theorem I.2 improves the bound to S = O(p · log n(1 +
b
s

B
logn)).
HBP algorithms are built hierarchically from BP algo-

rithms; this leads to analogous gains in the bounds on S
for these algorithms. The full collection of bounds for the
algorithms we analyze is shown in Table I, where the results
for the expected number of steals are obtained by using
Theorem I.2 together with Theorem V.2 in Section IV, which
establishes bounds on l(D) for specific classes of HBP
algorithms.

Using Theorem I.2 we can derive w.h.p. in n bounds on
the parallel time taken in an execution of any algorithm in
Table I, when scheduled under RWS, by observing that at
every point during an execution under RWS, each processor
is performing one of the following: a local computation, or
waiting on a cache miss or an fs miss, or performing a steal,
successful or unsuccessful. Let W (n) and Q(n,M,B) be
worst-case upper bounds on the sequential time (i.e., the
work) and sequential cache complexity of the algorithm;
these are well-known quantities, and Q(n,M,B) is listed
in the second column of Table II for the algorithms we
consider. Let C(n,M,B) be an upper bound on cache miss
excess under S steals, and F (n,M,B) be the excess due
to fs misses under S steals. Upper bounds for C and F
were established in [9] and [10] respectively, and are listed
in columns 3 and 4 of Table II (for C earlier bounds may
be found in [7], [8]). The bounds for Q, C, and F are all
in units of b, the cost of a cache miss. Finally, Theorem I.2
gives w.h.p. bounds on S, the number of successful steals
under RWS, which can be now used to bound C and F .
Recall that s is the time spent on a successful steal, and
Theorem I.2 establishes that the time spent on all steals,
successful and unsuccessful, is bounded by O(s ·S), even if
an unsuccessful steal could take less time than a successful
one. With these values in hand, we can now bound, w.h.p.
in n, the time taken by an execution on p processors under
RWS by

Tp = O

(
W + b · (Q+ C + F) + s · S

p

)
Considering only the three components that are measured

in units of b (the cost of a cache miss), the last column
of Table II gives bounds on p for which C + F = O(Q),
i.e., when the cache miss and fs miss overhead due to steals
under RWS is dominated w.h.p. in n by the sequential cache
complexity of the algorithm. We refer to this as a bound for
optimal performance.

For matrix algorithms, it turns out that the bit-interleaved
(BI) format is more effective in controlling fs miss costs than
the Row Major (RM) format; consequently, we analyze the

4

Block Resilient HBP Algorithm T∞
l Expected # Steals, S with FS Misses

(Thm V.2) Theorem I.1 Theorem I.2
Scans, Matrix Transpose (MT) logn 1 p · logn · (1 + b

s
B) p · logn · (1 + b

s
B/ logn)

Row Major (RM) to Bit
logn 1 p · logn · (1 + b

s
B) p · logn · (1 + b

s
B/ logn)Interleaved (BI) format

Matrix Multiply (MM), Strassen log2 n logn p · log2 n · (1 + b
s
B) p · log2 n · (1 + b

s
B/ logn)

Depth-n-MM 3 n n√
B

p · n · (1 + b
s
B) p · n · (1 + b

s

√
B)

I-GEP (Gaussian Elimination) 3 n log2 n T∞√
B

p · n · log2 n · (1 + b
s
B) p · n · log2 n · (1 + b

s

√
B/ log2 n)

Longest Common Subsequence
nlog2 3 T∞

B
p · nlog2 3 · (1 + b

s
B) p · nlog2 3 · (1 + b

s
)(LCS) 3

BI to RM for MM and FFT logn 1 p · logn · (1 + b
s
B) p · logn(1 + b

s
B/ logn)

FFT, sort logn · log logn logn
logB p · logn · log logn · (1 + b

s
B)

p · logn · log logn·
(1 + b

s
B/(logB log logn))

List Ranking log2 n · log logn T∞
logn

p · log2 n · log logn · (1 + b
s
B) p · log2 n · log logn · 1 + b

s
B/ logn)

Connected Components log3 n · log logn T∞
logn

p · log3 n · log logn · (1 + b
s
B) p · log3 n · log logn · (1 + b

s
B/ logn)

Table I
BOUNDS ON THE NUMBER OF STEALS; O(·) OMITTED ON EVERY TERM. THE BOUNDS IN THEOREM I.1 WITH B = O(1) ARE THE SAME AS THE

BOUNDS WITH NO FS MISSES STEMMING FROM THE ANALYSIS IN [7]. NOTE THAT Γ = O(B) FOR ALL THESE ALGORITHMS.

Block-resilient Cache Misses Seq. Cache Miss Excess FS Misses Constraints for Optimal RWS
Algorithm Execution, Q with S Steals, C [9] F [10] Performance with False Sharing
Scans n

B
S [8], [9] S ·B n ≥ pB2(logn+B)

MT, RM to BI n2

B
S ·min{M/B,B} S ·B n2 ≥ pB2(logn+B)

MM n3/(B
√
M) S

1
3 · n

2

B
+ S S ·B n3 ≥ pM1/2(M +B2) logn(B + logn)

Strassen
nλ/(Mλ/2−1B) S1/λ M

B

(
n√
M

)λ−1

+ S S ·B nλ ≥ pMλ/2−1(M +B2) logn(B + logn)(λ = log2 7)

Depth-n-MM n3/(B
√
M) S

1
3 n

2

B
+ S [8], [9] S ·B n2 ≥ p(MB)1/2(M +B2)

I-GEP n3/(B
√
M) S

1
3 n

2

B
+ S logB [8], [9] S ·B n2 ≥ p(log2 +

√
B)
√
M(M +B2)

LCS n2/(MB) n
√
S/B + S logB [8], [9] S ·B n2−log2 3 ≥ p ·B ·M · (B2 +M)

BI to RM for MM n2

B
log logM n

S ·min{M/B,B}
S ·B Dominated by MM and FFT

and FFT +n2

B
log logM n

FFT, sort Ssort = n
B

logM n
Csort = O(S ·min{M/B,B}

S ·B n ≥ p · (log logn+B/ logB) · (Mε +B2 logM)
+ n
B

logn
log[(n logn)/S]

)

List Ranking Ssort Csort · logn S ·B n ≥ p · log logn · (logn+B) · (Mε +B2 logM)

Connected Cmpts. Ssort · logn Csort · log2 n S ·B n ≥ p · log logn · (logn+B) · (Mε +B2 logM)

Table II
CONSTRAINT ON INPUT SIZE FOR OPTIMAL MULTICORE PERFORMANCE UNDER RWS WHEN BOTH FS MISS OVERHEAD [10] AND CACHE MISS

OVERHEAD [8], [9] ARE CONSIDERED; O(·) OMITTED ON EVERY TERM. Q, C, F ARE IN UNITS OF b, THE CACHE MISS COST.

matrix multiply (MM) algorithms assuming the BI format.
To enable input or output in the RM format, we also analyze
algorithms for converting between these two formats. We
note that the algorithm for BI to RM conversion performs
superlinear work, which is also the reason for its higher
cache miss cost; as explained in [10], this is done in order
to reduce the fs misses.

Road-map: In Section II we outline the proof of Theo-
rem I.1. In Section III we review the definition of HBP
algorithms and in Section IV we outline the proof of
Theorem I.2. Finally, in Section V we describe and analyze
the individual algorithms. For lack of space, some proofs
are only sketched.

II. BOUNDING THE STEALS IN A SERIES PARALLEL
DAG COMPUTATION

Proof: (of Theorem I.1). Broad-brush, our analysis
follows the approach taken in [7]. As in [7], we bound the
number of steals using a potential function φ.

We begin by defining φ. We assign a cost to each node in
the execution dag D for a given computation. To this end,
let e′ be an upper bound on the number of operations (reads,
writes and computations) performed in the execution of any
one node. By assumption, e′ = O(1). Each node is given
a cost of b · e′ · Γ(D,B) = b · e′ · Γ. We view each task
corresponding to a node as performing up to b · e′ ·Γ “work
units” when it is executed, each work unit corresponding to
one unit of time being expended on its execution. In addition,

5

to cover the cost of steals, any node performing a fork or join
is given an additional cost of 2s (the factor of 2 simplifies
the analysis). The cost of a path in D is simply the sum of
the costs of the nodes on the path.

We define the the max-path-cost c(u) of a vertex u in D to
be 1/s times the maximum cost of all the paths descending
from u. Note that c(u) ≤ 1

s [b ·e′ ·Γ ·(h(u)+1)+2s ·(h(u))],
where h(u) denotes the height of u in D (i.e. the maximum
path length starting at u). And if t denotes the topmost node
in D, it follows that c(t) ≤ 1

s [b · e′ ·Γ ·T∞+ 2s · (T∞− 1)].

Definition II.1. If the task τu associated with vertex u is
on a task queue, u’s associated potential φ(u) = 21+c(u); if
τu is currently being executed by a processor, with x of its
work units already having been performed, u has potential
φ(u) = 2c(u)−(x/s); otherwise, u’s potential is zero. φ =∑
u φ(u).

To show progress, we analyze the algorithm in periods
called phases. We identify two types of phases, steal and
computation phases. At the start of a new phase, if at least
half the potential φ is associated with vertices u whose
associated tasks τu are on task queues, this is a steal phase.
Otherwise, it is a computation phase. A steal phase lasts until
2p attempted steals complete, successfully or not, while a
computation phase lasts for b time units. This is in contrast
to [7], where every phase lasts until p attempted steals
complete. By defining the length of the computation phase
in terms of the work done and not the number of attempted
steals, we are able to bound the work done on steals even
when an unsuccessful steal could take less time than a
successful one.

Lemma II.2. i. In a steal phase, the expected value of
φ reduces to at most 7

8 of its starting value; further, with
probability at least 1

15 , φ reduces to at most 15
16 of its starting

value.
ii. In a computation phase, φ reduces to at most

(
1− b

8s

)
of its starting value.

Proof: i. We first show the reduction in the expected
value. Potential of at least φ

3 is associated with tasks at the
heads of queues, since, on any task queue, the heights of
successive tasks decrease by an additive factor of at least 2,
and hence at least 2

3 of the potential associated with tasks on
task queues is for tasks at the heads of these queues. Let τu
be a task at the head of a task queue. The probability that
τu is not stolen in one attempted steal is 1 − 1/p. Hence
over the at least 2p attempted steals, it is not stolen with
probability (1 − 1/p)2p ≤ 1/e2, and hence is stolen with
probability more than 3

4 . If τu is stolen, the potential φ(u)
decreases by a factor of 2. Consequently, the expected value
of φ is reduced to at most 2

3φ+ 1
4 ·

φ
3 + 3

4 ·
1
2 ·

φ
3 = 7

8φ.
Let φ′ denote the value of φ after the steal phase. We have

shown that E[φ′] ≤ (7/8) · φ. Since φ′ is a non-negative
random variable, we apply Markov’s inequality to obtain

that the probability that φ′ ≥ 15
14E[φ] is at most 14/15. We

have shown that E[φ′] ≤ (7/8) · φ, hence φ′ ≤ 15
16φ with

probability at least 1/15.
ii. Now we analyze the reduction to φ in a computation

phase.
Suppose processor C is currently executing task τu corre-
sponding to vertex u. Then in the current phase, C can do
one of three things.
a. It could complete the computation of its current node.
This could have one of three results: 1. A join occurs and C
starts the computation of node w, the successor of u in D;
as φ(w) ≤ φ(u)/2 (recall that we are comparing the initial
value of φ(w) to the current value of φ(u)), the reduction
in potential is at least φ(u)/2. 2. C takes a task from its
task queue. Then the reduction is potential is by more than
φ(u). 3. C has no more work at hand and begins attempting
steals. The reduction in potential is by φ(u).
b. C could perform a fork. We show that this reduces
the associated potential φ(u) to at most 3

4φ(u). When a
processor executing task τu forks, it creates tasks τv and
τw, placing τw on its task queue. Recall that each forking
node is assigned an additional cost of 2s. Hence, the forked
task v that is placed on the task queue has potential φ(u)/2,
and the forked task w that continues the execution has
potential φ(u)/4. Thus, the potential is reduced from φ(u)
to φ(v) + φ(w) ≤ φ(u)/4 + φ(u)/2 = 3

4φ(u).
c. If (a) and (b) do not hold, then processor C executes its
task throughout the phase without forking. Hence processor
C performs a sequence of at least b work units. This
reduces the starting potential φ(u) to at most φ(u)2−b/s =
φ(u)(1 + 1)−b/s ≤ φ(u)(1− b

2s) if b ≤ s.
At the start of a computation phase, at least half the

potential is associated with nodes that are being computed.
For each such node u, its potential reduces by at least one
of the following: Case a: φ(u)/2; Case b: φ(u)/4; Case c:
b
2sφ(u); this is at least min{ 1

4 ,
b
2s}φ(u) ≥ b

4sφ(u) (using
the assumption that b ≤ s). Hence in one computation
phase the potential is reduced to at most φ2 +

(
1− b

4s}
)
φ
2 ≤(

1− b
8s

)
φ.

We continue the proof of Theorem I.1.
Say that a steal phase is successful if φ reduces to at

most 15
16 of its value at the start of the phase, and that it is

unsuccessful otherwise. By Lemma II.2(i), a steal phase is
successful with probability at least 1

16 .
Suppose that there are x successful steal phases, y unsuc-

cessful ones, and z computation phases during the computa-
tion. Recall that in a computation phase the potential reduces
to at most (1 − b

8s)φ, and in a successful steal phase to at
most 15

16φ. Initially φ = 2c(t), and when φ has reduced to 1
all the successful steals have completed. Hence both

(
15
16

)x
and

(
1− b

8s

)z
are at most O(2c(t)). Thus, x+ b

sz = O(c(t)).
Also, since the probability of an unsuccessful phase is at
most 15/16 and steal phases are mutually independent, by
a Chernoff bound we have y = O(x) w.h.p. in n since

6

c(t) = Ω(T∞) (and T∞ = Ω(log n) since we have binary
forking and n is the amount of input and output data
accessed.)

Now each computation phase takes b time units and hence
uses O(pb) time over all p processors. So the z computation
phases use O(pbz) time units over all p processors. As a
successful steal takes at least Θ(s) time units, there can
be only O(pbz/s) successful steals that start and finish in
a contiguous sequence of computation phases. Any other
successful steal either starts or ends during a steal phase;
there can be at most 2p of these per steal phase, O(p(x+ y))
in total.

Hence w.h.p. in n, the total number of successful steals is
at most 2p · (x+y) + pbz

s = O(p · (x+ b
sz)) = O(p · c(t)) =

O(p · T∞ · (1 + b
sΓ)).

This establishes the first part of the Theorem. Further, the
total time spent on steals, both successful and unsuccessful
is O(s ·p · (x+y)+pbz), and by the above bound, this total
time is O(s · p · T∞ · (1 + b

sΓ)) = O(s ·S) w.h.p. in n. This
establishes the second part of the Theorem.

III. HBP ALGORITHMS

We review the definition of HBP algorithms [10], [11].
Here we define the size of a task τ , denoted |τ |, to be the
number of distinct, already declared variables it accesses
over the course of its execution (this does not includes
variables τ declares during its computation).

Definition III.1. A BP computation π is an algorithm that is
formed from the down-pass of a binary forking computation
tree T followed by its up-pass, and satisfies the following
properties.
i. In the down-pass, a task that is not a leaf performs only
O(1) computation before it forks its two children. Likewise,
in the up-pass each task performs only O(1) computation
after the completion of its forked subtasks. Finally, each leaf
node performs O(1) computation.
ii. Each node declares at most O(1) variables, called local
variables; π may also use size O(|T |) arrays for its input
and output, called global variables.
iii. Balance Condition. Let w be a node in the down-pass
tree and let v be a child of w. There is a constant 0 < α < 1
such that |τv| ≤ α|τw|.

A simple BP example is the natural top-down balanced-
tree procedure to sum n integers.

Definition III.2. A Hierarchical Balanced Parallel (HBP)
Computation is one of the following:
1. A Type 0 Algorithm, a sequential computation of constant
size.
2. A Type 1 Algorithm, a BP computation.
3. Sequencing. A sequenced Type t HBP algorithm results
when O(1) HBP algorithms are called in sequence, where
these algorithms are created by rules 1, 2, or 4, and where t

is the maximum type of any HBP algorithm in the sequence.
4. Recursion. Recursion. A Type t+ 1 recursive HBP algo-
rithm, for t ≥ 1, results if, for a size n problem, it calls,
in succession, a sequence of c = O(1) ordered collections
of v(n) ≥ 1 parallel recursive subproblems, where each
subproblem has size Θ(r(n)), and r(n) is bounded by αn
for some constant 0 ≤ α < 1.

Each of the c collections can be preceded and/or followed
by a sequenced HBP algorithm of type t′ ≤ t, where at least
one of these calls is of type exactly t. If there are no such
calls, then the algorithm is of Type 2 if c ≥ 2, and is Type
1 (BP) if c = 1.

Each collection of parallel recursive subproblems is orga-
nized in a BP-like tree Tf , whose root represents all of the
v(n) recursive subproblems, with each leaf containing one of
the v(n) recursive subproblems. In addition, we require the
same balance condition as for BP computations for nodes
in the fork tree.

An algorithm is limited-access if any writable variable
is accessed O(1) times during its execution [10], [11].
An HBP algorithm is block-resilient if (i) it is limited-
access, (ii) it is ‘top-dominant’, and (iii) it satisfies certain
requirements on the data layout that we describe in Section
IV for BP computations. Since the only property of top-
dominance that we need in this paper is that it enables the
property Γ(D,B) = O(B) we refer the reader to [10] for
its definition. Also, [10] defines a block-sharing function
L(r) but since all of the algorithms we consider have
L(r) = O(1), we will not discuss it here.

Matrix Multiply (MM) with 8-way recursion is an ex-
ample of a block-resilient Type 2 HBP algorithm. The
algorithm, given as input two n × n matrices to multiply,
makes 8 recursive calls in parallel to subproblems with size
n/2×n/2 matrices. This recursive computation is followed
by 4 matrix additions, which are BP computations. Here
c = 1, v(n2) = 8, and r(n2) = n2/4.

IV. BOUNDING THE STEALS IN HBP ALGORITHMS

In turn, we analyze BP and then HBP computations. But
before entering into this analysis it will be helpful to look
more closely at how variables are stored.

An algorithm’s input and output variables are called
global variables. All other variables will be local to some
procedure within the algorithm’s execution. The local vari-
ables are all stored on execution stacks as we explain next.

Execution Stack. When a new thread is started, either be-
cause it is executing the original task τ for the computation,
or a stolen subtask τ , the thread creates an execution stack
Eτ to keep track of the procedure calls and variables in the
work it performs on τ . For each node the thread executes,
it creates a segment to hold the variables declared by the
node. In a BP computation, this will be O(1) variables. The

7

segment is placed at the top of Eτ . When the procedure
completes, the space used by the segment is released.

Finally, we note that the input and output variables, which
may be arrays, are stored in memory locations separate from
those used for the execution stacks, and share no blocks with
the execution stacks.

The Potential Function: Our approach is to replace c(u)
in the definition of φ with a tighter bound on the cost
of executing any path descending from u. We denote this
bound by `(u), the hbp-length of u. We will express `(u) as
`1(u) + b

s · (`2(u) + `3(u) + `4(u)). Here, `1(u) serves the
same purpose as 2 · h(u) in the proof of Theorem I.1, and
`2(u) and `3(u) address false sharing costs due to ‘global’
and ‘local’ variables, respectively, as described below. The
parameter `4(u) is not needed for BP computations, and in
an HBP computation, it addresses fs costs due to accesses
to a block from different recursive calls. We will show that
`1(u) + `3(u) = O(T∞), while `2(u) and `4(u) depend on
B.

The parameter `(D) in Theorem I.2 is defined as 1
B times

the initial value of (`2(t) + `4(t)).
The hbp-length `(u) will change dynamically as the

algorithm execution proceeds. The challenge in designing
` is that for an edge (u, v), the difference `(u)− `(v) needs
to be at least the time taken to perform the operations at node
u, which could include the delay due to fs misses. However,
we want this difference to be large only if there really
are fs misses. Further, the nodes at which fs misses occur
depend on the order of execution, and our analysis needs
to account for every possible order. We enable sufficiently
large differences when needed by dynamically reducing the
value of `(w) for nodes w that could access block β when
β incurs an fs miss; we also reduce the ` value for selected
descendants of such nodes w.

A. BP Computations

In a BP computation, we do not use `4(u), hence `(u) =
`1(u) + b

s · (`2(u) + `3(u)) here, and `(D) = 1
B times the

initial value of `2(t).
Recall that a BP computation comprises a down-pass tree,

which we name Td, followed by an up-pass tree, named Tu,
with the leaf nodes being common to the two trees; and
Theorem I.1 gives S = O(p · (log n+ b

s ·B log n)).
We distinguish between data accesses to global and to

local variables. Global variables are the inputs and outputs of
the BP computation. Due to the recursive fork-join nature of
the computation, two nodes that have an ancestor-descendent
relation cannot execute concurrently. Hence, fs misses can
only occur between nodes in sibling subtrees. Further, by
definition, block-resilient BP computations [10] satisfy the
natural property that any node in the forking tree can access
only a constant number of locations in the input and output,
centered around the position of that node in an in-order
ordering. Thus, nodes at levels Θ(logB) and higher above

the leaves of the down-pass and up-pass trees will have
no false sharing cost. We set up a component `2(u) in
`(u) (recall `(u) replaces the c(u) in Theorem I.1) so that
it incorporates the benefit of this property, and for global
variables, this replaces the B log n term in Theorem I.1 by
just B.

BP computations also access local variables on the ex-
ecution stack. Here, there is indeed the possibility of fs
misses at any level in the BP dag. However, the false sharing
interactions on an execution stack occur only among the
task that created the execution stack and the tasks stolen
from it. Further all of the stolen tasks are right siblings of
nodes that lie on a single path (the steal path [10], [9]) in
the down-pass (fork) tree. We set up the third component
`3(u) in `(u) to account for this special type of interaction
on the execution stacks. This allows us to argue that for
local variables, the B log n term in Theorem I.1 reduces to
O(log n). The contributions of `2 and `3 together allow us
to derive the improved bound in Theorem I.2 for fs misses.

The BP Analysis. Let D be the dag of a BP computation
with root t. Note that the down-pass tree Td and the up-pass
tree Tu both have height H = Θ(log n). For a node u in D,
let h(u) be the length of a longest path descending from u;
then h(t) = O(log n).

For the BP computation dag D, the max-path cost c(u)
of a node u from Lemma II.2 is c(u) = 2h(u) + b

s · e
′ ·

Γ · [h(u) + 1]), with Γ = O(B). Here, we will replace c(u)
by `(u) = l1(u) + b

s · (`2(u) + `3(u)), and we will define
φ(u) as in Definition II.1 with c(u) − x/s replaced by `.
Also, l1 = O(log n) will serve the same purpose as the
term 2 · h(u) in c(u) and we will not discuss it further.

We now define `2(u) and `3(u). Both of these values can
change during the computation, and will be set up so that
they satisfy the two necessary properties of always being
non-negative, and of always having `i(v) ≥ `i(w), i = 2, 3,
for each edge (v, w) in D (the edge rule). This ensures that,
if we traverse any path down the dag D, φ(u) decreases by
a factor of at least 4 at each node along the path.

Global Variables and `2. Writes to the global variables (typ-
ically arrays of size n) in a block-resilient computation [10]
obey the following well-buffered rule. Let v be a node in
Td, and let T be the subtree in the down-pass tree rooted at
v. Suppose that T ’s nodes can access an array A. Then all
the accesses by T occur in an interval I of length Θ(|T |)
and the only nodes that can access I are those in T and
in the complementary tree in the up-pass tree. Furthermore,
v can only access the middle of I: there are left and right
portions of I of length Θ(|T |) that v cannot access, and
which can be accessed only by v’s left and right subtrees,
respectively. A similar property applies to Tu. (Note that
prefix-sums can be implemented as a sequence of two well-
buffered BP computations.)

Conflicting accesses cannot occur between a node and its

8

proper ancestor, hence a key property of this access pattern
is that there is no fs miss for accesses to global variables at
nodes that are the roots of subtrees of size at least e′′B
in either Td or Tu, for a suitable constant e′′ > 1. In
other words, any conflicting accesses can occur only in the
following conflict subtrees: subtrees of size at most e′′B−1
at the bottom of either Td or Tu. We define the initial values
of `2 as follows. For nodes in the up-pass tree below the
conflict subtrees (when looking top-down in D) `2(u) = 0
throughout the computation; for all other nodes `2(u) = e·B
initially, where e = 3 · e′ · e′′.

When a process accesses a block storing a global variable
that some node u in conflict subtree T needs to access, `2(w)
is decremented for every node in T and in its complementary
conflict tree T ′. Since any node in a conflict tree T has O(1)
accesses, and since the blocks it can access can be accessed
only by nodes in T , in T ’s left and right neighbors, and in
their complementary trees, and since each conflict tree has
size O(B), `2 can be decremented at most O(B) ≤ 3 · e ·B
times. Also since nodes outside the conflict trees have no
decrements in `2, `2 remains non-negative at every node
and satisfies the edge rule.

Local Variables and `3. The local variables are used to
store data needed by the individual computation nodes; there
are at most e′ such (one-word) variables per node. Each
computation thread will have an execution stack on which it
stores the local variables it generates. When the computation
of a node v begins, its local variables are added to its thread’s
execution stack, and when the computation of node v ends,
this space is released.

Block resilient BP algorithms obey the following local
constraint [10] (achieved by a natural scoping of variables
and the use of return value variables). Writes to local
variables by the task for a node v are to v’s local variables,
and in the up-pass to the local variables declared by the
complementary downpass node v′ plus possibly to the local
variables at parent(v′) in Td.

Consider the execution stack Sτ for a task τ in D executed
by a processor C. The tasks stolen from τ and executing
at other processors correspond to the right subtrees of a
subset of the nodes whose local variables are stored on τ ’s
execution stack. With `3 we will bound the cost of fs misses
due to accesses to blocks on the execution stack of τ by C
and these other processors. This is the most nontrivial part
of our analysis.

Let β be a block storing a portion of Sτ . The only nodes
that can access β are some of those in the non-stolen portion
of τ , and in tasks stolen from τ . We define `3 so as to
ensure a sufficient reduction in the overall potential when
such accesses cause one or more processors to incur an fs
miss. Our definition of `3 is set up so that in some cases
there is no reduction to the `3 values of nodes that can be
delayed by an access to β (this is done in order to maintain

the non-negativity of `3 and the edge rule); however, this
happens only when the contribution to the potential by these
nodes is small in comparison to that by another node whose
potential will decrease.

Initial values of `3. For a node v in Tu, `3(v) = 2e′(h(v) +
1).

Let l∗3 be the maximum value of `3 among all nodes in
Tu, (this maximum value occurs at the leaves of Tu). For a
non-leaf node v in Td, we set `3(v) = l∗3 + e′(h(v)− 1).

We will discuss updates to `3 within the proof of Lemma
IV.1, which we are now ready to prove. The change from
Lemma II.2 is that the initial value of `(t) is significantly
smaller than the initial (and unchanging) value of c(t)
at the root t of D, and hence the initial value of φ is
correspondingly smaller. In turn, this enables an improved
bound on the number of steals in Theorem I.2, the analog
of Theorem I.1, but the proof is more challenging.

Lemma IV.1. i. In a steal phase, the expected value of
φ reduces to at most 7

8 of its starting value; further, with
probability at least 1

16 , φ reduces to at most 15
16 of its starting

value.
ii. In a computation phase, φ reduces to at most

(
1−Θ(bs)

)
of its starting value.

Proof: We define steal and computation phases as in
Lemma II.2, except that a steal phase will now last for 2b
steps to ensure that a processor C with enough work will
either complete at least b steps of work, or if it waits for a
block β, some other processor competing with C will access
β in that phase.

The proofs of (i) and of (ii) for the case when there is no
fs miss are similar to those in Lemma II.2, and are omitted.
We now account for the delay, in a computation phase, due
to fs misses at each node u with φ(u) > 0. First, as we will
see, at all times `2(u) and `3(u) remain non-negative and
`i(u)−`i(w) ≥ 0 for each edge (u,w) in D; this ensures that
φ ≥ 1 while the computation is ongoing. Then, we analyze
each u that is delayed by an fs miss in this computation
phase, in part (a) if u was accessing a global variable, and
in part (b) if u was accessing a local variable, as follows.

(a) Global access: We have set up `2 so that when a block
β that could be accessed by a node in a conflict tree T is
touched during a computation phase, `2 is decreased by 1
for every node in T . As φ(u) = 2`(u) for a node u currently
being executed, and as `(u) = `1(u) + b

s (`2(u) + `3(u)),
if there is an access to a global variable in a block that u
could access, then whether or not u incurs an fs miss due
to this access, φ(u) decreases by a (1−Θ(b/s)) factor.

(b) Local access: There are four subcases in this part of the
analysis. As we will see, decrements to `3 occur only in
Cases 1 and 3.

Case 1. Node u in the up-pass tree succeeds in an access or
is blocked by a node v that is the sibling of u or of one of

9

u’s descendants in D.
Here, `3(u) is decremented by 1 and φ(u) decreases by an
e−b/s ≥ 1− 1

2
b
s factor (as s ≥ b by assumption). As `3(u) is

decremented at most e′(h(u) + 1) times, `3(u) ≥ 0 always.
Further, `3(u) is decremented at most 2e′ times when its
immediate descendant in D is unchanged (due to accesses
by u and u’s sibling); thus, for any edge (u, v) in D, `3(u) ≥
`3(v) always.

Case 2. Node u in either tree attempts to access a local
variable in a block β on the execution stack of task τ , when
a task is present on τ ’s task queue.

Then `3(u) is unchanged. We will show below that the
total potential of the nodes covered by this case is 1

3φ, where
φ is the total potential at the start of the current computation
phase. This will suffice, for then it follows that the nodes
covered by the other cases have combined potential at least
(1
2−

1
3)φ = 1

6φ at the start of the phase, and hence the overall
potential reduction is by a factor of at least 1− 1

6 ·
3
8
b
s , since

the potential of the nodes handled by the other cases reduces
by a factor of at least 1− 3

8
b
s .

Let v be the root node for the task on τ ’s task queue.
Consider the nodes accessing β. By the Local Constraint,

the only nodes which can be accessing β are a node u1

in the non-stolen task rooted at v’s sibling and nodes
u2, · · · , uk that are the terminal nodes for subtasks stolen
from ancestors of v. Note that u1 is either the sibling
of v or a descendant of that sibling. Since v is on the
task queue, it follows that φ(v) ≥ 2φ(u1). Further, since
`1 reduces by 2 in each successive level of the up-tree,
the potential for all the nodes accessing β is bounded by
φ(u1)[1 + 1

4 + 1
16 + · · ·] ≤ 4

3 · φ(u1) = 2
3φ(v). Since this

is a computation phase, the total potential for all nodes on
the task queue was at most half the potential at the start of
the phase, and hence, as claimed, the potential at the start
of the current computation phase associated with the nodes
u is at most 1

3φ.

Case 3. Node u in the down-pass tree attempts to access
a local variable and there is no task on the task queue as
defined in Case 2.
In this case `3(u) is decremented; in addition, if its access
was blocked by the subtask stolen from one of its ancestors
v, then `3(w) is decremented for all non-leaf descendants w
of u in the down-pass tree. Note that leaf nodes are already
covered by Case 1. Note that as in Case 1, φ(u) decreases
by at least a 1− 1

2
b
s factor.

There are up to e′ such decrements at the root of the
downpass tree, and for a node u in the down-pass tree
`3(u) can be decremented at most e′ times without also
decrementing `3(w) for its descendants w. This ensures the
edge rule is satisfied for every pair of internal nodes in
the down-pass tree. The maximum number of decrements
of `3(u) at a node u which is the parent of leaves of the
down-pass tree in bounded by e′(h(u)− 1; this ensures the

edge rule is obeyed by these nodes u also. As the `3 values
will remain non-negative at the leaves of the down-pass tree,
it follows that they remain non-negative at the internal nodes
of the down-pass tree.

Case 4. Node u in the up-pass tree is blocked by a node v
and node u is not handled in Cases 1–3.
Here we leave `3(u) unchanged. In this case, v is higher
up the dag than u, and since the component of the potential
due to `1 decreases by a factor of 4 from one level to the
next down the dag, the contribution to the potential due to all
nodes like u plus node v is at most 4

3φ(v). Node v is handled
by one of Cases 1 or 3. Consequently the total potential of
these nodes decreases by a factor of at least 1− 3

8
b
s .

Theorem I.2 for BP algorithms follows from Lemma IV.1
in the same way that Theorem I.1 follows from Lemma II.2.

We have l(D) = 1
B · (`2(D) + `4(D)). For a BP compu-

tation `2(D) = O(B) and `4(D) = 0, hence l(D) = O(1).
We can now apply Theorem I.2 to bound the number of
successful steals: S = O(p·(log n+ b

s)) with high probability
in n in a BP computation of size n. The algorithms for
Scans, Matrix Transpose (MT), and RM to BI are all BP
computations, and this leads to the bounds given in the last
column of the first two rows of Table I.

B. HBP computations

We begin by generalizing the local/global variable termi-
nology to HBP algorithms.

Definition IV.2. A variable x declared in a procedure Q
is called a local variable of Q. A variable y accessed by a
procedure P is global with respect to P if y is declared in a
procedure Q calling P or is used for the inputs or outputs
of the algorithm A containing P .

Also, we comment in more detail on how the local
variables are arranged on the execution stacks. First, we
note that a node of the computation dag that corresponds
to the start of an HBP task could be declaring many
variables, perhaps in the form of an array, and its segment
would be correspondingly large. Second, we comment on
the sequencing of segments. in particular, let τ be a task of
size n in a Type 2 HBP computation. As the execution of τ
advances, (a prefix of) the following sequence of segments
will be on its execution stack Eτ : an initial segment for its
local variables, and then up to log v(n) segments of length
O(1) to keep track of parallel recursive calls; the current
recursive call will then create similar entries following these
initial entries on Eτ . The topmost segment on Eτ will either
be one of the above types of segments or, if τ is currently
executing a BP computation within the HBP computation,
at the top there will be O(log n) segments of length O(1)
for this BP computation. An analogous description applies
to higher type HBP computations.

Finally, it should be noted that in an HBP algorithm A,
the only non-writable variables are those for the input, which

10

are global variables to all procedures, and are not stored on
any execution stack.

The rules restricting the writes in BP computations apply
equally to the down-pass and up-pass trees used to instantiate
recursive calls in HBP algorithms. The subgraphs corre-
sponding to the recursive computations are analogous to the
leaves of a BP computation. This permits us to perform an
analysis of the HBP computations which is similar to that
for the BP computations.

To enable such an analysis, we require that the writes by
the recursive computations to the local variables (arrays) of
their calling procedures obey an analog of the well-buffered
rule for BP global variable access, namely that the left-to-
right sequence of recursive computations write to successive
disjoint portions of the parent’s arrays. Further, we require
that within each recursive procedure, its writes to these
arrays be similarly constrained. A simple way of ensuring
this is to impose the following constraints:

HBP Write Constraints. i. A recursive call performs its
writes to such arrays by means of a BP computation that
occurs at the end of the recursive call.
ii. The collection of these BP computations terminating
the recursive calls obeys the Well Buffered Rule for a BP
Collection when accessing an array A, namely: each leaf
accesses a disjoint interval in A; further, the inorder listing
of the leaves (i.e. in left to right order) matches the left to
right ordering of the corresponding intervals in A.

An HBP algorithm can always be modified to have this
structure, by accumulating such writes in an array local to
the recursive call which is then copied at the end of the
recursive call; these writes can be restricted so that they all
occur at the leaf level of the BP copying task.

We use the `i functions, modulo some small changes,
as for the BP computations. In fact, the definition of `1 in
unchanged: `1(u) is 2 times the height of u in the dag D.

To define `2 and `3, we view the computation dag of
an HBP computation as comprising a collection of paired
down-pass and up-pass trees as used in BP computations
and in forking and joining recursive computations, plus
singleton nodes corresponding to type 0 tasks. We want to
use essentially the potentials as defined for BP trees, but in
addition, we need to ensure that each terminal node w in a
BP tree (a leaf in a down-pass tree, the root in an up-pass
tree) always has at least as large an `i value as its successor
node x in the computation dag. But this is easily achieved:
if w is a root node of up-pass tree Tu, and `∗i (x) is the
initial value of `i(x), for i = 1, 2, we simply add `∗i (x) to
the BP-like potential for each of the nodes in Tu. A similar
rule is used for a down-pass tree Td, but now we take the
maximum value `∗i (v), maximizing over the successor nodes
of the leaves v in Td.

For a node v in an up-pass tree, the BP-like potentials
`BP2 (v) and `BP3 (v) are defined exactly as for the BP-

computation. For a node v in a down-pass tree, `BP
′

2 (v) =
e · B and `BP

′

3 (v) = e′ · ht′(v) + 1, where ht′(v) is the
height of v in its down-pass tree. Finally for the nodes
corresponding to type 0 tasks, we define both `BP2 (v) and
`BP3 (v) to be zero.

It is straightforward to show that `i, for i = 2, 3 continues
to obey the edge rule and is always non-negative.

In fact, we use a smaller initial value of `2(v) for nodes
v in a task τ when |τ | is small enough. For τ can access
at most |τ | global variables, by the definition of size. Let
e2 be the bound in the limited access assumption, i.e. each
writable variable is accessed at most e2 times. Then, for
e2 · |τ | < e · B, we redefine the initial value of `BP2 (v) to
be e2 · |τ |, where before it had initial value e ·B.

We need to introduce a fourth function `4. As usual, let
τ be a task having an execution stack Eτ . The function `4
will handle competing accesses to the one block β that may
be shared between the variables declared by τ and variables
that are subsequently added to Eτ during the course of τ ’s
execution.

We now define `(v) to be `(u) = `1(u)+ b
s [`2(u)+`3(u)+

`4(u)].
The definition of `4 will rely on a stronger bound on the

block delay, as proved in [10], which takes account of the
size of the task τ “owning” the block β being accessed;
by this we mean that β is one of the blocks storing the
execution stack Eτ for τ . The observation is that if τ uses
space S(|τ |) < B, then the number of cache transfers of β
will be bounded by a tighter O(S(|τ |)) (rather than O(B));
we denote this bound by Γ(τ,B) = O(min{S(|τ |), B)}).
This tighter bound is used in Lemmas V.1 and V.3 below.
There is a small overloading of notation, as we use both of
the terms Γ = Γ(D,B) and Γ(τ,B), but this should not
cause any confusion.

In all the HBP algorithms we analyze, the space S(τ) =
Θ(|τ |). Thus the total delay due to fs misses incurred by any
one task τ in performing all its accesses to β is bounded by
O(b ·min{S(τ), B}) = O(b ·min{|τ |, B}).

Let e1 be the constant such that Γ(τ,B) ≤
e1 min{S(|τ |), B)}. The initial value of `4(v) is defined
procedurally as follows. We begin with `4(v) = 0. Then, for
each type t ≥ 2 task τ in the algorithm, e1 min{S(|τ |), B)}
is added to the `4(v) value for every node v in τ ’s computa-
tion dag. The contribution associated with τ is used to pay
for accesses to the at most one block βτ shared between τ ’s
local variables and the other variables stored on Eτ , i.e. the
local variables for the non-stolen procedures called by τ .

Whenever βτ is transferred, `4(v) is decremented for all
nodes in τ ’s computation dag. Note that for every b time
units a processor is delayed when computing node v and
trying to access βτ , there will be a block transfer of βτ ,
and a corresponding decrement to `4(v). As there at at most
e1 min{S(|τ |), B}) block transfers of βτ , it follows that `4

11

obeys the edge rule and is always non-negative.
The bound of Lemma IV.1 extends unchanged to the HBP

computations, and on setting l(D) to be the initial value of
`2(t)+`4(t), where t is the root of D, we obtain Theorem I.2
for the HBP algorithms.

V. STEALS UNDER RWS FOR INDIVIDUAL ALGORITHMS

By Theorem I.2, which we proved in the previous section,
we can obtain expected and high probability bounds on the
number of steals under RWS for a given HBP algorithm if
we can compute ¯̀. Since ¯̀ depends on `2 and `4, we need
to bound `2 and `4 for specific HBP algorithms, which is
done for Type 2 HBP in the next lemma.

Lemma V.1. Let A be a block-resilient, Type 2 HBP algo-
rithm which uses space S(n). Suppose that each recursive
call A makes has size at most r(n) ≤ n/b, for some constant
b > 1. Let c ≥ 1 denote the number of collections of
recursive calls made by A and let A have size n. Then
for every node v in its computation dag D,

`2(v), `4(v) = O(B
∑

i<r∗(n,B)

ci+
∑

i≥r∗(n,B)

ci ·S(r(i)(n))),

where r∗(n,B) where i = r∗(n,B) is the number of
applications of r needed to reduce n to at most S−1(B),
i.e. such that S(r(i)(n)) ≤ B.

Proof: This is immediate from the recursive structure
of the HBP computation. Let τ be a task corresponding to
either a BP computation or to a recursive computation in A.
τ adds O(min{S(|τ |), B}) to `2 and `4. There are ci tasks
of size r(i)(n). When i < r∗(n,B), the size r(i)(n) is larger
than B, so we add O(B) to `2(v) and `4(v). This is the first
summation. When i ≥ r∗(n,B), the size becomes smaller
than B, so in the second summation we add the space bound
of the task, S(r(i)(n)) instead.

Recall that `(D) = (1/B)·(l2(t)+l4(t)). We bound `(D)
in terms of the recursive structure of the HBP algorithms in
the following theorem. Once we have `(D), we can readily
apply Theorem I.2 to obtain the bounds on the number of
steals under RWS given in the last column in Table I.

Theorem V.2. Let A be a block-resilient Type 2 HBP
algorithm that uses linear space. Recall that c ≥ 1 denotes
the number of collections of recursive calls made by A, and
that r(n) is a bound on the size of the recursive subproblems
called by A. Then, `(D) is bounded as follows.

(i) c = 1: `(D) = O(r∗(n,B)), where r∗(n,B) is the
number of applications of r needed to reduce n to at most
B.

(ii) c = 2 and r(n) =
√
n: `(D) = O(logn

logB).
(iii) c = 2 and r(n) = n/4: `(D) = O(

√
n/B).

(iv) c = 3 and r(n) = n/2: `(D) = O(nlog2 3/B).

Proof: (i) follows immediately from Lemma V.1. For
(ii), we have r∗(n,B) = log(logn

logB); on substituting in the
bound from Lemma V.1, the result is immediate; similarly,
for (iii) r∗(n,B) = log

√
n/B, and for (iv), the dominant

term is the final term in the second sum.
These choices of c and r(n) are the ones that occur in

our Type 2 HBP algorithms [10].
• MM, Strassen, and BI to RM for FFT are covered by

Case (i),
• FFT and sort by Case (ii),
• Depth n MM by Case (iii), and
• the basic LCS (i.e. the algorithm computing the optimal

cost, but not an optimal sequence) by Case (iv).
The full LCS algorithm that finds an optimal sequence,

in addition to its optimal length, is a Type 3 algorithm and
I-GEP is a Type 4 algorithm; to analyze these, we need the
generalization of Lemma V.1, given below.

The list ranking (LR) and graph connected components
(CC) algorithms employ the gapping technique, explained
below, which leads to yet another bound. (The remaining
algorithms we analyze are BP algorithms, and the bound for
steals for BP algorithms was derived at the end of Section
IV-A.)

As an example, MM and Strassen are Case (i) with
r(n2) = n2/4, c = 1, and T∞ = O(log2 n). Hence
we obtain r∗(n,B) = O(log(n/B)) = O(log n) and so,
`(D) = O(log n). Using Theorem I.2, this gives the bound
on steals reported in Table I.

Next, we provide the lemma needed to bound `2 and `4
for Type t > 2 algorithms.

Lemma V.3. Let A be a block-resilient, Type t > 2
HBP algorithm which uses space S(n). Suppose that each
recursive call A makes has size at most r(n) ≤ n/b, for
some constant b > 1. Let c ≥ 1 denote the number of
collections of recursive calls made by A and let A have
size n. Suppose that for the non-recursive calls made by A,
their `2 and `4 parameters are bounded by x(n,B). Then
for every node v in A’s computation dag D,

`2(v), `4(v) = O(
∑
i<r∗(n,B)(B + x(n,B)) · ci

+
∑
i≥r∗(n,B) c

i · [S(r(i)(n)) + (x(r(i)(n), B)]),

where i = r∗(n,B) is the number of applications of r
needed to reduce n to at most S−1(B), i.e. such that
S(r(i)(n)) ≤ B.

Proof: This is again immediate from the recursive
structure of the HBP computation.

Corollary V.4. i. For LCS, `(D) = O(nlog2 3/B).
ii. For I-GEP, `(D) = O(n/

√
B).

Proof: We start with i. LCS comprises an initial compu-
tation that amounts to the Type 2 basic LCS algorithm (with
some intermediate information being saved); it is followed
by a single collection (c = 1) of recursive calls on problems

12

of size n/2. Substituting in Lemma V.3 gives the bound
O(
∑
i≥0(n/2i)log2 3) = O(nlog2 3) on `2 plus `4.

For ii, we recall from [15] that the Type 4 I-GEP has
c = 2 with r(n2) = n2/4; in addition it calls Type 2 and
3 procedures. The Type 2 procedures are Depth-n-MM. The
Type 3 procedure also has c = 2 with r(n2) = n2/4; in
addition it also calls MM.

By Theorem V.2, `2 and `4 for Depth-n-MM are bounded
by O(n

√
B). Substituting in Lemma V.3 gives the bound

O(
∑
i≥0(n/4i) · 2i

√
B) = O(n

√
B). The same substitution

yields the bound O(n
√
B) on `2 plus `4 for the Type 4

I-GEP algorithm.

Finally, we consider the List Ranking (LR) and connected
components (CC) algorithms.

The LR Algorithm: We modify the LR algorithm in [10] by
introducing gaps in the recursive subproblems as described
below. The LR algorithm in [10] has two stages. The first
stage performs O(log log n) stages of eliminating a constant
fraction of the elements in the linked list and, when the size
of the linked list falls below n/ log n, switches to the second
stage, which is the basic pointer jumping algorithm. To find a
large independent set in a linked list of size r, the algorithm
constructs an O(log(k) r)-size coloring of the linked list,
and then extracts an independent set of size at least r/3 by
examining elements of each color class in turn. A phase on
a list of length r performs O(log(k) r) calls to SPMS sort on
inputs whose combined length is r, and incurs O(rB logM r)
cache misses in parallel time O(log r · log log r · log(k) r).
The algorithm switches to pointer jumping when the list
has length O(n/ log n), and its overall cost is O(n log n)
work, O((n/B) logM n) cache misses, and parallel time
O(log2 n log log n).

By modifying the data layout in the recursive calls, we
are able to reduce the initial values of `2 and `4 for the
corresponding tasks. To this end, we introduce gaps between
the elements of the contracted linked list as follows: When
the list has size n/x2, it is written in space n/x, using every
xth location only. Thus, when the list has size n/B2 or less,
for each subtask τ , `BP2 and `4(v) can be reduced to 0.
Thus there are O(log(k) n · min{logB, log log n} + logB)
iterations of the sorting algorithm that each contribute
O(B logB n) to the initial values of `2(t) and `4(t); the re-
maining O(log n) iterations add nothing further. This yields
a bound of O(B log n log(k) n) = O(B log n · log log n)
on the initial values of `2(t) and `4(t) (the second bound
follows by choosing k = 2). As l(D) is 1/B times the
initial value of `2(t)+ `4(t), on substituting in Theorem I.2,
we obtain the bound in Table I. (It can be verified that this
modification of the list ranking algorithm does not affect the
cache miss cost beyond a constant factor.)

The CC algorithm: This has O(log n) iterations of the LR
algorithm and thus all bounds increase by an O(log n) factor.

VI. OPTIMAL SPEED-UP BOUNDS FOR INDIVIDUAL
ALGORITHMS

In this section, we determine for each algorithm we have
considered, the input size above which we can guarantee,
with high probability in the input size, that the worst case
overhead in cache miss and fs miss costs due to steals under
RWS is dominated by the sequential cache miss cost for the
algorithm. For these input sizes, our analysis has established
that the cache and fs miss overhead incurred due to the use
of RWS is within a constant factor or less of the inherent
cache miss cost of the computation, even in the sequential
setting. We call this bound on the input size the optimal
speed-up bound for the given algorithm.

The optimal speed-up bounds are shown in Table II. We
now derive these bounds for the individual algorithms. Some
of these algorithms are described in the previous section,
and the descriptions of the remaining algorithms can be
found in [10]. In the analysis that follows we factor out the
parameter b as everything is being measured in the cache
miss cost b.

Scans: The algorithm incurs C = O(S) cache miss excess
and a delay F = O(S · B) due to fs misses. As S = O(p ·
(log n+B)) (using the assumption that b ≤ s), the combined
cache and block miss delay is O(p · B · (log n + B)). The
sequential cache miss delay is Q = O(n/B). For optimal
speedup we therefore need p · B · (log n + B) = O(n/B),
i.e. n ≥ p ·B2 · (log n+B).

MT, RM to BI: The analysis is the same as for scans except
that the problem size is n2 rather than n.

MM: Here the condition becomes S
1
3 n

2

B + S · B ≤ n3

B
√
M

,
where S = O(p · (log2 n + B log n). This simplifies to
S
√
M · (B2 +M) ≤ n3. This yields n3 ≥ p

√
M log n(B+

log n)(B2 +M).

Strassen: The analysis is as for MM, except that nλ replaces
n3 and S1/λ · MB (n√

M
)λ−1 +S ·B ≤ nλ

Mλ/2−1B
yielding the

constraint nλ ≥ pMλ/2−1(M +B2) log n(B + log n).

Depth n MM: As for MM, we have the constraint S
√
M ·

(B2 + M) ≤ n3, but here S = O(p · n
√
B), which yields

the constraint p
√
BM · (B2 +M) ≤ n2.

I-GEP: As for MM, we have the constraint S
√
M · (B2 +

M) ≤ n3, but here S = O(p · n · (log2 n +
√
B)), which

yields the constraint p(log2 n+
√
B)
√
M · (B2 +M) ≤ n2.

LCS: The sequential computation incurs n2/(MB) cache
misses. By Lemma V.1 and Theorem V.2, there are O(p ·
nlog2 3) steals (here r(n) = n/2 and c = 3). As the cache
miss excess is C = n

√
S

B +S · logB this yields the constraint
n
√
S

B + S · B ≤ n2

BM or S ≤ n2(1
B2M + 1

M2), and on
substituting for S yields the constraint p·B ·M ·nlog2 3(B2+
M) ≤ n2.

13

Sort, FFT: For optimality we need that log[(n log n)/S] =
Ω(logM), i.e. that S = O([n log n]/M ε) for some constant
ε > 0. We also need S · B ≤ n

B logM n. Now S = O(p ·
(log n log log n + B logB n). This yields the constraint p ·
(log n log log n+B logB n)(M ε+B2 logM) ≤ n log n, i.e.
n ≥ p · (log log n+B/ logB)(M ε +B2 logM).

BI to RM for MM and FFT: We are interested in this
algorithm only as a front end to MM and FFT. Thus it
suffices to note that its costs are always dominated by those
for MM and FFT. Thus whenever the latter achieve optimal
speedup this is unaffected by using BI to RM for MM and
FFT as a front end, i.e. using an RM rather than BI format
for the inputs and outputs.

List Ranking, LR: The analysis is as for sorting except
that the bound on S changes. For list ranking this yields
the constraint p · (log2 n log log n+B log n log log n)(M ε+
B2 logM) ≤ n log n, i.e. n ≥ p·log log n·(log n+B)(M ε+
B2 logM).

Connected Components, CC: All costs increase by a log n
factor from LR, giving the same optimality bound as for
LR.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants CCF-
0830516 and CCF-1217989 (Richard Cole) and CCF-
0830737 (Vijaya Ramachandran).

REFERENCES

[1] F. Burton and M. R. Sleep, “Executing functional programs
on a virtual tree of processors,” in Proc. ACM Conf. on Func
Prog Languages and Comp Arch, 1981, pp. 187–194.

[2] R. H. J. Halstead, “Implementation of Multilistp: Lisp on a
multiprocessor,” in Conf. ACM Symp. on LISP and Functional
Programming, 1984, pp. 9–17.

[3] R. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” JACM, pp. 720–748, 1999.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuzmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” SIGPLAN Not., vol. 30, pp. 207–216, 1995.

[5] A. Robison, M. Voss, and A. Kukanov, “Optimization via
reflection on work stealing in tbb.” in IPDPS. IEEE, 2008,
pp. 1–8. [Online]. Available: http://dblp.uni-trier.de/db/conf/
ipps/ipdps2008.html#RobisonVK08

[6] T. Gautier, X. Besseron, and L. Pigeon, “Kaapi: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors,” in Proceedings of the 2007
international workshop on Parallel symbolic computation,
ser. PASCO ’07, 2007, pp. 15–23. [Online]. Available:
http://doi.acm.org/10.1145/1278177.1278182

[7] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data
locality of work stealing,” Theory of Computing Systems,
vol. 35, no. 3, 2002, springer.

[8] M. Frigo and V. Strumpen, “The cache complexity of mul-
tithreaded cache oblivious algorithms,” Theory Comput Syst,
vol. 45, pp. 203–233, 2009.

[9] R. Cole and V. Ramachandran, “Revisiting the cache miss
analysis of multithreaded algorithms,” in Proceedings of the
Tenth Latin American Theoretical Informatics Symposium,
ser. LATIN ’12, 2012.

[10] ——, “Efficient resource oblivious algorithms for multicores
with false sharing,” in Proc. IEEE IPDPS, 2012.

[11] ——, “Resource oblivious sorting on multicores,” in Proc.
ICALP Track A, 2010.

[12] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition. MIT Press, 2009.

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, 4th Edition. Morgan Kaufmann,
2006.

[14] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Proc. FOCS, 1999, pp. 285–
297.

[15] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachan-
dran, “Oblivious algorithms for multicores and network of
processors,” in Proc IPDPS, 2010.

14

