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Abstract

In the design and analysis of revenue-maximizing auctions, auction performance is typ-
ically measured with respect to a prior distribution over inputs. The most obvious source
for such a distribution is past data. The goal of this paper is to understand how much data
is necessary and sufficient to guarantee near-optimal expected revenue.

Our basic model is a single-item auction in which bidders’ valuations are drawn indepen-
dently from unknown and non-identical distributions. The seller is given m samples from
each of these distributions “for free” and chooses an auction to run on a fresh sample. How
large does m need to be, as a function of the number k of bidders and ǫ > 0, so that a
(1 − ǫ)-approximation of the optimal revenue is achievable?

We prove that, under standard tail conditions on the underlying distributions, m =
poly(k, 1

ǫ
) samples are necessary and sufficient. Our lower bound stands in contrast to

many recent results on simple and prior-independent auctions and fundamentally involves
the interplay between bidder competition, non-identical distributions, and a very close (but
still constant) approximation of the optimal revenue. It effectively shows that the only way
to achieve a sufficiently good constant approximation of the optimal revenue is through a
detailed understanding of bidders’ valuation distributions. Our upper bound is constructive
and applies in particular to a variant of the empirical Myerson auction, the natural auction
that runs the revenue-maximizing auction with respect to the empirical distributions of the
samples.

Our sample complexity lower bound depends on the set of allowable distributions, and
to capture this we introduce α-strongly regular distributions, which interpolate between the
well-studied classes of regular (α = 0) and MHR (α = 1) distributions. We give evidence
that this definition is of independent interest.



1 Introduction

Comparing the revenue of two different auctions requires an analysis framework for trading off
performance on different inputs. For instance, in a single-item auction, a second-price auction
with a reserve price r > 0 will earn more revenue than a second-price auction with no reserve
price on some inputs, and less on others. Which auction is better?

The conventional approach in auction theory is Bayesian, or average-case, analysis. That
is, bidders’ valuations are assumed to be drawn from a distribution, and one auction is defined
to be better than another if it has higher expected revenue with respect to this distribution.
The optimal auction is then the one with the highest expected revenue. The optimal auction
depends on the assumed distribution, in some cases in a detailed way.

While there is now a significant body of work on worst-case revenue maximization (see [12]),
a majority of modern computer science research on revenue-maximizing auctions uses Bayesian
analysis to measure auction performance (see [11]). Since the comparison between auctions
depends fundamentally on the assumed distribution, an obvious question is: where does this
prior distribution come from, anyway?

In most applications, and especially in computer science contexts, the answer is equally
obvious: from past data. For example, in Yahoo!’s keyword auctions, Bayesian analysis is used
to provide guidance on how to set per-click reserve prices, and the valuation distributions used
in this analysis are derived straightforwardly from bid data from the recent past [18]. This is a
natural approach, but how well does it work?

1.1 The Model

The goal of this paper is to understand how much data is necessary and sufficient to guarantee
near-optimal expected revenue. Our most basic model is the following. There are k bidders
in a single-item auction. The valuation (i.e., willingness-to-pay) of bidder i is a sample from a
distribution Fi. The Fi’s are independent but not necessarily identical.

The distribution F = F1 × · · · × Fk is unknown to the seller. The “data” comes in the form
of m i.i.d. samples v(1), . . . ,v(m) from F — equivalently, m i.i.d. samples from each of the k
individual distributions F1, . . . , Fk. The seller observes the samples and then commits to an
auction A. We call this function from samples to auctions an m-sample auction strategy. The
seller then earns the revenue of its chosen auction A on the “real” input, a fresh independent
sample v(m+1) from F. We can state our main question as follows.

(*) How many samples m are necessary and sufficient for the existence of an m-sample auction
strategy that, for every distribution F in some class D, has expected revenue at least (1−ǫ)
times that of the optimal auction for F?

The expected revenue of an auction strategy is w.r.t. both the samples v(1), . . . ,v(m) and the
input v(m+1) — i.e., over m + 1 i.i.d. samples from F. The expected revenue of an optimal
auction is w.r.t. a single sample (the input) from F.

The answer to the question (*) could be a function of up to three different parameters:
the error tolerance ǫ, the number k of bidders, and the set D of allowable distributions1. It is
clear that some restriction on D is necessary for the question (*) to be interesting: without any
restriction, no finite number of samples is sufficient to guarantee near-optimal revenue, even
when there is only one bidder.2

1As the distribution F is unknown, we seek uniform sample complexity bounds, meaning bounds that depend
only on D and not on F.

2To see this, consider all distributions that take on a value M2 with probability 1
M

and 0 with probability
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Two distributional assumptions that have been extensively used (see e.g. [11]) are the reg-
ularity and monotone hazard rate (MHR) conditions. The former asserts that the “virtual

valuation” function vi− 1−Fi(vi)
fi(vi)

is nondecreasing, where fi is the density of Fi, while the second

imposes the strictly stronger condition that fi(vi)
1−Fi(vi)

is nondecreasing. The “most tail-heavy”

regular distribution has the distribution function Fi(vi) = 1 − 1
vi+1 , while the most tail-heavy

MHR distributions are the exponential distributions.
Our lower bound on the sample complexity of revenue maximization depends on the set

of allowable distributions, and to capture this we introduce a parameterized condition that
interpolates between the regularity and MHR conditions; this condition is also useful in other
contexts (see Section 4).

Definition 1.1. (α-Strongly Regular Distribution) Let F be a distribution with positive

density function f on its support [a, b], where 0 ≤ a < ∞ and a ≤ b ≤ ∞. Let ϕ(v) = v− 1−F (v)
f(v)

denote the corresponding virtual valuation function. F is α-strongly regular if

ϕ(y) − ϕ(x) ≥ α(y − x) (1)

whenever y > x ≥ 0.

For distributions with a differentiable virtual valuation function ϕ, condition (1) is equiv-
alent to dϕ

dv ≥ α. Regular and MHR distributions are precisely the 0- and 1-strongly regular
distributions, respectively. A product distribution F = F1×· · ·×Fk is called α-strongly regular
if each Fi is α-strongly regular. For the lower bound, we take the set D of allowable distributions
in (*) to be the α-strongly regular distributions for a parameter α ∈ (0, 1].

1.2 Our Results

Our main result is that m = poly(k, 1
ǫ ) samples are necessary and sufficient for the existence

of an m-sample auction strategy that, for every strongly regular distribution F, has expected
revenue at least (1 − ǫ) times that of an optimal auction.

Both our upper and lower bounds on the sample complexity of revenue maximization are
significant. For the lower bound, it is far from obvious that the number of samples per bidder
needs to depend on k at all, let alone polynomially. Indeed, for many relaxations of the problem
we study, the sample complexity is a function of ǫ only.

• If there is an unlimited supply of items (digital goods), then the problem reduces to sepa-
rate single-bidder problems, for which poly(1

ǫ ) samples suffice for a (1− ǫ)-approximation
for all regular distributions [8, Lemma 4.1].

• If bidders’ valuations are independent and identical draws from an unknown regular dis-
tribution, then poly(1

ǫ ) samples suffice for a (1 − ǫ)-approximation [8, Theorem 4.3].

• If only a 1
2 -approximation of the optimal expected revenue is required, then only a single

sample is required. This follows from a generalization of the Bulow-Klemperer theorem [4]
to non-i.i.d. bidders [13, Theorem 4.4].

1 −
1
M

. The optimal auction for such a distribution earns expected revenue M . It is not difficult to prove that,
for every m, there is no m-sample auction strategy with near-optimal revenue for every such distribution — for
sufficiently large M , all m samples are 0 w.h.p. and the auction strategy has to resort to an uneducated guess
for M .
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Thus, the necessary dependence on k fundamentally involves the interplay between bidder
competition, non-identical distributions, and a very close (but still constant) approximation of
the optimal revenue.

On a conceptual level, our lower bound shows that designing c-approximate auctions for
constants c sufficiently close to 1 is a qualitatively different problem than for more modest
constants like 1

2 . For example, previous work has demonstrated that auctions with reasonably
good approximation factors are possible with minimal dependence on the valuation distributions
(e.g. [5, 13]) or even, when there is no bidder with a unique valuation distribution, with no
dependence on the valuation distributions [7, 8, 19]. Another interpretation of some previous
results, such as [6, 5], is the existence of constant-factor approximate auctions that derive no
benefit from bidder competition. Our lower bound identifies, for the first time, a constant
approximation threshold beyond which “robustness” and “prior-independence” results of these
types cannot extend. Our argument formalizes the idea that, with two or more non-identical
bidders, the only way to achieve a sufficiently good constant approximation of the optimal
revenue is through a detailed understanding of bidders’ valuation distributions and an essentially
optimal resolution of bidder competition.

We provide an upper bound on the number of samples needed for near-optimal approxi-
mation by analyzing a very natural auction. Recall that for a distribution F that is known a
priori, Myerson’s optimal auction gives the item to the bidder with the highest virtual valua-
tion ϕi(vi) = vi − 1−Fi(vi)

fi(vi)
, or to no one if all virtual valuations are negative [16]. The empirical

Myerson auction is the obvious analog when one has data rather than distributional knowledge:
define F̄i as the empirical distribution of the samples from Fi, and run the optimal auction for
F̄.3 We prove that a variant on the empirical Myerson auction has expected revenue at least
(1 − ǫ) times optimal provided it is given a sufficiently large polynomial number of samples.4

A key aspect in our analysis is identifying the (non-pointwise) sense in which empirical virtual
valuation functions approximate the actual virtual valuation functions; this is non-trivial even
for the special case of MHR distributions.

1.3 Technical Approach

The proofs of our upper and lower bounds are fairly technical, so we provide here an overview of
the main ideas. We begin with the upper bound, which roughly consists of the following steps.

1. (Lemma 6.3) For some fixed bidder with distribution F , consider the corresponding m
samples v1 ≥ · · · ≥ vm. Define the “empirical quantile” q̄j of vj as 2j−1

2m , the expected
quantile of the jth order statistic. Taking a “net” of quantiles and applying standard
large deviation bounds shows that all but the top ξ̂ fraction of the empirical quantiles are
good multiplicative approximations of their expectations with high probability (w.h.p.);
here ξ̂ > 0 is a key parameter that will depend on k and ǫ.

2. (Lemma 6.5) Recall that the expected revenue of an auction equals its expected virtual
surplus [16]. Myerson’s optimal auction maximizes virtual surplus pointwise, whereas our
auction maximizes (ironed) empirical virtual surplus pointwise. In a perfect world, we
would be able to argue that the empirical virtual valuation functions are good pointwise
approximations of the true virtual valuation functions, and hence the expected virtual
surplus of our auction is close to that of Myerson’s auction. Unfortunately, good relative

3Since the empirical distributions are generally not regular even when the underlying distributions F are, a
standard extra “ironing” step is required; see Section 2 for details.

4Left unmodified, the empirical Myerson mechanism can be led astray by poor approximations at the upper
end of the valuation distributions caused by a small sample effect. We prove that excluding the very highest
samples from the empirical distributions addresses the problem.
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approximation of quantiles does not necessarily translate to good relative approximation
of virtual valuations. The reason is that a virtual valuation function v − 1−F (v)

f(v) can

change arbitrarily rapidly in a region where the density changes rapidly (even for MHR
distributions).

We instead prove a different sense in which empirical virtual values approximate actual
virtual values, working in the (quantile) domain as well as in the range of the virtual
valuation functions. Recall that the quantile q(v) is defined as 1−F (v). We show that for
suitable ∆1, ∆2 > 0, for all but the top ξ̂ fraction of quantiles in [0, 1], w.h.p. the empirical
virtual value ϕ̄(q) is sandwiched between ϕ(q(1 + ∆1)) and ϕ(q/(1 + ∆2)), modulo small
additive factors. (By ϕ(q) we mean ϕ(F−1(1− q)).)5 These additive factors are functions
of 1/q, as well as of k and ǫ, which complicates the analysis.

3. (Lemmas 6.10 and 6.11) Consider a fixed bidder i. By the previous step, up to an additive
factor, we can lower bound the virtual surplus contributed by a bidder i with a quantile
qi = 1 − Fi(vi) outside the top ξ̂ fraction in the empirical Myerson mechanism by the
virtual value contributed by i in the optimal auction when it has a quantile of qi(1 + ∆1).
Or not quite: an additional issue is that the empirical virtual valuation of a different
bidder j with quantile qj might be larger than its true virtual value, leading the empirical
Myerson auction to allocate to j over the rightful winner i, and resulting in a reduction in
the total virtual surplus being accummulated as compared to the actual Myerson auction.
The difference in virtual values is bounded by the additive factor described in (2); as the
outcomes are determined in the empirical auction, we will need two additive factors: for
bidder i, the factor from the lower sandwiching bound, and for bidder j, the factor from
the upper sandwiching bound. We will show that there is only a small probability of
large additive factors, which suffices to bound the expected reduction in revenue when the
additive factors are large. When the additive factors are small, their contribution to the
reduction in revenue is also small. Both reductions end up being a polynomial function
of k and ǫ.

4. (Lemma 6.8 and 6.9) There is one more issue. Because of the shift in quantile space —
we compare the virtual value in the Myerson auction at quantile qi(1 + ∆1) to the virtual
value in the empirical auction at quantile qi — and also because the reserve prices in
the two auctions may differ, we also have to analyze the revenue loss at the lower end of
the distributions, or more precisely, around the reserve prices. This too is a polynomial
function of k and ǫ.

We now proceed to the lower bound proof. This involves arguing that, if the number of
samples is too small, then for every auction strategy, there exists a distribution for which
the auction strategy’s expected revenue is not near-optimal. We prove this by exhibiting a
“distribution of distributions” and proving that every auction format has expected revenue —
where the expectation is now with respect to both the initial random choice of the valuation
distributions, and then with respect to both the m samples and the input — bounded away
from the expected revenue of an optimal auction (where the expectation is over both the choice
of distributions and the input). We are unaware of any other lower bounds in auction theory
that have this form.

Our construction involves taking a base set of “worst-case” α-strongly regular distributions
and truncating them at random points. A key observation is that, when such a distribution is
truncated at a point Hi, the corresponding virtual valuation function is linear with coefficient

5The extent to which empirical virtual values approximate true virtual values has also been studied in other
works, including [10].
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α except at the truncation point, where the virtual valuation jumps to Hi. The high-level
intuition is that, when confronted with valuations that are higher than those seen in any of the
samples, no auction can know whether a high valuation v corresponds to a truncation point
(with virtual value v) or not (with virtual value only α(v−1)). Properly implemented, this idea
can be used to prove that every auction strategy errs with constant probability on precisely the
set of inputs that contribute the lion’s share of the optimal revenue. The lower bound follows.

1.4 Additional Related Work

A few previous works study the convergence of an auction’s revenue to the optimal revenue
under different limits. These papers generally assume, unlike the present work, that bidders are
symmetric and valuations are uniformly bounded from above. Neeman [17] considers single-
item auctions with i.i.d. bidders, and quantifies the fraction of the optimal welfare extracted as
revenue by the Vickrey auction, as a function of the number of bidders. Segal [20] and Baliga
and Vohra [3] prove asymptotic optimality results for certain natural mechanisms when bidders
are symmetric, goods are identical, and the number of bidders is large. Goldberg et al. [9]
quantify the rate at which their RSOP auction approaches full optimality, with respect to a
fixed-price benchmark, as a function of the number of winners under this benchmark.

It is intuitively clear that, by the law of large numbers, for every fixed distribution F, the
revenue of the empirical Myerson auction converges to that of the optimal auction provided
the number of samples is sufficiently large. The only other paper we are aware of that proves,
as we do, sample complexity bounds that apply uniformly to all distributions (subject to a
tail condition) is [8]. [8] were motivated by “prior-independent” auctions that use the bids of
a random subset of the (i.i.d.) bidders as samples to guide how to set prices for the rest of
the bidders.6 In analyzing these mechanisms, [8] solves the single-bidder version of the central
problem studied in this paper. As our results show, the problem is quite different and more
delicate with many non-i.i.d. bidders.

The problems that we study are clearly reminiscent of sample complexity questions that
are common in learning theory (see e.g. [1]). A key difference is that we are interested only
in optimizing a particular objective function (the expected revenue), and not in learning the
underlying distribution per se. Differences aside, we expect rich connections between learning
theory and auction theory to be developed in the near future (see also [2]).

2 The Empirical Myerson Auction

Preliminaries We begin by reviewing Myerson’s optimal auction [16] for the case of known
distributions. There are k bidders, and for each bidder Bi, 1 ≤ i ≤ k, there is a distribution Fi

from which its valuation is drawn.7

For each buyer Bi, the auctioneer computes a virtual valuation ϕi(v) = v− [1−Fi(v)]/fi(v),
where fi is the density function corresponding to Fi. It is required that ϕi(v) be a non-decreasing
function of v (if this does not hold ϕi can be modified, ironed, so that it does hold, as implicitly
explained in the next paragraph). Then the auctioneer essentially runs an analog of a second-
price auction on the virtual values of the bids (virtual bids for short): the bidder, if any, with
the highest non-negative virtual bid wins the auction (ties are broken arbitrarily) and is charged

6Similarly, our sample complexity upper bound naturally leads to a prior-independent single-item auction.
This auction achieves a (1 − ǫ)-approximation of the optimal auction when bidders’ valuations are drawn from
different regular distributions F1, . . . , Fk and there are sufficiently many bidders of each type.

7Our results can be extended to the case of k groups of an arbitrary number of bidders, where all the bidders
from group i have i.i.d. valuations drawn from Fi.
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the minimum bid needed to win (or at least to tie for winning). More precisely, let Bi be the
winning bidder and let b2 be the second highest virtual bid. Then the price is ϕi

−1(min{0, b2}).
We note that ϕi

−1(0) can be viewed as a bidder specific reserve price for Bi; it is also called
the monopoly price for Bi.

We can also describe the auction in terms of a revenue function. This also allows for
situations where ϕi(v) is not an increasing function of v. The revenue function is computed in
quantile space: qi(v) = 1 − Fi(v) is the probability that Bi will have a valuation of at least v.
Now we view v as a function of qi. We introduce the expected revenue function, Ri(qi). It is a
function of the quantile qi: Ri(qi) = v(qi) · qi is the expected revenue if Bi is the sole bidder and
v(qi) is the price being charged. The auctioneer computes the smallest concave upper bound
CRi(q) of Ri(q). Now ϕi(v(qi)) is defined to be the slope of CRi(qi) (this yields an increasing ϕi,
which is the same virtual value as before in the case that the earlier ϕi was non-decreasing). At
points where there is no unique slope we choose ϕi(q(v)) = lim(r>q)→q ϕi(r). The auction then
proceeds as before. Henceforth, overloading notation, we will write ϕi(qi) rather than ϕi(qi(v)).

The Empirical Myerson Auction In the empirical Myerson auction, we assume we are
given m independent samples from each distribution Fi. The empirical auction treats the
resulting empirical distribution as the actual distribution in a Myerson auction; in our variant,
a number of the samples with the highest values are discarded, and there is a further detail
regarding how to handle any high bids that occur in the auction (i.e. bids larger than the largest
non-discarded sample), discussed below.

Suppose that the m independent samples drawn from Fi have values vi1 ≥ vi2 ≥ . . . ≥ vim.
vij is treated as the value at empirical quantile 2j−1

2m = q̄i(
2j−1
2m ). To construct the empirical

revenue curve, Ri(q̄i), we define Ri(
2j−1
2m ) = 2j−1

2m vj . Before constructing the convex hull CRi

of Ri we first discard the ⌊ξ̂m⌋ − 1 largest samples, for a suitable ξ̂ > 0, and add the point

Ri(0) = 0. Let ξ̄ = 2ξ̂−1
2m , the empirical quantile of the largest non-discarded sample. For

each empirical quantile q̄i ≥ ξ̄, the corresponding revenue CRi(q̄) yields an ironed valuation,
v̄i(q̄) = CRi(q̄)/q̄. The slope of the convex hull at q̄ is defined to be the empirical virtual value
for ironed values v̄i ≤ vi,ξ̂m. Note that v̄i(ξ̄) = vi,ξ̂m. The reason for discarding the largest
samples is that if they were present there is a non-negligible probability that they would create
a poor approximation at the high value end of the distribution, which is the end that matters
the most. Finally, for v > vi,ξ̂m, the virtual value is defined to be the (unironed) actual value.

We then run Myerson’s auction on these constructed virtual values, that is, as before, the
bidder, if any, with the highest non-negative virtual value wins (with ties broken arbitrarily),
and pays an amount equal to the lowest bid needed to ensure a (tied) win.

Theorem 2.1 (Myerson). The expected revenue of any single item auction is given by
∑

i E[ϕi ·
wi] where wi(qi) is the probability that Bi wins the item with a bid at quantile qi in Fi.

Let q = (q1, q2, . . . , qk) be a vector of quantiles drawn from F1 × F2 × . . . × Fk. We can
rewrite the expected revenue bound as

∑

i

E[ϕi · wi] =
∑

i

∫

q

ϕi(qi)Ii(q) dq, (2)

where Ii(q) is the indicator function showing whether Bi wins when the bids are at quantile q

(or in the event of a tie, is the appropriate probability). This immediately implies that allocating
to a bidder with the highest virtual value, i.e. Myerson’s auction, is optimal.
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3 The Results

We state upper and lower bound results in turn.

Theorem 3.1. In the empirical Myerson auction with k bidders each having a regular distribu-
tion, using m independent samples from its distribution for each bidder, the resulting expected
revenue satisfies MR ≥ (1 − ǫ)MR if m = Ω(k11

ǫ7
(ln3 k + ln3 1

ǫ )).

Our lower bound result has an analogous form although the polynomial in k and ǫ is smaller
and does become larger for smaller α.

Theorem 3.2. For every auction strategy Σ, for every k ≥ 2, for every α > 0, for sufficiently
small ǫ > 0, there exists a set F1, . . . , Fk of α-strongly regular distributions such that the expected
revenue of the auction strategy (over the samples and the input) is at most (1 − ǫ)MR, if

i. for α = 1, m ≤
(

1−ln 2
192e3

)1/2 1
ln(k/

√
ǫ)

k√
ǫ
,

ii. for α < 1 and α1/(1−α) ≥ 1
k , m ≤

(

1−α21−α

192e3

)1/2
k

ǫ1/(1+α) , and

iii. for α ≤ 1
4 and α1/(1−α) = δ

k , m ≤ 1
384e3

k
ǫ .

We prove these two theorems in Sections 6 and 5 respectively. Before that, in the next
section, we briefly indicate another application of α-strong regularity.

4 Applications of

Strong Regularity

We believe our definition of α-strongly regular distributions is of independent interest. Almost
all previous Bayesian approximation guarantees are one of three types: for all distributions, for
all regular distributions, or for all MHR distributions (see e.g. [11]). Strongly regular distri-
butions interpolate between regular and MHR distributions, and should broaden the reach of
many existing approximation bounds that are stated only for MHR distributions and are known
to fail for general regular distributions. To prove this point, we mention a couple of examples
of such extensions; we are confident that many others are possible.

Hartline et al. [14, Theorem 4.2] study a revenue maximization problem in social networks,
and give a mechanism with approximation guarantee e/(4e−2) when players’ private parameters
are distributed according to MHR distributions. The MHR assumption is used to argue that the
probability of a sale at the monopoly price is at least 1/e [14, Lemma 4.1]. Lemma 4.1, given
below, generalizes this to α-strongly regular distributions, and the approximation guarantee
in [14] extends accordingly (with the term 1/e replaced by 1/α1/(1−α)).

Hartline and Roughgarden [13, Theorem 3.2] consider downward-closed single-parameter
environments and prove that, when bidders’ valuations are drawn from MHR distributions, the
VCG mechanism with monopoly reserve prices has expected revenue at least 1

2 times that of
an optimal mechanism. With α-strongly regular distributions, the approximation guarantee
degrades with decreasing α as 1/(1 + 1

α).

Lemma 4.1. Let F be an α-strongly regular distribution with monopoly price r. Let q(r) be the
quantile of valuation r in distribution F .

i. [14]. For α = 1, q(r) ≥ 1
e .
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ii. For 0 < α < 1, q(r) ≥ α1/(1−α).

Proof. For (i) see Lemma 4.1 in [14]. We prove (ii). Let h(v) denote the hazard rate. Recall
that ϕ(v) = v − 1/h(v). Define H(x) =

∫ x
0 h(v)dv. As in well known and easily verified,

q(v) = e−H(v). α-strong-regularity, dφ
dv ≥ α, implies that 1 + 1

h2
dh
dv ≥ α, or − d

dv

(

1
h

)

≥ α− 1. For
notational simplicity, we set λ = 1 − α. Then, for v ≤ r, h(v) ≤ 1

λv+c where h(r) = 1
λr+c . Now

ϕ(r) = 0, so h(r) = 1/r. Thus 1/r = 1/(λr + c), or c = r(1 − λ). This gives

h(v) ≤ 1

λ(v − r) + r
.

We obtain

q(r) = e−H(r) = e−
R r
0 h(v)dv

≥ e−[ 1
λ

log(r+λ(v−r)) |r0 ]

= e
− 1

λ
log r

r(1−λ) = elog(1−λ)1/λ

= (1 − λ)1/λ = α1/(1−α).

5 The Lower Bound

Formal Statement Fix α > 0 and 0 < δ ≤ 1, where δ is sufficiently small. The setting
is a single-item environment. By an auction strategy, we mean a function Σ that takes as
input m = k/δ valuation profiles, or “samples” (each sample is a k-vector) and outputs an
auction A. In our single-parameter setting, there is no loss of generality in assuming that A
is a direct-revelation dominant-strategy incentive-compatible auction [16]. The revenue of an
auction strategy on a sequence of m + 1 valuation profiles v(1), . . . ,v(m+1) is defined as that of
A on v(m+1), where A = Σ(v(1), . . ., v(m)) is the auction output by the strategy given the first
m profiles.

We show that for every auction strategy Σ, there exists a set F1, . . . , Fk of α-strongly regular
distributions such that the expected revenue of the auction strategy (over the samples and the
input) is at most the following fraction of the expected revenue of the optimal auction for
F1, . . . , Fk:

1 − ǫ(α, δ) = 1 − 1 − α21−α

192e3
δ1/(1+α) for α < 1 and α1/(1−α) ≥ 1

k (3)

1 − ǫ(α, δ) = 1 − 1

384e3
δ for α ≤ 1

4
and α1/(1−α) =

δ

k
(4)

1 − ǫ(1, δ) = 1 − 1 − ln 2

192e3 ln k
δ

δ2 for α = 1 (5)

We note that if α < 1, then α21−α < 1 also. Substituting k/m for δ yields the bounds in
Theorem 3.2, namely for α < 1 and sufficiently small constant ǫ > 0, Ω(k/ǫ1/(1+α)) samples are
necessary for a (1 − ǫ)-approximation, and for α ≤ 1

4 and α1/(1−α) = 1
m , Ω(k/ǫ) samples are

necessary. For the MHR (α = 1) case, Ω(k/
√

ln k/ǫ
√

ǫ) samples are necessary.
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The Base Distributions We identify the worst-case distributions for a given α > 0. Specif-
ically, for v ∈ [0,∞), consider

Fα(v) = 1 −
(

1 +
1 − α

α
v

)− 1
1−α

for 0 < α < 1;

F 1(v) = 1 − e−v for α = 1;

fα(v) =
1

α

(

1 +
1 − α

α
v

)−2−α
1−α

for 0 < α < 1;

f1(v) = e−v, for α = 1.

The corresponding hazard rate is

hα(v) =
1

α + (1 − α)v
for 0 < α < 1;

h1(v) = 1 for α = 1;

with virtual valuation
ϕα(v) = α(v − 1) for 0 < α ≤ 1.

A quick calculation shows that

(Fα)−1(q) =

{

α
1−α

(

1
q

)1−α
− 1 if α < 1

ln k if α = 1
(6)

The Construction We define a distribution over distributions. Each bidder i is either type
A or type B (50/50 and independently). The distribution of a type A bidder is Fα. For a type
B bidder i, we draw q uniformly from the interval [0, δ

k ] and set Hi = (Fα)−1(1 − q). We then
define bidder i’s distribution Fi as equal to Fα on [0, Hi) with a point mass with the remaining
probability 1−Fα(Hi) at Hi. These distributions are always α-strongly regular. An important
point is that the virtual valuation of a type B bidder is given by

ϕ(v) =

{

α(v − 1) if v < Hi

Hi if v = Hi.
(7)

Let qα denote the monopoly price in a 1-bidder auction. By Lemma 4.1, if α < 1, qα ≥
1/α1/(1−/α), and q1 ≥ 1/e. Let v∗ = (Fα)−1 (max{1 − qα, k−1

k }), the value corresponding to
quantile min{qα, 1

k} in Fα, and let R∗ = min{kqα, 1} · v∗, k times the revenue at this quantile.
From (6), we have that

v∗ =











α
1−α

[

max
{

1
qα

, k
}1−α

− 1

]

if α < 1

lnmax
{

1
qα

, k
}

if α = 1
(8)

Lemma 5.1. (Upper Bound on Optimal Revenue). The expected revenue (over v) of the
optimal auction (w.r.t. the Hi’s) is at most R∗.

Proof. First, the expected revenue of the optimal auction is upper bounded by that of the
optimal auction for the case where all Hi’s are +∞ — i.e., where Fi = Fα for every i. (This
follows because Fα stochastically dominates Fi for any Hi, so an optimal auction for the latter
does at least as well for the former.) Second, by symmetry, when bidders valuations are i.i.d.
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draws from Fα, every bidder has the same sale probability q in the (symmetric) optimal auction,
and since there is only one item, this sale probability q is at most 1

k ; it is also at most qα. Third,
we obtain an upper bound by dropping the constraint of selling only one item and instead
optimally selling to each bidder with probability at most q. Fourth, this is precisely k times the
revenue of selling to a single bidder with valuation from Fα using the posted price (Fα)−1(1−q).
Fifth, by regularity, selling to a single bidder with posted price (Fα)−1(1−q) with q ≤ min{qα, 1

k}
is therefore no better than selling with the posted price v∗ = (Fα)−1(max{1 − qα, k−1

k }). The
expected revenue from any one bidder is therefore at most the sale probability times v∗, namely
min{qα, 1

k} · v∗. The overall revenue, with k bidders, is thus at most k × min{qα, 1
k} · v∗ = R∗,

as claimed.

Overview The high-level plan is the following. Fix an arbitrary auction strategy. Think of
the random choices as occuring in three stages: in the first stage, the Fi’s are chosen; in the
second stage, m sample valuation profiles v(1), . . . ,v(m) are chosen (iid from F1 × · · · × Fk);
in the final stage, the input v is chosen (independently from F1 × · · · × Fk). We prove that
the expected revenue of the auction strategy (w.r.t. all three stages of randomness) is at most
1 − ǫ(α, δ) times that of the optimal auction (w.r.t. all three stages or, equivalently, the first
and third stages only).8 Again, 1 − ǫ(α, δ) < 1 will be independent of k. This implies that, for
every auction strategy, there exists a choice of F1, . . . , Fk such that the expected revenue of the
auction strategy is at most 1− ǫ(α, δ) times the expected revenue of the optimal auction for the
distributions F1, . . . , Fk.

By Lemma 5.1, R∗ is an upper bound on the optimal auction’s expected revenue (equiv-
alently, expected virtual surplus) for every choice of F1, . . . , Fk. The main argument is the
following: there is an event E such that, for every auction strategy:

(i) the probability of E (over all three stages of randomness) is lower bounded by a function
g(δ) of δ (and independent of k and α);

(ii) given E , the expected virtual surplus of the auction strategy is at least h(α, δ)R∗ smallest
than that of the optimal auction, where h(α, δ) > 0 is a function of α and δ only.

Since by (2), for each set of bids, the virtual surplus earned by the optimal auction is always
at least that of the auction strategy, (i)–(ii) imply that the expected virtual surplus (and hence
revenue) of the optimal auction exceeds that of the auction strategy by cR∗ for some c > 0
depending on α and δ. Since OPT is at most R∗, on setting ǫ(α, δ) = c, this implies the auction
strategy’s expected revenue is at most 1 − ǫ(α, δ) times optimal.

The Main Argument To define E , we use the principle of deferred decisions. We can flip the
second- and third-stage coins before those of the first stage by sampling quantiles — (m + 1)n

iid draws {q(j)
i } from the uniform distribution on [0,1]. (Once the distributions are chosen in

the first stage, the valuation v
(j)
i is just F−1

i (1 − q
(j)
i ).) We further break the first-stage coin

flips into two substages; in the first, we determine bidder types (A and B); in the second, we
choose Hi’s for the type-B bidders. The event E is defined as the set of coin flips (across all
stages) that meet the following criteria:

(P1) There are exactly two quantiles of the form q
(m+1)
i that are at most δ

k , say of bidders j
and ℓ;

8Actually, we prove this about expected virtual surplus rather than expected revenue, but this is equiva-
lent [16].
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(P2) q
(m+1)
j and q

(m+1)
ℓ are at least δ

2k .

(P3) for i = 1, 2, . . . , m, q
(i)
j and q

(i)
ℓ are greater than δ

k .

(P4) one of the bidders j, ℓ is type A, the other is type B (we leave random which is which).

(P5) the type B bidder (from among j, ℓ) has valuation equal to the maximum valuation from
its distribution.

Lemma 5.2 (Statement (i)). the probability of E (over all three stages of randomness) is lower

bounded by a function γ(δ) of δ (and independent of k and α), where γ(δ) = δ2

64e3 .

Proof. We first sample the k quantiles corresponding to the second stage. Elementary compu-
tations show that property (P1) holds with probability at least 1

2eδ
2 (independent of α and k).

Conditioned on (P1) holding, (P2) holds with probability 1
4 . (P3) is independent of the first

two properties and holds with constant probability of at least 1
e2 (independent of α, k). (P4)

is independent of the first three properties and holds with 50% probability. Conditioned on
(P1), (P2), and (P4) (as (P3) is irrelevant), the probability of (P5) equals the probability that
a uniform draw from [0, δ

k ] (used to determine the H-value) is at least the q-value of the type B

bidder, which is conditionally distributed uniformly on [ δ
2k , δ

k ]. This happens with probability
1
2(1 − 1

2) = 1
4 . We conclude that all of (P1)–(P5) hold with a positive probability, namely

γ(δ) =
δ2

64e3
.

We’ve reduced statement (ii) to the statement that, for every auction strategy, conditioned
on E , the strategy fails to allocate the item to the optimal bidder — the type-B bidder with
its maximum-possible valuation — with constant probability. It suffices to analyze the auction
strategy that, conditioned on E , maximizes the probability (over the remaining randomness) of
allocating to the optimal bidder — of guessing, from among the two bidders j, ℓ that in v(m+1)

have valuation at least (Fα)−1(1− δ
k ), which one is type A and which one is type B. Since the two

bidders were symmetric ex ante, Bayes’ rule implies that the probability of guessing correctly
(given E) is maximized by, for every v(1), . . . ,v(m+1), choosing the scenario that maximizes the
likelihood of the valuation profiles v(1), . . . ,v(m+1) (given E).

Lemma 5.3. Every auction strategy, conditioned on E, allocates to a non-optimal bidder with
probability at least 1

3 .

Proof. The only valuations that affect the relative likelihoods of the two scenarios are v
(m+1)
j

and v
(m+1)
ℓ . We already know the optimal bidder is either j or ℓ. Property (P3) of event E

implies that the m sample valuations from j and ℓ are equally likely to be generated under
the two scenarios — the distributions of type-A and type-B bidders differ only for quantiles in
[0, δ

k ].

Now, given v
(m+1)
j and v

(m+1)
ℓ , the posterior probabilities of the two scenarios are not equal.

The reason is that, conditioned on E , the type-A bidder’s valuation is distributed according
(Fα)−1(q) where q is uniform in [ δ

2k , δ
k ], while the type-B bidder’s valuation is distributed

according to the smaller of two iid such samples.9 Thus, assigning the item to the bidder of

9In more detail, consider a type-B bidder i and condition on the event that its quantile qi = 1 − Fi(vi) is
in [ δ

2k
, δ

k
] and that its valuation is its maximum possible, which is equivalent to the condition that its fictitious

quantile q′i that generates its threshold Hi lies in [qi,
δ
k
]. The joint distribution of (qi, q

′

i) is the same as the
process that generates two iid draws from [ δ

2k
, δ

k
] and assigns qi and q′i to the smaller and larger one, respectively.

Note that the valuation of the bidder is, by definition, (F α)−1(1 − q′i).
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j, ℓ with the lower valuation (in v(m+1)) maximizes the probability of allocating to the optimal
(type-B) bidder. The probability that this allocation rule erroneously allocates the item to the
type-A bidder is the probability that a sample for a distribution (the type-A bidder) is smaller
than the minimum of two other samples from the same distribution (the type-B bidder), which
is precisely 1

3 .

Lemma 5.4. The revenue of any sample-based auction strategy is at most the following fraction
of an optimal auction’s revenue:

1 − 1

192e3

1

ln k/δ
δ2 if α = 1

1 − (1 − α21−α)
1

192e3
δ1+α if α < 1 and qα = α1/(1−α) ≥ 1

k

1 − 1

384e3
δ if α ≤ 1

4
and qα = α1/(1−α) =

δ

k
.

Proof. Conditioned on E , the virtual value for the type B item is at least

φB ≥
{

α
1−α

[

(

k
δ

)1−α − 1
]

if α < 1

ln k
δ if α = 1

and for the type A item is at most

φA ≤
{

α
[

α
1−α

[

(

2k
δ

)1−α − 1
]

− 1
]

= α(α·21−α)
1−α

(

k
δ

)1−α − α
1−α if α < 1

ln 2k
δ − 1 if α = 1

Thus, conditioned on E ,

ϕB − ϕA ≥
{

α
1−α

(

k
δ

)1−α (

1 − α · 21−α
)

if α < 1

1 − ln 2 if α = 1

We now bound the fractional loss of revenue. By Lemma 5.2, E occurs with probability at
least δ2/(64e3). By Lemma 5.3, conditioned on E , a type A rather than a type B bidder is
wrongly allocated the item with probability 1

3 . Thus the expected loss of revenue is at least

1

3

δ2

64e3
(ϕB − ϕA).

By Lemma 5.1, the optimal revenue is at most R∗. Consequently, we can lower bound the
fractional loss of revenue at follows.

If α < 1 and qα ≥ 1
k , then the fractional loss of revenue is at least

δ2

3 · 64e3

ϕB − ϕA

R∗ =
1

3 · 64e3
(1 − α21−α)

α
1−α

[

(

k
δ

)1−α
]

δ2

α
1−α(k1−α − 1)

≥ 1 − α21−α

192e3
δ1+α.

If α < 1 and δ
k ≤ qα ≤ 1

k , then the fractional loss of revenue is at least

1

3 · 64e3
(1 − α21−α)

α
1−α

[

(

k
δ

)1−α
]

δ2

α
1−αkqα

[

(

1
qα

)1−α
− 1

] ≥ (1 − α21−α)
(

k
δ

)1−α
δ2

192e3k(qα)α

=
(1 − α21−α)δ1+α

192e3(qα)αkα
.
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In particular, if qα = δ
k , then the fractional loss of revenue is at most (1−α21−α)

192e3 δ. If in
addition α ≤ 1

4 , then (1 − α21−α) ≥ 1
2 . Thus the fractional loss of revenue is at most 1

384e3 δ.

Finally, if α = 1, as qα ≥ 1
e , the fractional loss of revenue is at most

1 − ln 2

192e3 ln k
δ

δ2.

Finally, we note that Lemma 5.4 proves (3), (4) and (5).

6 The Upper Bound

We begin by specifying notation so as to clearly distinguish parameters for Myerson’s optimal
auction from those for the empirical auction, as our analysis will be repeatedly comparing these
two auctions. After a couple of simple results, Lemma 6.3 bounds the empirical quantiles as
a function of the actual quantiles, and vice-versa (this is essentially Lemma 4.1 in [8]). Next,
Lemma 6.5 relates the empirical and actual virtual values. With these in hand, in Section 6.5,
we bound the expected revenue loss due to using the empirical auction as opposed to Myerson’s
optimal auction, assuming for the latter auction that the actual distributions were fully known.

6.1 Notation

Myerson’s Auction Let MR (the “Myerson Revenue”) denote the expected revenue recov-
ered by Myerson’s auction. Let xi(q) denote the probability that bidder Bi wins in Myerson’s
auction with a bid that has quantile q in its value distribution. Recall that vi(q) denotes
the value corresponding to quantile q and ϕi(q) denotes the virtual value at quantile q. Let
MRi = E[ϕi · xi] denote the expected revenue provided by Bi in Myerson’s auction. Let qi(v)
denote the minimum quantile for value v; sometimes it will be convenient to let qi

v denote qi(v),
and to reduce clutter, we suppress the index i when it is clear from the context. Let ri be the re-
serve price applied to Bi in Myerson’s auction, namely the largest value for which ϕi(qi(v)) = 0.
Let qri denote qi(ri). Let SRi = E[ϕi(q) | q ≥ ri] = qri ·ri; note that SRi is the expected revenue
if Bi were the only participant in Myerson’s auction (SRi is short for “Single buyer Revenue”).
Sometimes, to reduce clutter, we suppress the index i and write SR instead of SRi.

The Empirical Auction The empirical auction is defined in terms of the empirical quantile
q̄, but its analysis will entail considering its revenue as a function of the actual quantile q. We
specify notation which will distinguish between these two parameters.

Let MR denote the expected revenue recovered by the empirical auction. For empirical
quantiles q̄ ≥ ξ̄, given a price v̄i(q̄), the ironed value at quantile q̄, let CRi(q̄) denote the
revenue expected from Bi, assuming Bi were the only participant in the empirical auction;
CRi(q̄) = v̄i(q̄) · q̄. Let ϕ̄i(q̄) denote the corresponding empirical virtual value as a function of
q̄. Let x̄i(q̄) denote the probability that bidder Bi wins in the empirical auction with the bid
v̄i(q̄). q̄i(v) = v̄−1

i (v) denotes the predicted quantile at value v (in the event this is not uniquely
defined we choose it to be the minimum such quantile). We also write q̄iv for this quantile, and
sometimes suppress the index i when it is clear from the context. ri will denote the empirical
reserve price, which is the minimum of v̄i(ξ̄) and the largest value v̄ for which ϕ̄i(q̄i(v̄)) = 0, and
q̄r̄i will denote the corresponding empirical quantile. Sometimes, to reduce clutter, we suppress
the index i and write SR(q), ϕ̄(q), and q̄ for these functions.
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The actual quantile q corresponding to empirical quantile q̄ is defined by the relation vi(q) =
v̄i(q̄); it is denoted by q(v̄i(q̄)); we write it as q for short. Finally, we write the empirical
probability of winning as x̃i(q) = x̄i(q̄).

6.2 Two Simple Results

Claim 6.1. i. MR =
∑n

i=1 MRi.

ii. SRi ≤ MR for all i.

Lemma 6.2. Let F be a regular distribution. Let q(r) ≥ q1 > q2, where q(r) is the quantile of
the reserve price for F . Then v(q2) ≤ q1

q2
v(q1).

Proof. ϕ(q) ≥ 0 for q ≤ q(r), and consequently R(q1) ≥ R(q2). R(q1) = q1 · v(q1) and R(q2) =
q2 · v(q2). Thus q1 · v(q1) ≥ q2 · v(q2), and the result follows.

6.3 Relating the Actual and Empirical Quantiles

The following result is essentially Lemma 4.1 in [8].

Lemma 6.3. Let F be a regular distribution. Suppose m independent samples with values
v1 ≥ v2 ≥ . . . ≥ vm are drawn from F . Let γ > 0, ξ̂ = k

m < 1 for some integer k > 0 be given,

and let ν be defined by 1 + ν = (1 + γ)2. Let tj = 2j−1
2m . Then, for all v ≤ vξ̂m,

q(v) ∈
[

q̄(v)

(1 + γ)2
, q̄(v)(1 + γ)2

]

=

[

q̄(v)

(1 + ν)
, q̄(v)(1 + ν)

]

or equivalently

q̄(v) ∈
[

q(v)

(1 + ν)
, q(v)(1 + ν)

]

with probability at least 1 − δ, if γξ̂m ≥ 1, (1 + γ)2 ≤ 3
2 , and m ≥ 6

γ2(1+γ)ξ̂
max{ ln 3

γ , ln 6
δ}.

Proof. We begin by identifying a subsequence of the samples, vj1 , vj2 , . . . , vjk
, with j1 ≤ j2 ≤

. . . ≤ jk; we rename the sequence u1, u2, . . . , uk for notational ease. It will be the case that
ul+1 ≤ (1 + γ)ul and tjk

(1 + γ) > 1. We will show that

q(vj) ∈
[

tj
(1 + γ)

, tj(1 + γ)

]

, for vj ∈ U = {u1, . . . , uk}.

The claimed bound is then immediate as either each v ≤ vξ̂m is sandwiched between two items
in U , or it is at most uk.

We define the ji, as follows: j1 = ξ̂m and ji+1 = ⌊(1 + γ)ji⌋ if ⌊(1 + γ)ji⌋ ≤ m, and otherwise
ji+1 is not defined (i.e. i = k). As γξ̂m ≥ 1, and γ < 1, ⌊(1 + γ)ξ̂m⌋ ≥ ξ̂m + ⌊γξ̂m⌋ ≥ j1 + 1,
from which we conclude that the sequence is strictly increasing and hence well defined.

Next we bound the probability that q(ui) > (1 + γ)t(ui), where t(ui) is defined by ui = vji

and t(ui) = tji . Now q(ui) > (1+ γ)t(ui) only if fewer than ji samples have q values that are at
most (1 + γ)t(ui). As the expected number of such samples is (1 + γ)t(ui)m, a Chernoff bound
gives the following upper bound on the probability that q(ui) > (1 + γ)t(ui) (cf. [15]):

exp{−γ2(1 + γ)t(ui)m

3
}.
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Similarly, the probability that q(ui) < t(ui)/(1 + γ) is bounded by

exp{−γ2t(ui)m

2(1 + γ)
}.

It will be helpful to bound both t(u1)m and [t(ui+1) − t(ui)]m. As ξ̂m ≥ 1, t(u1)m = (2ξ̂m −
1)/2 ≥ 1

2 ξ̂m. And as γξ̂m ≥ 1, [t(ui+1) − t(ui)]m ≥ ⌊(1 + γ)ji⌋ − ji ≥ ⌊γji⌋ ≥ ⌊γξ̂m⌋ ≥ 1
2γξ̂m.

Now, by the union bound applied to all the q(ui), we obtain a failure probability of at most:

k
∑

i=1

exp{−γ2(1 + γ)t(ui)m

3
} + exp{−γ2t(ui)m

2(1 + γ)
}

≤ 2
k

∑

i=1

exp{−γ2(1 + γ)t(ui)m

3
} as (1 + γ)2 ≤ 3

2

≤ 4

k−1
∑

i=0

exp

{

−γ2(1 + γ)[ξ̂m + (i − 1)γξ̂m]

6

}

using the bounds on t(u1)m and [t(ui+1) − t(ui)]m

≤ 4 exp{−γ2(1+γ)ξ̂m
6 }

1 − exp{−γ3(1+γ)ξ̂m
6 }

≤ 6 exp

{

−γ2(1 + γ)ξ̂m

6

}

if exp

{

−γ3(1 + γ)ξ̂m

6

}

≤ 1

3
.

We want the failure probability to be at most δ. So we need γ2(1+γ)ξ̂m
6 ≥ ln 6

δ , i.e. m ≥
6

γ2(1+γ)ξ̂
ln 6

δ . We also need m ≥ 6
γ3(1+γ)ξ̂

ln 3 to satisfy the condition in the final inequality.

6.4 Relating the Actual and the Empirical Virtual Values

Let Ea be the event that the high probability outcome of Lemma 6.3 occurs, namely that for

all v ≤ v⌊ξ̂m⌋, q(v) ∈
[

q̄(v)
(1+ν) , q̄(v)(1 + ν)

]

. Ea occurs with probability at least 1 − δ. It will also

be helpful to express the bound on v as a bound on q̄. To this end, we define ξ̄ = t1 = 2ξ̂−1
2m .

We will repeatedly encounter terms of the form ϕ(λq) with λ > 1; For λq > 1, ϕ(λq) is
interpreted to mean ϕ(1); similarly for ϕ̄.

Lemma 6.4. Conditioned on Ea, for all empirical quantiles q̄ ≥ ξ̄, CR(q̄) ≤ q̄ · v( q̄
1+ν ), and for

all tj = 2j−1
2m ≥ ξ̄, CR(tj) ≥ tj · v( tj(1 + ν)).

This lemma is not as obvious as it may seem for it concerns points on the convex hull CR
of the set of points R̄ that are used to specify the empirical revenue.

Proof. By Lemma 6.3, as Ea holds, for all tj ≥ ξ̄,

tj · v(tj(1 + ν)) ≤ R̄(tj) ≤ tj · v(
tj

1 + ν
).

We define L̄(q̄) = q̄ · v(q̄(1 + ν)) and Ū(q̄) = q̄ · v( q̄
1+ν ) for all q̄.

Note that for any pair q 6= q′ of quantiles, the line joining the actual revenue R( q
1+ν ) =

q
1+ν v( q

1+ν ) to R( q′

1+ν ) = q′

1+ν v( q′

1+ν ) is parallel to the line joining Ū(q) to Ū(q′), for the latter
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line is obtained by expanding the former line by a factor 1+ ν in both the quantile and revenue
dimensions. By the regularity of ϕ, the curve defined by R is convex, and consequently, the
points Ū(q̄) all lie on their convex hull.

For tj ≥ ξ̄, Ū(tj) is an upper bound on R̄(tj); it follows that the convex hull for the
empirical revenue, for q̄ ≥ ξ̄, is enclosed by the convex hull Ū(q̄), and consequently CR(q̄) ≤
Ū(q̄) = q̄ · v( q̄

1+ν ).
For the second result, the lower bound, we use a similar argument, but it will apply just to

the empirical quantiles tj ≥ ξ̄. Now, for any pair q 6= q′ of quantiles, the line joining the actual

revenue R( q
1+ν ) = q

1+ν v( q
1+ν ) to R( q′

1+ν ) = q′

1+ν · v( q′

1+ν ) is parallel to the line joining L̄(q) to

L̄(q′), and hence the points L̄(q̄) all lie on their convex hull. But, for tj ≥ ξ̄, L̄(tj) ≤ R̄(tj), and
consequently the values R̄(tj) all lie on or above the curve L̄(tj).

The following lemma, which lies at the heart of out analysis, shows that w.h.p. ϕ(q) is close
to some value ϕ̄(q̄ ′) with q̄ ′ ∈ [ q̄

(1+∆)(1+ν)3
, q̄(1 + ∆)(1 + ν)].

Lemma 6.5. Let F be a regular distribution. Suppose that (1 + ∆) ≥ (1 + ν)2. Let tj = 2j−1
2m ,

for 1 ≤ j ≤ m. Conditioned on Ea, if tj−1 < q̄ ≤ tj, then

i. for all q̄ ≥ ξ̄(1 + ∆)(1 + ν)3, ϕ(q) ≤ ϕ(
tj

(1+ν)2
) ≤ ϕ̄( q̄

(1+∆)(1+ν)3
) + 2(1 + ∆)(1 + ν)3 SR

q̄
ν
∆ ,

and

ii. for all q̄ ≥ ξ̄, ϕ̄(q̄(1 + ∆)(1 + ν)) ≤ ϕ(tj(1 + ν)) + 2(1 + ν)2 SR
q̄

ν
∆ ≤ ϕ(q) + 2(1 + ν)2 SR

q̄
ν
∆ .

Proof. The main part of the proof concerns the second inequality in (i) and the first one in (ii).
We begin by proving the inequality in (i). First we give an upper bound on ϕ(

tj
(1+ν)2

) and a

lower bound on ϕ̄( q̄
(1+∆)(1+ν)3

).

As F is regular, R is convex; thus:

ϕ(
tj

(1 + ν)2
) ≤

R(
tj

(1+ν)2
) − R(

tj
(1+∆)(1+ν)4

)

tj
(1+ν)2

− tj
(1+∆)(1+ν)4

=

tj
(1+ν)2

· v(
tj

(1+ν)2
) − tj

(1+∆)(1+ν)4
v(

tj
(1+∆)(1+ν)4)

)

tj
(1+ν)2

− tj
(1+∆)(1+ν)4

=
(1 + ∆)(1 + ν)2v(

tj
(1+ν)2

) − v(
tj

(1+∆)(1+ν)4
)

2ν + ν2 + ∆(1 + ν)2
.

The following bound applies only when
tj

(1+∆)(1+ν)3
≥ ξ̄ for otherwise CR(

tj
(1+∆)(1+ν)3

) is not

defined; the constraint q̄ ≥ ξ̄(1 + ∆)(1 + ν)3 suffices.

ϕ̄(
q̄

(1 + ∆)(1 + ν)3
) ≥

CR(
tj

(1+ν)3
) − CR(

tj
(1+∆)(1+ν)3

)

tj
(1+ν)3

− tj
(1+∆)(1+ν)3

≥
tj

(1+ν)3
· v(

tj
(1+ν)2

) − tj
(1+∆)(1+ν)3

v(
tj

(1+∆)(1+ν)4
)

tj
(1+ν)3

− tj
(1+∆)(1+ν)3

(by Lemma 6.4)

=
(1 + ∆)v(

tj
(1+ν)2

) − v(
tj

(1+∆)(1+ν)4
)

∆
.

Now, we combine the bounds:
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ϕ(
tj

(1 + ν)2
) − ϕ̄(

q̄

(1 + ∆)(1 + ν)3
)

≤
(1 + ∆)(−2ν − ν2)v(

tj
(1+ν)2

) + [(2ν + ν2) + ∆(1 + ν)2 − ∆]v(
tj

(1+∆)(1+ν)4
)

∆[2ν + ν2 + ∆(1 + ν)2]

≤
(1 + ∆)(2ν + ν2)[v(

tj
(1+∆)(1+ν)4

) − v(
tj

(1+ν)2
)]

∆[2ν + ν2 + ∆(1 + ν)2]

≤
(2ν + ν2)(1 + ∆)v(

tj
(1+ν)2

)[(1 + ∆)(1 + ν)2 − 1]

∆[2ν + ν2 + ∆(1 + ν)2]
(by Lemma 6.2)

≤
ν(2 + ν)(1 + ∆)v(

tj
(1+ν)2

)

∆
≤ ν(2 + ν)(1 + ∆)SR

∆
tj

(1+ν)2

≤ 2(1 + ∆)(1 + ν)3
ν

∆

SR

q̄
.

The second inequality in (ii) is shown similarly. We start with an upper bound on ϕ̄(q̄(1 +
∆)(1 + ν)) and a lower bound on ϕ(tj(1 + ν)). The first bound applies only when tj ≥ ξ̄; here
q̄ ≥ ξ̄ suffices.

ϕ̄(q̄(1 + ∆)(1 + ν)) ≤ ϕ̄(tj(1 + ∆)) ≤ CR(tj(1 + ∆)) − CR(tj)

(1 + ∆)tj − tj

≤
tj(1 + ∆) · v(

tj(1+∆)
1+ν ) − tjv(tj(1 + ν))

∆tj
(by Lemma 6.4)

=
(1 + ∆)v(

tj(1+∆)
1+ν ) − v(tj(1 + ν))

∆
.

ϕ(tj(1 + ν)) ≥
R(

tj(1+∆)
(1+ν) ) − R(tj(1 + ν))

tj(1+∆)
(1+ν) − tj(1 + ν)

=

tj(1+∆)
1+ν v(

tj(1+∆)
1+ν ) − tj(1 + ν)v(tj(1 + ν))
tj(1+∆)

1+ν − tj(1 + ν)

=
(1 + ∆)v(

tj(1+∆)
1+ν ) − (1 + ν)2v(tj(1 + ν))

∆ − 2ν − ν2
.

Again, we combine the bounds:
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ϕ̄(q̄(1 + ∆)(1 + ν)) − ϕ(tj(1 + ν))

≤
(1 + ∆)[∆ − 2ν − ν2 − ∆]v(

tj(1+∆)
1+ν ) + [∆(1 + ν)2 − (∆ − 2ν − ν2)]v(tj(1 + ν))

∆(∆ − 2ν − ν2)

≤
−(2ν + ν2)(1 + ∆)v(

tj(1+∆)
1+ν ) + (2ν + ν2)(1 + ∆)v(tj(1 + ν))

∆(∆ − 2ν − ν2)

≤
(2ν + ν2)(1 + ∆)

(

v(tj(1 + ν)) − v(
tj(1+∆)

1+ν )
]

∆(∆ − 2ν − ν2)

≤
(2ν + ν2)(1 + ∆)

[

1+∆
(1+ν)2

− 1
)

v(
tj(1+∆)

1+ν )

∆(∆ − 2ν − ν2)
(by Lemma 6.2, as 1 + ∆ ≥ (1 + ν)2)

≤ (1 + ν)(2ν + ν2)(1 + ∆)(∆ − 2ν − ν2)

∆(∆ − 2ν − ν2)
v(tj(1 + ∆)) (by Lemma 6.2 again)

≤ ν

∆
(2 + ν)(1 + ν)(1 + ∆)v(tj(1 + ∆)) ≤ 2(1 + ν)2(1 + ∆)

ν

∆

SR

tj(1 + ∆)
≤ 2(1 + ν)2

ν

∆

SR

q̄
.

We now show the remaining inequalities. To obtain the first inequality in (i), we note that
by Lemma 6.3 and Ea, q ≥ q̄

(1+ν) >
tj

(1+ν)2
, from which the result follows. Similarly, for the

second inequality in (ii), tj(1 + ν) ≥ q̄(1 + ν) ≥ q, and again the result follows.

6.5 Bounding the Expected Revenue Loss

Finally, we consider an auction with k bidders, where the valuation for the ith bidder comes
from regular distribution Fi.

Let Shtf =
∑

i E[ϕi · xi] −
∑

i E[ϕi · x̃i]. In other words, MR + Shtf = MR, so it suffices to
show that Shtf ≤ ǫMR. In the next lemma, we bound Shtf by the sum of three terms, which
we will bound in turn. Recall that qri denotes the quantile of Fi corresponding to the reserve
price for Bi in the Myerson auction and qr̄i denotes the empirical quantile corresponding to
the reserve price in the empirical auction. Also, we let q̄i be a quantile for Bi in the empirical
auction, and we let qi denote the corresponding quantile in Fi. q̄j and qj are defined similarly
w.r.t. Bj . Finally, to reduce clutter, we let β = (1 + ∆)(1 + ν)3 − 1.

Lemma 6.6.

Shtf =
∑

i

E

[

∫

qi≤qri

ϕi(qi)xi(qi) dqi −
∫

qi≤qr̄i

ϕi(qi)x̃i(qi) dqi

]

≤
∑

i

E

[

∫

qi≤qri

ϕi(qi) · [xi(qi) − x̃i(
qi

1 + β
)] dqi (9)

+ β

∫

qi≤qri

ϕi(qi) dqi (10)

+

∫

qri≤qi≤qr̄i

[−ϕi(qi)] dqi.

]

. (11)
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Proof. Note that x̃i(qi) = 0 for qi > qr̄i . Thus

−
∫

qi≤qr̄i

ϕi(qi)x̃i(qi) dq = −
∫

qi≤qri

ϕi(qi)x̃i(qi) +

∫

qri≤qi≤qr̄i

[−ϕi(qi)] · x̃i(qi) dqi

≤ −
∫

qi≤qri/(1+β)
ϕi(qi)x̃i(qi) +

∫

qri≤qi≤qr̄i

[−ϕi(qi)] dqi

and

−
∫

qi≤qri/(1+β)
ϕi(qi)x̃i(qi) dq = −(1 + β)

∫

qi≤qri/(1+β)
ϕi(qi)x̃i(qi) dqi + β

∫

qi≤qri/(1+β)
ϕi(qi)x̃i(qi) dqi

≤ −
∫

qi≤qri

ϕi(
qi

1 + β
)x̃i(

qi

1 + β
) dqi + β

∫

qi≤qri

ϕi(qi)x̃i(qi) dqi

≤ −
∫

qi≤qri

ϕi(qi)x̃i(
qi

1 + β
) dqi + β

∫

qi≤qri

ϕi(qi) dqi

In the following lemmas we bound the terms (10), (11), and (9) in turn.

Lemma 6.7.
∑

i

β

∫

qi≤qri

ϕi(qi) dqi ≤ kβMR.

Proof. Note that
∫

qi≤qri
ϕi(qi) dqi = SRi ≤ MR, by Claim 6.1(ii). The result follows on summing

over i.

We bound (11) by partitioning the integral into two intervals. The intervals are the ranges
qri ≤ qi ≤ max{ξi, qri} and max{ξi, qri} ≤ qi ≤ qr̄i , respectively, where ξi is the quantile of Fi

corresponding to empirical quantile ξ̄.

Lemma 6.8.
∑

i

∫

qri≤qi≤max{ξi,qri}
[−ϕi(qi)] dqi ≤ kξ̄(1 + ν) · MR.

Proof. If ξi ≤ qri the integral is zero and the result is immediate. So we can assume that
ξi ≥ qri . Note that −ϕi(qi) is a non-decreasing function of qi; thus its smallest values in the
range qi ≥ qri occur in the integral we are seeking to bound. It follows that

∫

qri≤qi≤ξi

[−ϕi(qi)] dqi ≤
ξi − qri

1 − qri

∫

qri≤qi

[−ϕi(q)] dqi

≤ ξi

∫

qri≤qi

[−ϕi(qi)] dqi

≤ ξi

∫

qi≤qri

ϕi(qi) dqi (as

∫

0≤qi≤1
ϕi(qi) dqi = 0)

= ξi · SRi ≤ ξi · MR ≤ ξ̄(1 + ν) · MR.

The last two inequalities follow from Claim 6.1(ii) and Lemma 6.3, respectively. The result
follows on summing over i.

We define Eb to be the event that Ea holds for every distribution Fi.
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Lemma 6.9. Conditioned on Eb,

E

[

∑

i

∫

max{ξi,qri}≤qi≤qr̄i

[−ϕi(qi)] dqi

]

≤ 2ν
∑

i

SRi ≤ 2kν · MR.

Proof. let χi = max{ξi, qri} and let χ̄i be the corresponding empirical quantile. Again, if
χi ≥ qri

the integral is zero and the result is immediate. So we can assume that χi < qri
.

The derivation below uses Lemma 6.3 to justify the first and third inequalities, and the second
inequality follows from the definition of ri as the empirical reserve price. Conditioned on Ea,

qr̄i · ri ≥ q̄r̄i · ri

1 + ν
≥ χ̄i · v̄i(χ̄i)

1 + ν
≥ χi · vi(χi)

(1 + ν)2
, (12)

Thus
∫

χi≤qi≤qr̄i

[−ϕi(qi)] dqi ≤ χi · vi(χi) − qr̄i · ri ≤ χi · vi(χi)

[

1 − 1

(1 + ν)2

]

(by (12))

≤ ν(2 + ν)

(1 + ν)2
SRi ≤ 2ν · SRi.

It remains to bound term (9).
The next lemma bounds the probability that Bi in the empirical auction at quantile q̄i/(1+β)

loses by a large amount to Bj at quantile q̄j/(1 + β) when Bi at quantile qi wins against Bj at
quantile qj , and q̄j ≥ ξ̄. A large amount is defined as follows: for q̄i ≥ ξ̄(1 + β) it is more than:

2(1 + β) · SRi

q̄i

ν

∆
+ 2(1 + ν)2

SRj

q̄j

ν

∆
,

and for q̄i < ξ̄(1 + β) it is more than:

2(1 + ν)2
SRj

q̄j

ν

∆
.

Lemma 6.10. Conditioned on Eb, for any pair Bi and Bj, if q̄j ≥ ξ̄ then the probability of the
following event is bounded by (1 + β)2 − 1.

i. If q̄i ≥ ξ̄(1 + β), the event is

ϕj(qj) + 2(1 + ν)2
SRj

q̄j

ν

∆
< ϕi(qi) − 2(1 + β) · SRi

q̄i

ν

∆
and

ϕ̄i(
q̄i

1 + β
) < ϕ̄j(

q̄j

1 + β
).

ii. While if q̄i < ξ̄(1 + β), the event is

ϕj(qj) + 2(1 + ν)2
SRj

q̄j

ν

∆
< ϕi(qi), and

ϕ̄i(
q̄i

1 + β
) < ϕ̄j(

q̄j

1 + β
).
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Proof. We begin with the proof of (i). Given Eb, by Lemma 6.5, for q̄i ≥ ξ̄(1 + β), ϕi(qi) ≤
ϕ̄i(

q̄
1+β )+2(1+β) · SRi

q̄i

ν
∆ and for q̄j ≥ ξ̄, ϕ̄j(q̄j(1+∆)(1+ ν)) ≤ ϕj(qj)+2(1+ ν)2

SRj

q̄j

ν
∆ . Thus,

if the conditions in (i) hold, then

ϕ̄j(q̄j(1 + ∆)(1 + ν)) ≤ ϕj(qj) + 2(1 + ν)2
SRj

q̄j

ν

∆

< ϕi(qi) − 2(1 + β) · SRi

q̄i

ν

∆

≤ ϕ̄i(
q̄i

1 + β
)

< ϕ̄j(
q̄j

1 + β
).

Thus we have a lower bound of ϕ̄j(q̄j(1 + ∆)(1 + ν)) and an upper bound of ϕ̄j(
q̄j

1+β ) on the
remaining terms. Clearly these can both hold only for a limited range of q̄j and hence of qj ,
which we bound as follows. Define ˆ̄qj = arg minq̄j{ϕ̄j(q̄j(1 + ∆)(1 + ν)) ≤ ϕ̄i(q̄i/[1 + β])},
and let q̂j be the corresponding quantile in Fj . Then these bounds can hold for at most
ˆ̄qj ≤ q̄j < ˆ̄qj(1 + ∆)(1 + ν)(1 + β). To obtain a probability bound, one needs to express the
range in terms of the qj quantile, namely from q̂j/(1 + ν) to min{1, q̂j(1 + ∆)(1 + ν)2(1 + β)},
i.e. with probability at most (1 + ∆)(1 + ν)3(1 + β) − 1 = (1 + β)2 − 1.

To prove (ii), we proceed similarly. In the derivation below, we let qi(q̄i) denote the value
of qi corresponding to q̄i.

ϕ̄j(q̄j(1 + ∆)(1 + ν)) ≤ ϕj(qj) + 2(1 + ν)2
SRj

q̄ ′
ν

∆
< ϕi(qi)

≤ ϕi(min{ξi,
qi

1 + β
})

≤ ϕ̄i(
qi

1 + β
) < ϕ̄j(

qj

1 + β
)

where the next to last inequality follows because for q̄ ≤ ξ̄, i.e. for qi ≤ ξi, ϕ̄i(q̄i) = vi(qi) ≥
ϕi(qi). The rest of the argument is as for (i).

Lemma 6.11. Conditioned on Eb,

∑

i

∫

qi≤qri

ϕi(qi) · [xi(qi) − x̃i(
qi

1 + β
)] dqi

≤ k(k − 1)ξ̄(1 + ν)2MR + k[(1 + β)2 − 1]MR

+ 4k(k − 1)(1 + β)(1 + ν) · ln 1

ξ̄

ν

∆
MR.

Proof. We introduce notation to measure the probability of wins by small and large margins.
Let xs

ij(qi, qj) denote the probability that Bi wins in the Myerson auction at quantile qi, when

Bj is at quantile qj , that ϕi(qi) − ϕj(qj) ≤ 2(1 + ν)2
SRj

q̄j

ν
∆ + 2(1 + β) · SRi

q̄i

ν
∆ if q̄i ≥ ξ̄(1 + β),

and ϕi(qi)−ϕj(qj) ≤ 2(1 + ν)2
SRj

q̄j

ν
∆ if q̄i < ξ̄(1 + β), and that Bj wins in the empirical auction

at quantile q̄j/(1 + β), when Bi is at quantile q̄i/(1 + β). Similarly, let x̃s
ij(qi, qj) denote the

probability that Bi wins in the empirical auction at quantile q̄i/(1 + β), when Bj is at quantile
q̄j/(1 + β), and that Bj wins in the Myerson auction at quantile qj , when Bi is at quantile

qi, and when q̄j ≥ ξ(1 + β), that ϕj(qj) − ϕi(qi) ≤ 2(1 + ν)2 SRi
q̄i

ν
∆ + 2(1 + β) · SRj

q̄j

ν
∆ , while if
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q̄j < ξ(1 + β), then ϕj(qj) − ϕi(qi) ≤ 2(1 + ν)2 SRi
q̄i

ν
∆ . Next we define the probability of a large

margin win to be xl
i(qi) = xi(qi) −

∑

j 6=i

∫

qj
xs

ij(qi, qj) dqj .

∑

i

∫

qi≤qri

ϕi(qi) · [xi(qi) − x̃i(
qi

1 + β
)] dq

≤
∑

i

∫

qi≤qri

ϕi(qi) · xl
i(qi) dqi (13)

+
∑

i

∑

j 6=i

∫

qi≤qri ,qj≤ξj(1+ν)
φi(qi) dqi dqj (14)

+
∑

i

∑

j 6=i

[

∫

qi≤qri ,ξj(1+ν)≤qj≤qrj

ϕi(qi) · xs
ij(qi, qj) dqi dqj (15)

−
∫

qi≤qri ,qj≤qrj

ϕi(qi) · x̃s
ij(qi, qj) dqi dqj

]

(16)

We bound (13)–(14) in turn.
By Lemma 6.10, xl

i(qi) ≤ (1 + β)2 − 1. Thus

∑

i

∫

qi≤qri

ϕi(qi) · xl
i(qi) dq ≤ [(1 + β)2 − 1]

∑

i

∫

qi≤qri

ϕi(qi) dqi

≤ [(1 + β)2 − 1]
∑

i

SRi

≤ k[(1 + β)2 − 1]MR.

∑

i

∑

j 6=i

∫

qi≤qri ,qj≤ξj(1+ν)
φi(qi) dqi dqj ≤

∑

i

∑

j 6=i

(1 + ν)ξ̄jSRi

≤ k(k − 1)ξ̄(1 + ν)2MR (as ξj ≤ ξ̄(1 + ν)).

Note that xs
ij(qi, qj) = x̃s

ji(qi, qj). Thus when q̄i ≥ ξ̄(1+β), ϕi(qi)·xs
ij(qi, qj)−ϕj ·x̃s

ij(qj .qi) ≤
xs

ij [2(1 + ν)2
SRj

q̄j

ν
∆ + 2(1 + β) · SRi

q̄i

ν
∆ ], and if q̄i < ξ̄(1 + β), the bound is xs

ij [2(1 + ν)2
SRj

q̄j

ν
∆ ].
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We conclude that

∑

i

∑

j 6=i

[

∫

qi≤qri ,ξj(1+β)≤qj≤qrj

ϕi(qi) · xs
ij(qi, qj) dqi dqj −

∫

qi≤qri ,qj≤qrj

ϕi(qi) · x̃s
ij(qi, qj)] dqi dqj

]

≤
∑

i

∫

ξi(1+ν)<qi≤qri ,ξj(1+β)≤qj≤qrj

∑

j 6=i

2(1 + ν)2
SRj

q̄j

ν

∆
+ 2(1 + β) · SRi

q̄i

ν

∆
dqi dqj

+
∑

i

∫

qi≤ξi(1+ν),ξj(1+β)≤qj≤qrj

∑

j 6=i

2
SRj(1 + ν)2

q̄j

ν

∆
dqi dqj

≤
∑

i

∫

qi≤qri ,ξj(1+ν)≤qj≤qrj

∑

j 6=i

2
SRj(1 + ν)3

qj

ν

∆
dqi dqj (as q̄j ≥

qj

1 + ν
)

+
∑

i

∫

ξi(1+ν)≤qi≤qri

2[qrj − ξj(1 + β)](1 + β) · SRi(1 + ν)

qi

ν

∆
dqi

≤
∑

i

∑

j 6=i

[

2 · SRj(1 + ν)3 ln
1

ξj(1 + ν)

ν

∆
+ 2(1 + β)(1 + ν) · SRi ln

1

ξj(1 + β)

ν

∆

]

≤ 4k(k − 1)(1 + β)(1 + ν) · ln 1

ξ̄

ν

∆
MR (since ξi, ξj ≥

ξ̄

1 + ν
≥ ξ̄

1 + β
).

We are now ready to bound Shtf.

Lemma 6.12.

Shtf ≤ MR
[

k(k + 1)δ + kβ + 2kν + k2ξ̄(1 + ν)2 + k[(1 + β)2 − 1]
]

+ MR

[

4k(k − 1)(1 + β)(1 + ν) · ln 1

ξ̄

ν

∆

]

.

Proof. In the event that Ea does not hold for some Fi, which occurs with probability at most
kδ, the contribution to Shtf is at most

kδ

[

∑

i

∫

qi≤qri

ϕi(qi)xi(qi) dqi −
∫

qi≤qri

ϕi(qi)x̃i(qi) dqi

]

≤ kδMR + kδ
∑

i

∫

qri<qi≤qri

[−ϕi(qi)] dqi

≤ kδMR + kδ
∑

i

∫

qi≤qri

ϕi dqi

≤ kδMR + kδ · kMR = k(k + 1)MR.

Otherwise, the contribution is given by summing the bounds from Lemmas 6.7–6.9 and 6.11.

Proof of Theorem 3.1: We first choose ∆, ν ≤ 1
12 . It is easy to check that then (1 + β)2 − 1 =

(1 + ∆)2(1 + ν)6 − 1 = 2∆(1 + ∆)(1 + ν)6 + 6ν(1 + ∆)2(1 + ν)5 ≤ (2∆ + 6ν)
(

13
12

)7 ≤ 4∆ + 11ν,
and similarly β = (1+∆)(1+ν)3−1 ≤ 2∆+4ν. Thus 3kν +kβ +k[(1+β)2−1] ≤ 6k∆+18kν.

Finally, 4(1 + β)(1 + ν) ≤ 4
(

13
12

)5 ≤ 4 · 3
2 = 6. Consequently,

Shtf ≤ MR

[

kδ + 6k∆ + 2k2ξ̄ + 18ν + 6k(k − 1) ln
1

ξ̄

ν

∆

]

.
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It suffices that Shtf ≤ ǫMR. To this end, we bound the right hand side of the above expression
by ǫ. To achieve this it suffices to choose ν, ξ̄, δ, and ∆ as follows:

k(k + 1)δ =
1

4
ǫ

6k∆ =
1

4
ǫ

2k2ξ̄ =
1

4
ǫ

18kν + 6k(k − 1) ln
1

ξ̄

ν

∆
=

1

4
ǫ.

It suffices that

δ = Θ
( ǫ

k2

)

∆ = Θ
( ǫ

k

)

ξ̄ = Θ
( ǫ

k2

)

ν = Θ

(

ǫ2

k3

1

ln k + ln 1
ǫ

)

.

One final detail is that we need to set ξ̂ also, but it suffices to note that ξ̂ = ξ̄ + 1
2m and so

ξ̂ = Θ( ǫ
k2 ) + 1

2m .
By Lemma 6.3, m = Ω( 1

γ3ξ̂
+ln 1

δ · 1
γ2ξ̂

) suffices. Recalling that 1+ν = (1+γ)2, so γ = Θ(ν),

we obtain that m = Ω(k11

ǫ7
(ln3 k + ln3 1

ǫ ) suffices.
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