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Abstract

Tatonnement is a simple and natural rule for updating prices in Exchange (Arrow-
Debreu) markets. In this paper we define a class of markets for which tatonnement is
equivalent to gradient descent. This is the class of markets for which there is a convex
potential function whose gradient is always equal to the negative of the excess demand.
We call this class the Convex Potential Function (CPF) markets. We show the following
results.

• CPF markets contain the class of Eisenberg Gale (EG) markets, defined previously
by Jain and Vazirani.

• The subclass of CPF markets for which the demand is a differentiable function
contains exactly those markets whose demand function has a symmetric negative
semi-definite Jacobian.

• We define a family of continuous versions of tatonnement based on gradient descent
using a Bregman divergence. As we show, for many CPF markets, every process in
this family will converge to an equilibrium and the process based on KL-divergence
will converge for even more of these markets. This is analogous to the classic result
for markets satisfying the Weak Gross Substitutes property.

• A discrete version of tatonnement converges toward the equilibrium for the following
markets of complementary goods; its convergence rate for these settings is analyzed
using a common potential function.

– Fisher markets in which all buyers have Leontief utilities; these are all EG
markets. (Fisher markets are markets in which all agents are either buyers or
sellers.) The tatonnement process reduces the distance to the equilibrium, as
measured by the potential function, to an ε fraction of its initial value in O(1/ε)
rounds of price updates, and require Ω(1/

√
ε) rounds in the worst case.

– Fisher markets in which all buyers have complementary CES utilities; again,
these are all EG markets. Here, the distance to the equilibrium is reduced to
an ε fraction of its initial value in O(log(1/ε)) rounds of price updates.

This shows that tatonnement converges for the entire range of Fisher markets when
buyers have complementary CES utilities, in contrast to prior work, which could an-
alyze only the substitutes range, together with a small portion of the complementary
range.
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1 Introduction

General equilibrium theory, the study of markets and their equilibria, has been a core topic in
economics for over a century. Informally speaking, an equilibrium is a collection of prices at
which the supply and demand of every good in the market balances. Two central questions in
general equilibrium theory are whether equilibria exist and if so how to compute them. The
issue of existence was settled for a very general setting in 1954 by Arrow and Debreu [2] by
means of Katutani’s fixed point theorem. However, the computation of equilibria was already
being worked on in the 1890s by Fisher, who built a hydraulic apparatus for this task (see [6]
for a description). The formal study of this topic began even earlier with the introduction of
an equilibrium model by Walras in 1874 [30], along with a natural, simple, distributed price
update process which he named tatonnement.

Tatonnement is broadly defined in terms of the following criteria: if the demand for a good is
more than the supply, increase the price of the good, and conversely, decrease the price when
the demand is less than the supply. The price adjustment for each good is in the direction of its
own excess demand and is independent of the demand for other goods. Classically, tatonnement
has been thought of as a continuous process, with price adjustments and demand responses
happening continuously and instantaneously. A computer science approach is to consider
updates at discrete time intervals and to bound the number of updates required (though discrete
updates were also considered in the economics literature as early as the 60s [29]).

Implicit in the question of how to compute equilibria is the assumption that markets do reach
these equilibria, which raises the further question of how they reach them. Tatonnement is
a natural candidate for such a process. An early positive result, due to Arrow, Block and
Hurwitz [1], showed that a continuous version of tatonnement converges to an equilibrium
for markets satisfying the weak gross substitutes (WGS) property, namely that increasing the
price of one good does not decrease the demand for any other good.1 However, the hope that
tatonnement would converge for all markets was dashed by Scarf [27], who showed an example
of a market where tatonnement does not converge; in fact, it exhibits cyclic behavior. Thus
one can hope to show that tatonnement converges only for specific classes of markets.

The question of how the markets might reach equilibria encompasses many issues. For example,
one might ask whether strategic behavior of the market participants is accounted for. This
has been considered elsewhere, and it is known that in the limit, as participants or agents
become infinitesimal, their strategic power becomes negligible [26]. There have also been some
preliminary attempts to quantify this effect in specific markets [9, 8]. One might also ask
whether changing supply in addition to prices is an option. This can really be seen as adding
production to the model, a thoroughly studied topic in general equilibrium theory. Ultimately,
one would like to obtain all-encompassing results, but in this paper we will focus solely on price
adjustment, and on tatonnement in particular.

We note that tatonnement is often considered to be an algorithmic process and not a market
process; for example, [16] states: “such a model of price adjustment ... describes nobody’s
actual behavior” (referring to the classic auctioneer explanation of tatonnement). The main
point of [16], however, is to give an alternate and more plausible basis for tatonnement. More
recently, Cole and Fleischer [12] gave another plausible basis for tatonnement by introducing the
Ongoing Market model, in which tatonnement and other price update processes can naturally

1 The (strict) gross substitutes property says that increasing the price of one good strictly increases the
demand for any other good.
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be viewed as in-market processes. The continued interest in the plausibility of tatonnement
is also reflected in some experiments by Hirota [19] which show the predictive accuracy of
tatonnement in a non-equilibrium trade setting [19].

Returning to the question of convergence, Cole and Fleischer [12] showed that a discrete ver-
sion of tatonnement converges quite quickly, for a class of markets satisfying the weak gross
substitutes property [12]. The current paper is motivated by the quest for other broad classes
of markets for which the same holds true. Of particular interest are markets that exhibit
complementarity, such as the Constant Elasticity of Substitution (CES) utilities and Leontief
utilities. This work will largely focus on Fisher markets, markets in which the participants or
agents can be partitioned into buyers and sellers2. (See Section 2 for formal definitions.)

For the WGS case, the existing results all rely on very strong properties of WGS markets that
are naturally helpful in showing that tatonnement converges. One example of such a property
is that for Fisher markets the extreme prices always move in, i.e., the bound on the ratio of the
current price to the equilibrium price is guaranteed to shrink [12]. Another example, again for
Fisher markets, is that the equilibrium can be reached by starting with very small prices and
monotonically increasing them. It is easy to show that such strong properties cease to hold in
the complementary regime. Therefore new techniques are needed to handle such markets.

In this paper we relate the tatonnement process to another simple and natural process: gradient
descent. Gradient descent is a family of algorithms used to minimize convex functions. It
works by starting at some point and moving in the direction of the negative of the gradient.
We consider the class of markets for which the tatonnement process is formally equivalent
to performing gradient descent on a convex function. In particular, we define the class of
Convex Potential Function (CPF) markets to be those markets for which there is a convex
potential function whose gradient3 is always equal to the negative of the excess demand. We
show that this class contains the class of Eisenberg-Gale (EG) markets introduced by Jain and
Vazirani [20].

The subclass of CPF markets for which the demand is differentiable can be characterized in
terms of the Jacobian4 of the demand function. These are exactly the markets for which the
Jacobian of the demand function is always symmetric and negative semi-definite.5 We call
this class the Convex Conservative Vector Field (CCVF) markets, since functions that have a
symmetric Jacobian are called conservative vector fields. The aforementioned CES and Leontief
utilities along with many other interesting markets (in the Fisher market model) are contained
in the intersection of EG markets and CCVF markets.

The equivalence with gradient descent opens up the entire tool box developed to analyze gradi-
ent descent and provides a principled approach to show convergence of the tatonnement process.
For a large class of CPF markets, we show that a continuous version of tatonnement converges
to an equilibrium. For the special cases of CES and Leontief utilities, we show stronger con-

2The term Fisher market was coined by the computer science community to refer to this class of markets,
which were the markets defined by Fisher and experimented with in his already mentioned computational work
in the 1890s.

3More generally, the potential function need not be differentiable and the demand need not be unique, in
which case the equivalence is between the subgradient of the potential function and the set of excess demand
vectors.

4 Recall that the Jacobian of a differentiable function from Rn to Rn is the matrix whose (i, j) entry is the
rate of change of the ith component of the function with respect to a change in the jth coordinate.

5 By contrast, if the off-diagonal entries of the Jacobian are all positive, then the market satisfies the weak
gross substitutes property.
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vergence results by proving certain structural properties of the corresponding convex functions
for these markets.

We now summarize the main contributions of the paper.

• The class of Eisenberg-Gale (EG) markets contains all Fisher markets for which the equi-
librium allocation is captured by a certain type of convex program called the Eisenberg-
Gale-type (EG-type) convex program. We show that EG markets are CPF markets by
explicitly constructing a convex potential function (Theorem 4). In fact, the potential
function is the objective function of the dual of the corresponding EG-type convex pro-
gram.

• We show that a family of continuous versions of the tatonnement process converges to
the equilibrium for a large class of CPF markets. This family is derived by considering
gradient descent with respect to any Bregman divergence and taking the limit as the
step size goes to zero (Theorem 22). In addition, the process based on KL-divergence (a
particular Bregman divergence) converges for an even larger class of CPF markets. This
mirrors the classic result of [1] which shows a similar result for gross substitutes markets.

• For Leontief utilities, we show a a fairly fast rate of convergence for a discrete version of
the process, namely, the number of time steps required to reduce the distance from the
equilibrium to an ε fraction of its initial value, as measured by the potential function,
is O(1/ε) (Theorem 25).6 This follows from a small modification of a general result
of [7] that shows convergence of gradient descent with Bregman divergences at this rate
whenever the convex function satisfies a certain sandwiching property.7 We show that
the potential function in this case satisfies this sandwiching property for an appropriate
choice of parameters with respect to the KL-divergence.

We also show that, in the worst case, tatonnement uses Ω(1/
√
ε) iterations with Leontief

utilities. Consequently, the linear bounds achieved for CES utilities (see below) cannot
extend to Leontief utilities.

• For CES utilities we show a linear convergence, that is, the number of time steps required
to reduce the distance from the equilibrium to an ε fraction of its initial value, again as
measured by the potential function, is O(log(1/ε)) (Theorem 35). This is obtained by
showing that the potential function in this case satisfies a stronger sandwiching property.
This stronger property is reminiscent of strong convexity but to the best of our knowledge,
this particular property has not been used before. We also note that when reasonably
near to equilibrium, the potential function has value Θ(

∑
j z

2
j pj), where zj is the excess

demand for good j and pj is its price (Lemmas 32 and 33).

In addition, we show that this analysis handles CES utilities that are substitutes, thereby
providing an alternate analysis for the results in [12].

Related work

The stability of the tatonnement process has been considered to be one of the most fundamental
issues in general equilibrium theory, and the textbook of Mas-Colell, Whinston and Green [24]
contains a good summary of the classic results.

6 The O() hides market dependent parameters.
7 Actually we observe that a slightly weaker version of the property suffices.
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More recently, discrete versions of tatonnement have been studied. Codenotti et al. [11] consider
a tatonnement-like process that required some coordination among different goods and showed
polynomial time convergence for WGS markets. Cole and Fleischer [12] were the first to
establish fast convergence for a truly distributed discrete version of tatonnement, once again
for a class of WGS markets. Cheung, Cole and Rastogi [10] extended this result slightly
beyond WGS markets, to CES utilities for a limited range of parameters.8 In comparison, our
results cover the entire range of parameters for CES utilities. Fleischer et al. [17] also consider
price dynamics that are similar to tatonnement but they also need coordination and further,
their results concern the average price throughout the process rather than convergence of the
sequence.

In a similar spirit to this paper, Birnbaum, Devanur and Xiao [4] considered another distributed
process called the Proportional Response (PR) dynamics for the linear utilities case, showed
its equivalence to gradient descent with KL-divergence for a different convex function and
obtained convergence rates for the process. The PR dynamics works in the space of offers
rather than the space of prices, which is why the corresponding convex function is different.
For linear utilities, the PR dynamics are more appropriate than tatonnement, especially since
the demand function is not continuous. [4] prove a certain convergence result (Theorem 1)
which we use in this paper to show convergence for the case of Leontief utilities.

EG markets were defined by Jain and Vazirani [20], after observing that many markets in the
Fisher model had similar convex programs that captured the equilibrium. The following is
a brief list of such markets: Eisenberg and Gale [15] gave a convex program for the linear
utilities case, generalized by Eisenberg [14] to the case of homothetic utilities, Jain et al. [21]
for homothetic utilities with production, and Kelly and Vazirani [23] for certain network-flow
markets. Jain and Vazirani [20] showed many algorithmic and structural properties of such
markets.

2 Preliminaries

A Walrasian market model has m divisible goods and n agents. Each agent i has a utility
function ui : Rm

+ → R that specifies the agent’s utility for a given bundle of goods. Each agent
i has an initial endowment of eij amount of good j. The supply of good j, wj :=

∑
i eij is the

total endowment of good j among all the agents. W.l.o.g. we choose the units of measurement
such that the supplies are all 1. Suppose we assign a price pj to each good j, then the demand of
agent i is a bundle of goods (xi1, xi2, . . . , xim) that maximizes her utility subject to the budget
constraint, namely that she does not spend more than the value of her endowment. It is the
solution to the following optimization problem:

maximize ui(xi1, xi2, . . . , xim)

s.t.
∑
j

pjxij ≤
∑
j

pjeij,

∀ j, xij ≥ 0.

If the utility function is strictly concave, then there is a unique utility maximizing bundle when
the prices are all positive, so we can talk of the demand of an agent. The market demand for

8CES utilities are parameterized by an exponent, ρ. When 0 < ρ ≤ 1 the market is WGS, and when ρ < 0
the goods are complementary. [10] analyzed the range −1 < ρ ≤ 0.
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a good j is xj =
∑

i xij, the total demand for that good. This is viewed as a function of the
price vector p = (p1, p2, . . . , pm). A price p is an equilibrium price if the market clears, that is

for all j, xj = wj = 1.

For notational convenience, we define the excess demand for good j as zj = xj − 1. The
equilibrium condition is that every excess demand be zero. It is known that equilibrium prices
exist if the utility functions are all strictly concave.

An alternate mode is the Fisher market model, where there is a fixed endogenous supply of
each good (which is again chosen to be 1 unit). The agents have a fixed endowment of money,
which defines their budget constraint. Let the endowment of agent i be ei units of money. The
budget constraint for agent i is

∑
j pjxij ≤ ei. The Fisher model is actually a special case of

the exchange model.

We now define some interesting subclasses of markets. A market satisfies the Weak Gross
Substitutes (WGS) property or equivalently a market is a WGS market if increasing the price
of any one good does not reduce the demand for any other good. If the demand function is
continuous and differentiable, then this property can be written as

∂xj
∂pj′

≥ 0, ∀ j 6= j′.

In terms of the Jacobian of the demand function, in a WGS market all the off-diagonal entries
are non-negative.

The Leontief utilities are of the form ui = minj{xij/bij}. One needs bij units of good j, for
each good, in order to get one unit of utility. Thus Leontief utilities capture the case of perfect
complements. It is easy to see that the demand for good j is

xij = βibij, where βi = ei/
∑
j

bijpj. (1)

Thus the maximum utility buyer i can obtain is

ui = ei/
∑
j

bijpj. (2)

Utilities with a Constant Elasticity of Substitution (CES) utilities, are of the form

ui = (ai1x
ρi
1 + ai2x

ρi
2 + · · ·+ aimx

ρi
m)1/ρi (3)

with ρi ≤ 1 and aij ≥ 0. If 0 < ρi ≤ 1 then the goods are substitutes; the goods are
complementary when ρi < 0. Leontief utilities are obtained in the limit, as ρ → −∞. The
utility function obtained in the limit, as ρ→ 0, is called the Cobb-Douglas utility.

An Eisenberg-Gale-type convex program is a convex program of the form

maximize
∑
i

ei log ui(xi1, xi2, . . . , xim)

s.t. ∀ j,
∑
i

xij ≤ 1, (supply constraints)

∀ i, j, xij ≥ 0.
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The base of the log does not matter for the maximization in the convex program. However,
later in the paper some calculations are simplified if we assume that the natural logarithm is
intended, and so we assume this henceforth.

We note that the above program satisfies Slater’s conditions for strong duality (see [5], p. 226,
for example) and consequently an optimal solution to the dual problem yields the same opti-
mizing value as the primal program.

An Eisenberg-Gale (EG) market is a Fisher market for which the optimal solution and the
(corresponding) Lagrange multipliers of the supply constraints in the above convex program
are respectively equilibrium demands and prices for the market. Conversely, equilibrium de-
mands and prices are respectively an optimal solution and Lagrange multipliers of the supply
constraints to the above convex program. Note that any strictly monotone transformation of
the utility function leaves the market unchanged, since the demand function is invariant under
such transformations. Thus one may need to apply suitable monotone transformations to the
utility functions in order to obtain an EG market. It is known that buyers with Leontief and
CES utilities in the Fisher model form EG markets.

We next present a generalized version of gradient descent and a convergence result for this
version. For any strictly convex differentiable function h, the Bregman divergence with kernel
h is defined as

dh(p, q) = h(p)− h(q)−∇h(q) · (p− q). (4)

For example, the square of the Euclidean distance is obtained as a Bregman divergence, ‖p−
q‖2 = dh(p, q), if h(p) = 1

2
‖p‖2. Another well-known example is the KL-divergence,

∑
j pj log pj,

which is obtained when
h(p) =

∑
j

pj log pj − pj. (5)

For a convex function φ, define the tangent hyperplane at a given point q, thought of as a
linear approximation to the function, as

`φ(p; q) = φ(q) +∇φ(q) · (p− q),

where ∇φ(q) denotes an arbitrary subgradient of φ at q. The generalized gradient descent
w.r.t. a Bregman divergence dh on the convex function φ is a sequence p0, p1, . . . , pt . . . , defined
inductively (for any given starting point p0) by

pt+1 = arg min
p
{`φ(p; pt) + dh(p, p

t)}. (6)

Note that if the subgradient is not unique, then this sequence need not be unique either.

For the quadratic kernel, h(p) = 1
2
‖p‖2, the above update rule reduces to the usual gradient

descent rule:
pt+1 = pt −∇φ(pt).

If the kernel is the weighted entropy, h(p) =
∑

j γj(pj log pj − pj) for some weights γj, the
update rule is

pt+1
j = ptj exp

(
−∇jφ(pt)

γj

)
, for all j. (7)

Birnbaum, Devanur and Xiao [4] showed the following convergence result for gradient descent
(6).
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Theorem 1 ([4]). Suppose that the convex function φ and the kernel h satisfy: for all p, q,

φ(p) ≤ `φ(p; q) + dh(p, q). (8)

Let p∗ be a minimizer of φ. Then for all t,

φ(pt)− φ(p∗) ≤ dh(p
∗, p0)

t
.

We need a slightly more general version of this theorem where we require (8) to hold only for
consecutive pairs pt, pt+1 for all t, instead of requiring it for all pairs p, q. It is easy to see that
their proof needs only this weaker condition, yielding the following theorem.

Theorem 2. Suppose that the sequence of prices pt obey the following condition:

φ(pt+1) ≤ `φ(pt; pt+1) + dh(p
t, pt+1). (9)

Let p∗ be a minimizer of φ. Then for all t,

φ(pt)− φ(p∗) ≤ dh(p
∗, p0)

t
.

The discrete version of the tatonnement process we consider will be equivalent to the gradient
descent (6) where h is the weighted entropy function, i.e., the update (7) for a suitable choice
of weights γj. The potential function φ will satisfy ∇jφ = −zj. The continuous versions we
consider are obtained by introducing a multiplier 1/ε to the divergence term dh and taking the
limit as ε→ 0. This will be presented in more detail in Section 4.

2.1 New Definitions

We now define the new classes of markets being introduced in this paper. A market is said
to be a Convex Potential Function (CPF) market if there is a convex potential function φ of
the prices such that for all prices p, ∇φ(p) = −z(p). By abuse of notation, we let ∇φ denote
the set of sub-gradients when φ is not differentiable9 and we let z(p) denote the set of excess
demand vectors when the demand is not unique. The subclass of CPF markets for which
the demand function is differentiable is called the Convex Conservative Vector Field (CCVF)
markets. The following characterization of CCVF markets follows essentially immediately from
Green’s Theorem [18, 25].

Lemma 3. A market with a differentiable demand function is CCVF if and only if the Jacobian
of its demand function is always a negative semi-definite symmetric matrix.

Proof. For a CCVF market, the potential function satisfies ∇φ(p) = −z(p). As x(p) and
hence z(p) are differentiable, it is now easy to check that the Jacobian is symmetric. Negative
semi-definiteness follows because the potential function φ associated with the CCVF market is
convex, and hence the Jacobian of −z(p) is positive semi-definite.

If the Jacobian of x(p) is symmetric, by Green’s Theorem [18, 25], there is a function f : Rn → R
such that ∇f = x. Let φ =

∑
j pj − f(p). Then ∇φ(p) = 1 − x(p) = −z(p). φ(p) is convex

as its Jacobian is positive semi-definite, and as ∇φ(p) = −z(p), it follows that the market is a
CPF market with a differentiable demand, i.e. it is a CCVF market.

Markets with Leontief utilities and those with CES utilities are both CCVF markets. By
contrast, markets with linear additive utilities are not CCVF.

9We assume throughout that φ is continuous.
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3 EG markets

In this section we prove the following theorem.

Theorem 4. All EG markets are CPF markets.

The proof is by an explicit construction of a convex potential function φ for which ∇φ(p) =
−z(p). φ is actually the dual of the corresponding EG-type convex program. Recall that the
EG-type convex program has variables xij for all i and j. We let X denote the set of all
these variables. Also recall that the optimum solution gives the equilibrium allocation and the
optimal Lagrangian multipliers of the supply constraints in the program are the equilibrium
prices. The KKT conditions characterize the optimal solution to a convex program and the
corresponding Lagrange multipliers. We now write the KKT conditions in terms of the La-
grangian function, which is obtained by multiplying the supply constraints by the prices and
adding them to the objective function.

L(X, p) :=
∑
i

ei log(ui)−
∑
i,j

pjxij + p · 1,

on the domain {X, p: ∀i, j, xij ≥ 0; ∀j, pj ≥ 0}. X∗ and p∗ are said to satisfy the KKT
conditions if

1. X∗ ∈ arg max
X≥0

L(X, p∗) and

2. p∗ ∈ arg min
p≥0

L(X∗, p), which is equivalent to

for all j, p∗j · (1−
∑
i

x∗ij) = 0.

(10)

We define the potential function to be the dual objective of the EG-type convex program.

φ(p) := max
X≥0

L(X, p).

φ is convex by construction. Theorem 4 follows by showing that the gradient of φ is equal to
the negative of the excess demand (Lemma 6). However, the key property of EG markets is
captured by the following lemma.

Lemma 5. For an EG market, for all p, the demand set x(p) is exactly equal to arg maxX≥0 L(X, p),
whenever they are both finite.

Proof. Part 1, x(p) ⊆ arg maxX≥0 L(X, p): We first argue that if x(p) is the demand at price p
then it must also maximize L(X, p). In fact, we first argue it for the special case when the price
and the demand form an equilibrium, denoted by p∗ and x(p∗). Since this is an EG market, by
definition of an EG market, the pair (p∗, x(p∗)) must correspond to an optimal solution of the
corresponding convex program. They must therefore satisfy the corresponding KKT conditions
(10), which imply that x(p∗) ∈ arg maxX≥0 L(X, p∗) as desired. This immediately shows the
same for any price p and every demand x(p), since the pair forms an equilibrium when the
supply is equal to x(p). Thus the above holds for all prices and for all demand vectors.

Part 2, arg maxX≥0 L(X, p) ⊆ x(p): The argument is similar to Part 1. Consider any p and
an X that maximize L(X, p). Consider the market instance with supply equal to

∑
i xij for
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good j. Note that the KKT conditions (10) are then satisfied with p and X for this instance
and therefore they form an optimal solution to the corresponding EG-type convex program.
Since any optimal solution to the convex program must also be an equilibrium, it follows that
X must be a demand at price p as desired.

In fact it is easy to see that the converse of Lemma 5 is also true, that if for all p the demand
set is equal to arg maxX≥0 L(X, p) then the market is an EG market. The KKT conditions
(10) are then exactly the same as the equilibrium conditions.

Lemma 6. ∇φ(p) = 1− x(p) = −z(p).

Proof. It is well known that if a convex function is defined as the maximum of many linear func-
tions then the gradient is given by the gradient of the linear function providing this maximum.
φ is indeed defined in this way and by Lemma 5 the arg max’es are given by the demands, or
in other words the maximizing linear function L(X, p) is the one defined using the demands.
Thus ∇φ(p) = 1− x(p) = −z(p).

The following convenient form for φ(p) was shown in [13], and will be used in the analyses of
the markets with Leontief and CES utilities.

Lemma 7. For EG markets with linear, CES or Leontief utilities (and others) the dual objective
can be written as

φ(p) =
∑
j

pj −
∑
i

ei log(νi) + a constant independent of p

where νi is the ratio of ei to the optimal utility of i at price p, i.e. the minimum cost for
obtaining one unit of utility.

Proof. Recall that

φ(p) := max
X≥0

L(X, p) = max
X≥0

{∑
j

pj +
∑
i

ei log ui(xi)−
∑
i,j

pjxij

}
,

where xi denotes the demands of buyer i. From Lemma 5, for each i, an xij in the arg max above
is buyer i’s demand for good j and therefore

∑
j pjxij must be equal to ei. Hence

∑
i,j pjxij =∑

i ei is a constant. We also rewrite
∑

i ei log ui(xi) =
∑

i−ei log[ei/ui(xi)] +
∑

i ei log ei; then
setting νi = ei/ui(xi) gives φ in the desired form.

4 Convergence of Continuous Time Tatonnement

A continuous version of tatonnement is a trajectory in the price space which, to be notationally
consistent with the discrete version, is denoted by pt for all t ∈ R+. Classically, the trajectory
is defined by specifying a differential equation dp

dt
= F (t, p(t)) for all t, which we also call the

“update rule”. We define a family of update rules derived from gradient descent. As before,

10



let h be a strictly convex differentiable function. The natural way to specify the differential
equation is

p(ε) := arg min
p

{
∇φ(pt) · (p− pt) + 1

ε
dh(p; p

t)
}
.

dpj
dt

:= lim
ε→0

pj(ε)− ptj
ε

.

However, there are three issues we need to address with this specification. The first issue is
that in the markets we consider, the demand function of an agent can be multi-valued at a
price vector10, and hence ∇φ(pt) can also be a set of multiple elements, namely the set of

subgradients of φ at pt. Since ∇φ(pt) can be multi-valued, p(ε) and hence
dpj
dt

can be too. To
resolve this, we need the notion of differential inclusion, which is a generalization of differential
equations. In brief, a differential inclusion is a system which allows dp

dt
to take any value from

a set. We specify our class of differential inclusions in the domain Rn
+, as follows:

pt(~v, ε) := arg min
p

{
~v · (p− pt) + 1

ε
dh(p; p

t)
}

(11)

F (pt) :=

{
lim
ε→0

pt(~v, ε)− pt

ε

∣∣∣∣ ~v ∈ ∇φ(pt)

}
(12)

dp
dt

:∈ F
(
pt
)
. (13)

The existence of a solution to (13) requires F to be non-empty, convex, compact and upper
semi-continuous. (We will give precise definitions and state the relevant results in Section
4.1; we refer the readers to Smirnov’s text [28] for more detail on this topic.) In fact, going
to set-valued maps also helps us handle some discontinuities, since upper semi-continuity for
set-valued maps is in a sense a weaker requirement than continuity for functions.

The second issue is related to the requirement that F be non-empty and compact. Lemma 11
shows that if ∇φ is finite and bounded, then limε→0

p(~v,ε)−p
ε

exists and is bounded. The main
difficulty in showing ∇φ is bounded occurs when one of the prices tends to zero. This is also
related to the next issue. Prices tending to ∞ create a similar difficulty.

The third issue is that we do not allow prices to be negative. This imposes a boundary on the
price domain. Classically, existence theorems for differential inclusions/equations guarantee
the existence of a solution up to the boundary, i.e. a solution may only be guaranteed for a
finite time span. Yet we want global existence, i.e. a solution for t ∈ [0,+∞). To help resolve
this, we will extend F (p) to the negative price domain so as to remove the boundary while
ensuring that any solution remains in Rn

+.

As we mentioned, the second and the third issues are connected to the main impediment to
proving the convergence of tatonnement, which is the possible presence of zero-valued prices on

the tatonnement path. If we are using a rule such as the multiplicative update rule,
dptj
dt

= ztjp
t
j,

the price pj will not change if equal to zero, precluding convergence to an equilibrium with
p∗j 6= 0. One way to avoid this difficulty is to limit the update rule so as to ensure that if a price
starts out positive, it will remain positive. Note that this does not preclude a price converging
to zero as t → ∞, if that is its value at equilibrium. In this case, the price domain boundary
is never reached.

10An example: if a buyer has utility function u(x1, x2) = x1 + 3x2 and budget 40, then at prices (p1, p2) =
(2, 6), the buyer optimizes her utility by purchasing (x1, x2) = (20− 3y, y), for any y ∈ [0, 20/3].
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By contrast, if the price update rule is additive, e.g.
dptj
dt

= ztj, a price might take on a zero value
despite being positive initially. However, this will still be viable so long as the tatonnement
avoids price vectors p with pj = 0 and zj = {∞}, which we call unbounded demand price
vectors. As we shall see, for linear, CES and Leontief Fisher markets, if they start from a non-
unbounded (i.e. from a bounded) demand price vector, they will reach only bounded demand
price vectors, regardless of which tatonnement rule is used. In this case, we do need to ensure
that the price domain boundary is not crossed.

A solution to the differential inclusion (13) could seek to leave the domain Rn
+ if Fj(p

t) contains
a negative value when ptj = 0, as it may.11 But, when ptj = 0, Fj(p

t) can always be made to
contain items with zj ≥ 0, providing the hope of a solution that remains in Rn

+. To this end,
we observe that at a price vector p with pk = 0, as good k is free, an agent may purchase an
infinite amount of good k even if it does not increase her utility. We will use this freedom of
being able to purchase additional quantities of zero-priced goods to modify the definition of F
so that it is non-empty, compact and includes non-negative excess demands for the goods with
zero prices. In addition, we will extend the domain of F to all of Rn in such a way that the
only solutions are those with prices that stay in the domain Rn

+.

4.1 Differential Inclusion and Semi-Continuity of Sets

Definition 1. A differential inclusion is an equation of the form dp
dt
∈ F (t, p(t)), where F (t, p)

is a non-empty set for all t and p. This generalizes standard differential equations of the form
dp
dt

= f(t, p(t)), where f(t, p) is single-valued.

In our setting, F is a function of p alone.

Let P(A) denote the power set of the set A. Let Ω(a) denote an open neighborhood of a point
a.

Definition 2. A set-valued map F : Z → P(Y ) is upper semi-continuous at z0 ∈ Z if for
any open set M ∈ P(Y ) which contains F (z0), there exists Ω(z0) such that for all z ∈ Ω(z0),
F (z) ⊂M . A set-valued map F is upper semi-continuous if it is so at every z0 ∈ Z.

A set-valued map F : Z → P(Y ) is lower semi-continuous at z0 ∈ Z if for any y0 ∈ F (z0)
and any neighborhood Ω(y0), there exists a neighborhood Ω(z0) such that for all z ∈ Ω(z0),
F (z) ∩ Ω(y0) 6= ∅. A set-valued map F is lower semi-continuous if it is so at every point
z0 ∈ Z.

A set-valued map F : Z → P(Y ) is continuous at z0 ∈ Z if it is both upper and lower semi-
continuous at z0. A set-valued map F is continuous if it is so at every z0 ∈ Z.

For any sets A1, A2, · · · , Ak, let their sumset be
{∑k

i=1 ai | ai ∈ Ai
}

. We state the following

basic facts, which will be useful later.

Lemma 8. (a) If A1, A2, · · · , Ak are convex and compact, then their sumset is convex and
compact.
(b) If A1, A2, · · · , Ak : Z → P(Y ) are upper semi-continuous at z ∈ Z, then their sumset is
upper semi-continuous at z.

11An example: in a Leontief Fisher market, it is possible that at an equilibrium some pj = 0 with a negative
excess demand for good j.
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(c) If F1, F2 : Z → P(Y ) are two set-valued maps which are upper semi-continuous at z ∈ Z,
the map F∩ : Z → P(Y ), defined as F∩(z) = F1(z) ∩ F2(z), is also upper semi-continuous at
z ∈ Z.

The following Maximum Theorem is well-known in mathematical economics. It provides results
on set-valued map semi-continuity, which are among the required conditions for the existence
of a solution to our differential inclusions.

Theorem 9 (Maximum Theorem, [3, p. 116]). Let u : P ×X → R be a continuous function,
and C : P → P(X) be a compact set-valued map. Let C∗(p) = arg maxx∈C(p) u(p, x) and
u∗(p) = maxx∈C(p) u(p, x). If C is continuous at some p, then u∗ is continuous at p and C∗ is
non-empty, compact and upper semi-continuous at p.

Let B(p0, ρ) denote the closed ball around p0 with radius ρ.

Theorem 10 ([28, p. 96–103]). Let dp
dt
∈ F (p(t)) be a differential inclusion, where F : P →

P(R) is upper semi-continous at every p′ ∈ B(p0, ρ) for some ρ > 0. Suppose that F (p′) is
convex and compact for every p′ ∈ B(p0, ρ), and there exists a finite κ such that sup~z∈F (p′) ||z|| ≤
κ for every p′ ∈ B(p0, ρ). Then for 0 ≤ t ≤ ρ/κ, there exists an absolutely continuous solution
p(t) to the differential inclusion with p(0) = p0.

4.2 Existence of a Solution for (13)

We will limit the study to the special case where h is a separable function, i.e., it is of the form∑
j h(pj), for a 1-dimensional function h : R → R. Now the minimization in (11) separates

out into independent minimization problems for each good j. We will use dh(pj, qj) to denote
h(pj)− h(qj)− h′(qj)(pj − qj), the one dimensional version of Bregman divergence. Note that
as h is convex,

dh(pj, qj) ≥ 0, (14)

and, by the strict convexity of h,

if pj 6= qj, dh(pj, qj) > 0. (15)

As we will see shortly in Lemma 11,
dpj
dt

= −∇jφ(pt)/h′′(ptj) if ∇jφ(pt) and h′′(ptj) are finite.
In order to apply Theorem 10 on a ball B around a price vector p, we need this term to be
bounded on B. And, in order to make progress, we will also need that h′′(ptj) 6=∞. (Otherwise,

we may “get stuck” at a non-equilibrium price since
dpj
dt

would be 0.) These lead us to make
assumptions on the allowable h and on the behavior of the tatonnement, namely that it is
controllable, as defined in the subsequent subsections.

4.2.1 Allowable h

We will also need h to be twice differentiable. It may be that h′(0) = −∞, but by the
convexity of h, this is the only argument for which h′ might be infinite. And if h′(0) = −∞
then h′′(0) =∞.

Lemma 11. For all j, if ∇jφ(pt) and h′′(ptj) are finite, then

lim
ε→0

p(ε)− pt

ε
=
−∇jφ(pt)

h′′(ptj)
.
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Proof. The minimizer in (11) must have a zero derivative:

∇jφ(pt) + 1
ε

d(dh(pj ,p
t
j))

dpj
= 0. (16)

Since
d(dh(pj ,p

t
j))

dpj
= h′(pj)− h′(ptj), substituting in (16) and solving for pj gives

pj(ε) = h′−1
(
h′(ptj)− ε∇jφ(pt)

)
.

Note that since h is strictly convex, h′ is strictly increasing and hence is invertible. For
notational convenience, let g(y) = h′−1(y). Then h′(g(y)) = y, h′′(g(y)) · g′(y) = 1, therefore
g′(pj) = 1

h′′(g(pj))
. Also note that g(h′(y)) = y. Using these we obtain

g′(h′(pj)) =
1

h′′(pj)
. (17)

Strictly speaking, the above argument is not valid for pj = 0 if h′(0) = −∞. But in this case,
we can check directly that (17) is still correct, for then g′(−∞) = 0 and h′′(0) =∞. Now,

lim
ε→0

pj(ε)− ptj
ε

= lim
ε→0

g(h′(ptj)− ε∇jφ(pt))− g(h′(ptj))

ε
=− g′(h′(ptj)) · ∇jφ(pt)

=−∇jφ(pt)/h′′(ptj) (by (17)).

We make the following additional assumptions on h.

Definition 3. h(p) is allowable if h is twice differentiable and strictly convex (hence h′′(p) > 0),
h′′(p) is finite if p > 0, 1/h′′ is continuous, and either

A1. The market is a Fisher market, or

A2.
∫∞
p
h′′(q)dq =∞ for all p > 0,

and in addition either

B1. h′′(p) is finite for all p, or

B2.
∫ p

0
h′′(q)dq =∞ for all p > 0; in this case, we say h is controlling.

Henceforth, we assume that h is allowable.

We note that two of the most commonly used Bregman divergences satisfy the above assump-
tions. The first one uses h(pj) = 1

2
p2
j ; thus h′′(pj) = 1; hence

dpj
dt

= −∇jφ(p). Also, for
p > 0,

∫∞
p
h′′(q)dq = ∞, so conditions A2 and B1 are satisfied. The second one, which is

the KL-divergence, uses h(pj) = pj log pj − pj, h
′(pj) = log pj and h′′(pj) = 1/pj. Hence

dpj
dt

= −pj∇jφ(p). Also,
∫ p

0
dq
q

= log p− log 0 =∞ and for p > 0,
∫∞
p

dq
q

= log∞− log p =∞,
so conditions A2 and B2 are satisfied.

The reason for the condition B2 in Definition 3 is to ensure that if the tatonnement starts at a
point with finite h′′ it will never reach a point with infinite h′′. When h′′(pj) =∞, by Lemma

11,
dptj
dt

= 0 no matter what the value of ∇φ(pt) is, i.e. pj remains constant hereafter. This is
an unreasonable tatonnement rule.
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Lemma 12. Suppose that h′′(p0
j) is finite. If h is allowable then h′′(ptj) is finite for all t ≥ 0.

Proof. If condition B1 of Definition 3 holds then the result is immediate. So suppose that
condition B2 holds. By assumption, h′′(p) =∞ only if p = 0. As zj ≥ −1 always, ∇jφ(p) ≤ 1

always. Consequently, by Lemma 11,
dptj
dt
≥ −1/h′′(ptj). Suppose that p0

j > 0. Then let t̄ > 0
be the earliest time at which pj could be zero. We use condition B2 to justify the last equality
below:

t̄ ≥ −
∫ p0j

0

dptj
dptj/dt

≥
∫ p0j

0

h′′(p)dp =∞.

Thus only at time t =∞ can pj be 0, and hence only at time t =∞ can h′′(pj) be ∞.

The reason for the condition A2 in Definition 3 is to ensure that if the tatonnement starts at
a point with finite value, no price will blow up to +∞ in finite time.

Lemma 13. Suppose that p0 is finite. If h is allowable then pt is finite for all t ≥ 0.

Proof. If the market is a Fisher market then prices remain bounded by the maximum of their
initial value and the amount of money in the market. So suppose the market is not a Fisher
market; then, by assumption,

∫∞
p
h′′(q)dq = ∞ for all p > 0. Let pmax = max pj. Define

M t =
∑

j p
t
j ≤ pmax · n. Then zmax ≤ n. So d

dt
ptmax ≤ n/h′′(ptmax).

Let t̄ be the earliest time at which ptmax could be infinite. Let tmin = arg mint<t̄ p
t
max. If

ptmin
max > 0, then by Condition A2,

t̄ ≥ 1

n

∫ ∞
ptmin
max

h′′(p)dp =∞,

and if ptmin
max = 0, then the same bound holds by Conditions A2 and B2.

The following example shows that a price may blow up to +∞ in finite time if condition A2 is
violated.

Example 1. Consider an Arrow-Debreu market with one agent and two goods. The agent has
one unit of each good as initial endowment. The agent wants only good 1. So the equilibrium
price vector is (p∗1, p

∗
2) = (p, 0) for any p > 0. At any (p1, p2), the excess demand for good 1 is

(p1 + p2)/p1 − 1 = p2/p1 and the excess demand for good 2 is −1.

Suppose the tatonnement starts at (p1, p2) = (2, 1) and h satisfies h′′(p) = 1/p for p ≤ 1 and

h′′(p) = 1/p3 for p ≥ 1. Then
dpt2
dt

= −pt2 and
dpt1
dt

= (pt1)2pt2. The solution is p1(t) = 2
2e−t−1

and
p2(t) = e−t. Note that p1(t) blows up to +∞ at t = log 2.

4.2.2 Local Convergence of (13)

Next we show that there is a solution to (13) for some time interval [0, t̄], under additional
assumptions. Later, we will show how to extend the solution to arbitrarily large t and remove
the assumptions.

In order to apply Theorem 10 to (13), we need its right hand side (−∇jφ(p)/h′′(pj) when
∇jφ(p) is finite) to be convex, compact and upper semi-continuous in any ball B(p0, ρ) we
consider. The difficulty we face is that when some prices are zero, the corresponding demands
can be infinite, and then compactness will not hold for such price vectors.
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To restore compactness we modify F as follows. Let b > 0. We define Fb(p
t) = F (pt) ∩ {v | −

b1 ≤ v ≤ b1}. We then define the following differential inclusion on Rn
+:

dp
dt

= Fb(p
t). (18)

This introduces the possibility that Fb(p) is empty for some p which makes the differential inclu-
sion trivially unsatisfiable. We assume for now that Fb(p) is non empty in a small neighborhood
around p, and remove this assumption later.

Definition 4. We say that F is bounded near p if there exists some neighborhood Ω(p) of p
and a finite positive number b such that for all q ∈ Ω(p)∩Rn

+, Fb(q) is non-empty and h′′(q) is
finite.12

Lemma 14. Suppose that h is allowable and that F is bounded near p. Then Fb(p) is convex-
valued, compact-valued and upper semi-continuous at p.

Proof. Let Ω(p) be the neighborhood of p given by the assumption that F is bounded near p
(Definition 4), and let B ⊂ Rn

+ be a compact neighborhood of p such that B ⊂ Ω(p) and every
positive price in p is positive in B. By our choice of B h′′(qj) is positive and finite for all q ∈ B
and for all j, so there exists a positive number h̄ such that h′′(qj) ≤ h̄ for all q ∈ B and for
all j. Then on B, b ≥ |zj(q)/h′′(qj)| ≥ |zj(q)/h̄|, i.e. xj(q) = zj(q) + 1 ≤ bh̄ + 1. Let b̄ denote
bh̄+ 1.

We apply Theorem 9 with P = Ω(p), X = [0, b̄]n. u is the utility function of an agent, which
we assume to be continuous and concave. For any q ∈ Ω(p), C(q) is the set of all affordable
bundles in X of the agent at price q. It is well known that C(q) is continuous, and since its
range is confined to the compact set X, C(q) is compact-valued. By Theorem 9, C∗(p), the set
of all affordable optimal bundles of the agent at price p contained in X, is compact and upper
semi-continuous at p. By our assumption that Fb(p) is non-empty, C∗(p) is also a subset of
all affordable optimal bundles of the agent at price p globally (i.e. without confinement to X).
Also, since u is concave, C∗(p) is convex.

By the definition of C∗(p) and φ, −∇φ(p) is the sumset of C∗(p) over all agents and the set
{−1}. As C∗(p) is non-empty for each agent, −∇φ(p) is also non-empty. By Lemma 8(a)
and (b), −∇φ(p) is convex and compact, and it is upper semi-continuous at any p. (Fb)j is
−∇jφ(p) divided by h′′(pj), while 1/h′′ is continuous and positive at any p ∈ P . So the division
by h′′ will not affect convexity, compactness and upper semi-continuity.

The following lemma is immediate.

Lemma 15. Any solution to system (18) over time interval [0, t̄] starting at a price vector p0

such that F is bounded near p0 is also a solution to system (13).

As discussed previously, we want to extend the domain for the differential inclusion to Rn.
We will work with Fb rather than F , however. To help specify the new differential inclusion
system, for any price vector p, we introduce the following notation: letting p = (pj), we define
p+
j = max{0, pj} and p+ = (p+

j ). The new system is given by

dpt

dt
∈ Gb(p

t), (19)

with Gb defined as follows:

12We remark that this condition is satisfied automatically when p > ~0.
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1. For p ∈ Rn
+, Gb(p) = Fb(p).

2. For p /∈ Rn
+, let J(p) = {j | pj < 0}, then set Gb(p) = Gb(p

+) ∩ {z | ∀j ∈ J(p), zj ≥ 0}.

Lemma 16. Let p ∈ Rn. Suppose that h is allowable and F is bounded near p+. Then Gb(p)
is convex, compact and upper semi-continuous at p.

Proof. As Gb ≡ Fb in Rn
+, by Lemma 14, the result is immediate for p > ~0.

For the other p’s, note that Gb(p) = Gb(p
+) ∩ {z | ∀j ∈ J(p), zj ≥ 0} is the intersection of two

sets, the first being convex and compact and the second being convex and closed. So Gb(p) is
convex and compact. What remains is to check upper semi-continuity at these p’s. There are
two cases: p ∈ Rn

+ but it has some zero prices, or p 6∈ Rn
+.

Case 1: p ∈ Rn
+ but it has some zero prices. For any open set M which contains Gb(p) = Fb(p),

by Lemma 14, we can take a sufficiently small neighborhood B(p, δ) of p such that for all
q ∈ B(p, δ) ∩ Rn

+, Fb(q) ⊂ M . Then, for any q ∈ B(p, δ) \ Rn
+, note that q+ ∈ B(p, δ) since

||q+, p|| ≤ ||q, p||, and, of course, q+ ∈ Rn
+. Thus Fb(q

+) ⊂M ; and Gb(q) ⊆ Gb(q
+) = Fb(q

+) ⊂
M . So Gb is upper semi-continuous at p.

Case 2: p 6∈ Rn
+. For any q ∈ Rn, let V (q) denote the set {v | ∀j ∈ J(q), vj ≥ 0}. For

any q 6∈ Rn
+, Gb(q) = Gb(q

+) ∩ V (q). By Case 1 and our conditions on p, Gb(p
+) is upper

semi-continuous at p+. p+ is continuous in p. Hence Gb(p
+) is upper semi-continuous at p.

Next, we observe that there exists a small δ > 0 such that for all q ∈ B(p, δ), if pj 6= 0, then
sign(qj) = sign(pj) and consequently V (q) ⊆ V (p); it immediately follows that V (p) is upper
semi-continuous at p. Now, by Lemma 8(c), Gb(p) is upper semi-continuous at p.

Lemma 17. Any solution to system (19) over time interval [0, t̄] starting at price vector p0 is
also a solution of (13) if F is bounded near p0.

Proof. We will show that any solution of (19) is a solution of (18). The result then follows
from Lemma 15.

In the definition of Gb, at a price vector p with pj < 0, Gb,j(p) is always positive or zero, so it
is impossible for any tatonnement trajectory satisfying (19) to enter the region pj < 0. Hence,
all prices remain positive or zero, i.e. pt ∈ Rn

+ for all t. In Rn
+, (18) is identical to (19), so we

are done.

Lemma 18. Suppose that h is allowable, and F is bounded near p0. Then there is a time t̄ > 0
such that (13) has an absolutely continuous solution for time interval [0, t̄] with p(0) = p0.

Proof. By Lemma 16, Gb(p) is convex, compact and upper semi-continuous at p in the interior
of Ω(p0). Now, by Theorem 10, (19) has an absolutely continuous solution with p(0) = p0 for
some time interval [0, t̄], where t̄ > 0. And by Lemma 17, this is also a solution to (13).

Lemma 18 gives us a local solution (i.e., upto some time t̄ > 0) under the assumption that F
is bounded near p0. We need to remove this assumption and we need a solution for arbitrarily
large t̄. For these we need the notion of controllability.

17



4.2.3 Controllability

Given a starting price vector p0 and any finite time t̄ ≥ 0, we need to ensure that there is a
sufficiently large b = b(p0, t̄) guaranteeing that the tatonnement remains in the domain with
Fb 6= φ during the time interval [0, t̄] (so that the differential inclusion is defined for all points
encountered during the tatonnement). This will be ensured by the assumption of controllability.
To understand this, we first need to characterize the set of optimal bundles of an agent at price
vector p. There are two possibilities:

1. Every bundle includes at least one good having infinite demand. Then we say that p is an
unbounded demand price vector. Note that this good must then have price zero, and by
Lemma 12 this can occur only if h′′(0) is finite. Via the controllability requirement, we
will ensure that in this case the tatonnement trajectory does not reach any unbounded
demand price vector. (If h′′(0) is infinite then this is already ensured by Lemma 12).

2. All the demands in at least one bundle are finite. Then we say that p is a bounded demand
price vector. Note that if p includes a zero price, pj = 0 say, then an optimal bundle can
have an infinite demand for good j; but p is a bounded demand price vector if for all
such j, the demand for good j could be finite.

For instance, in a Leontief Fisher market, an equilibrium price vector may include a zero
price but it will be a bounded demand price vector; clearly, we want the tatonnement
trajectory to be able to converge to it. Furthermore, in this case, as the tatonnement
proceeds, we want the agent’s sequence of optimal bundles to always have bounded
demands, and further these bounds should apply throughout the tatonnement process.

We are now ready to define controllability.

Definition 5. Let φ be a potential function and T a continuous tatonnement rule. The pair
(φ, T ) is controlled, if for any bounded demand starting price vector p0 and any finite time
t̄ ≥ 0, there are finite bounds b(p0, t̄) and c(p0, t̄) such that for any tatonnement trajectory
induced by (18), there exists a neighborhood Ω of the trajectory in which for any p ∈ Ω and for
any j,

1. |−∇jφ(p)/h′′(pj)| ≤ b(p0, t̄) and p ≤ c(p0, t̄) for all 0 ≤ t ≤ t̄;

2. limt↗t̄ b(p
0, t) and limt↗t̄ c(p

0, t) are finite 13,

i.e. both the prices and the rate of change of the prices remain bounded throughout the taton-
nement process up to and including time t̄.

We will show that if h is controlling (recall Definition 3) then (φ, T ) is controlled. We will also
show that controllability is obeyed by Fisher markets with CES, Leontief and linear utilities
along with any tatonnement rule (i.e. even if h is not controlling). But it is not clear if the
latter result applies to all markets or even to all EG markets. One example for which we
have not resolved this question are Fisher markets with nested CES utilities (see [22] for a
definition); these are EG markets.

13Without loss of generality, we may assume that b(p0, t), c(p0, t) are increasing functions of t, so the limits
exist.

18



Lemma 19. If h is controlling then (φ, T ) is controlled.

Proof. As h is controlling, in finite time t̄, the trajectory is both upper-bounded and bounded
away from zero14, say 0 < p(t̄) ≤ ptj ≤ p̄(t̄) < +∞, for all j and for all 0 ≤ t ≤ t̄. Then there
exists a neighborhood Ω of the trajectory up to time t̄ such that all prices in Ω are between
p(t̄)/2 and p̄(t̄) + 1. Set c(p0, t̄) = p̄(t̄) + 1.

For all p ∈ Ω, 0 < p(t̄)/2 ≤ pj ≤ p̄(t̄) + 1 < +∞, so h′′(pj) is bounded away from 0.

As φ is convex, ∇φ is finite except possibly at the boundary, i.e. when one or more prices
is zero. When all prices are between p(t̄)/2 and p̄(t̄) + 1, ∇φ is bounded. Combined with
the last paragraph, |−∇φ(p)/h′′(pj)| is bounded on Ω. Set b(p0, t̄) to be an upper bound of
|−∇φ(p)/h′′(pj)| on Ω.

The proof of the next lemma is in the appendix.

Lemma 20. Fisher markets with CES, Leontief and linear utilities along with any tatonnement
rule are all controlled.

Now we are ready to complete the proof of the existence of a solution to the differential inclusion
system (13).

Lemma 21. Suppose that h′′(p0) is finite, h is allowable and (φ, T ) is controlled. Then for any
bounded demand starting price vector p0 there exists a solution pt to (13) for time range [0,∞),
with pt an absolutely continuous function for any bounded time span, and pt(t = 0) = p0.

Proof. We will prove the result for differential inclusion (19) and then the result follows from
Lemma 17.

The controllability assumption allows us to pick b = b(p0, t) for some t > 0 and have F be
bounded near p. We can therefore apply Lemma 18 to get a solution for some time interval
[0, t′] with t′ > 0. By Lemma 17, this is also a solution for (13). Once again, due to the
assumption of controllability, the solution path cannot end at a point with ∇jφ/h

′′ = −∞ for
any j. By the continuity of ∇jφ/h

′′, there is then a ball around pt
′
in which ∇jφ/h

′′ is bounded.
So we can repeatedly extend the path by additional applications of Lemma 18. Suppose that
this yields an open path ending at but possibly not reaching some time t̄. We first argue that
it can be extended to t̄ and then can be extended yet further.

By the controllability assumption, for any t ∈ [0, t̄), all prices in pt are bounded by limt↗t̄ c(p
0, t),

which is finite; then the sequence {pt}0≤t<t̄ has a cluster point p̃. Then by the controllability

assumption again, all
dptj
dt

are bounded by limt↗t̄ b(p
0, t), which is again finite. Hence, {pt}0≤t<t̄

has at most one cluster point. So p̃ is the unique cluster point of the sequence {pt}0≤t<t̄. Setting
pt(t = t̄) = p̃ extends the solution to t = t̄.

Again by the controllability assumption, there exists a neighborhood of p̃ such that all q in the
neighborhood has finite ∇φ(q)/h′′(q). By Lemma 18, we can extend the path P beyond time
t̄ by at least a positive time period.

14These follow easily from the proofs of Lemma 12 and Lemma 13.
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4.3 Differential inclusion (13) converges

In Arrow-Debreu markets, it is well-known that if p∗ is an equilibrium price vector, then cp∗,
where c is any positive constant, is also an equilibrium price vector. It is standard to consider
normalized prices, price vectors p̂ such that

∑
p̂ = 1. Note that for any price vector p with at

least one positive price, the corresponding normalized price vector p̂ is given by p̂j = pj/ (
∑

` p`).

We are ready to state the main result of this section.

Theorem 22. Let φ : Rn
+ → R and pt ∈ Rn

+ be defined by (11)–(13). Suppose that φ is convex
and h is allowable. Further suppose that φ together with the tatonnement rule given by (13) is
controlled. Then, for any starting bounded demand price vector p0 such that for all j, h′′(p0

j)
is finite, if the market is a Fisher market, then

lim
t→∞

pt = p∗

where p∗ is a minimizer of φ.

In Arrow-Debreu markets, if in addition dh is the KL-divergence then

lim
t→∞

p̂t = p̂∗

where p̂∗ is a normalized minimizer of φ.

For any CPF market, by definition, there exists a φ such that −∇φ(p) = z(p). Substituting z
for −∇φ in (11)–(13) gives a tatonnement update rule for which, by Theorem 22, the potential
converges to its equilibrium value.

Lemma 23. For any Arrow-Debreu market in which φ exists, for any positive real number c,
φ(p) = φ(cp).

Proof. By Walras law, p·∇φ(p) = 0. By the definition of φ, ∇φ(p) = ∇φ(cp). By the definition
of subgradient,

φ(p) ≥ φ(cp) + (p− cp) · ∇φ(cp) = φ(cp) + (1− c)p · ∇φ(p) = φ(cp)

and
φ(cp) ≥ φ(p) + (cp− p) · ∇φ(p) = φ(p) + (c− 1)p · ∇φ(p) = φ(p).

These two inequalities imply that φ(p) = φ(cp).

Lemma 24. Suppose that h is allowable and h′′(p0
j) is finite for all j. Let p∗ be any minimizer

of φ. Then dh(p
∗
j , p

t
j) is finite for all t and j.

Suppose that φ is the potential function for a Fisher market. Then
∑

j
d
dt
dh(p

∗
j ; p

t
j) < 0, unless

pt is a minimizer of φ.

Suppose that φ is the potential function for an Arrow-Debreu market. Then let p̂∗ be any
normalized minimizer of φ, and suppose that dh is the KL-divergence. Then p̂t, the normalized
price vector corresponding to pt, satisfies

∑
j
d
dt
dh(p̂

∗
j , p̂

t
j) < 0, unless pt is a minimizer of φ.

Proof. By Lemma 12, h′′(ptj) is finite for all t and j, and hence so is h′(ptj). As h is always
finite, it follows that dh(p

∗
j , p

t
j) = h(p∗j)− h(ptj)− h′(ptj)(p∗j − ptj) is finite.
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To avoid clutter we write pj for ptj. We first prove the result for Fisher markets. Recall that
dh(p

∗
j , pj) = h(p∗j)− h(pj)− h′(pj)(p∗j − pj). So,

d
dt
dh(p

∗
j , pj) = −dh(pj)

dt
− dh′(pj)

dt
(p∗j − pj) + h′(pj)

dpj
dt

= −h′′(pj) · dpjdt · (p
∗
j − pj) (since

dh(pj)

dt
= h′(pj)

dpj
dt

)

= ∇jφ(p) · (p∗j − pj) (from Lemma 11).

By the definition of the subgradient, φ(p∗) ≥ φ(p) +∇φ(p) · (p∗ − p). Thus∑
j

d
dt
dh(p

∗
j , pj) =

∑
j

∇jφ(p) · (p∗j − pj) ≤ φ(p∗)− φ(p) < 0, (20)

unless p = p∗.

Next we prove the result for Arrow-Debreu markets. Let S =
∑

` p`. Then p̂j = pj/S.

d

dt
dh(p̂

∗, p̂)

=
∑
j

∂dh(p̂
∗
j , p̂j)

∂p̂j
· ∂p̂j
∂t

=
∑
j

∂dh(p̂
∗
j , p̂j)

∂p̂j

∑
k

∂p̂j
∂pk
· ∂pk
∂t

=
∑
j

∂dh(p̂
∗
j , p̂j)

∂p̂j

[
1

S

∂pj
∂t

+
∑
k

−pj
S2

∂pk
∂t

]

=
1

S2

∑
j

h′′(p̂j) · (p̂∗j − p̂j)

[
S
∇jφ(p)

h′′(pj)
− pj

∑
k

∇kφ(p)

h′′(pk)

]

=
1

S

∑
j

h′′(p̂j)

h′′(pj)
∇jφ(p) · (p̂∗j − p̂j)−

1

S2

(∑
k

∇kφ(p)

h′′(pk)

)∑
j

pjh
′′(p̂j) · (p̂∗j − p̂j).

When h is the kernel of the KL-divergence, h′′(p̂j) = 1
p̂j

= S
pj

. Thus pjh
′′(p̂j) = S and

h′′(p̂j)

h′′(pj)
= S.

It follows that

d

dt
dh(p̂

∗, p̂) =
∑
j

∇jφ(p) · (p̂∗j − p̂j)−
1

S

(∑
k

∇kφ(p)

h′′(pk)

)(∑
j

(p̂∗j − p̂j)

)
.

Since p̂∗ and p̂ are both normalized prices, the second term on the RHS is zero. Noting that
∇jφ(p) = ∇jφ(p̂), and by Lemma 23, we see that the rest of the argument is the same as for
the Fisher markets.

Proof of Theorem 22. In a Fisher market the prices will be bounded by the maximum of their
initial values and

∑
i ei. In an Arrow-Debreu market, we consider only the normalized prices,

and these too are bounded. Let B denote the bounded set of prices. We may assume that B
is closed15.

The proof comprises four steps:

1. As pt lies in a bounded domain, it must have a convergent subsequence, which converges
to a point q, say.

15If not, replace B by its closure.
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2. Let P ∗ denote the set of equilibrium prices for Fisher markets, or the set of normal-
ized equilibrium prices for Arrow-Debreu markets. Recall that dh(p

∗, p) =
∑

j dh(p
∗
j , pj).

Then, for any fixed p∗ ∈ P ∗, we can conclude from Lemma 24 that dh(p
∗; , pt) is mono-

tonically decreasing. By (14), dh(p
∗; , pt) ≥ 0; consequently limt→∞ dh(p

∗, pt) exists, and
it must equal dh(p

∗; q), by the continuity of dh.

3. Show that q is a minimizer of φ. (Proof below.)

4. By the second and the third steps, dh(q; , p
t) → dh(q, q) = 0. Using this, show that

pt → q. (Proof below.)

Proof of Step 3. Suppose that q were not a minimizer of φ.

Note that the set P ∗ is closed (due to the continuity of φ), so P ∗ ∩ B is compact. Let
d(q′) = minp′∈P ∗∩B dh(p

′, q′); since P ∗ ∩B is compact, the minimum is attained.

Since q /∈ P ∗, d(q) > 0. Also, by Lemma 24, dh(p
∗, q) is finite, hence d(q) ≤ dh(p

∗, q) is also
finite. Let Q = {q′ | d(q′) ≥ d(q)}∩B. Since dh is continuous and P ∗∩B is compact, it follows
that Q is compact. Let δ = minq′∈Q φ(q′)−φ(p∗), since Q is compact, the minimum is attained.
By definition, Q contains no minimizer of φ, so δ > 0.

From Step 2, for any p∗ ∈ P ∗ ∩ B, for all t ≥ 0, dh(p
∗, pt) ≥ dh(p

∗, q) and dh(p
∗, q) ≥ d(q), so

pt ∈ Q for all t ≥ 0. By (20), d
dt
dh(p

∗, pt) ≤ −[φ(pt) − φ(p∗)] ≤ −δ < 0, which implies that
dh(p

∗, pt) will eventually go below zero, a contradiction.

Proof of Step 4. Suppose that pt does not converge to q. Then there exists an ε > 0 such that

for any T , there exists a t(T ) > T with ||pt(T ), q|| ≥ ε.

Let A = {p | ||q, p|| ≥ ε}, which is closed. Note that A ∩ B is compact. Since dh(q; p) is non-
negative (but possibly +∞), finite at some p ∈ A∩B (e.g. pt(T ) for any T ), and continuous at
every p ∈ A ∩ B at which it is finite, infp∈A∩B dh(q; p) = minp∈A∩B dh(q; p) = δ′ > 0, by (15).
Since pt(T ) ∈ A ∩ B, dh(q, p

t(T )) ≥ minp∈A∩B dh(q; p) = δ′ > 0, i.e. dh(q; p
t) does not converge

to zero, a contradiction.

5 Leontief Utilities

In this section we consider Fisher markets in which every buyer has a Leontief utility. We
analyze the update rule (6) with dh = 6 · γ · dKL where dKL is the KL-divergence, and γ is a
market dependent parameter. This update rule, which is minimizing∇φ(pt)·(p−pt)+γdh(p, p

t)
or equivalently is minimizing −z · (p− pt) + γ[p log p− p− log pt · (p− pt)], amounts to

pt+1
j = ptj exp(zj/γ). (21)

We show an O(1/ε) convergence rate as specified in the next theorem.

Theorem 25. For a Leontief market, for a sequence of price updates defined by (21), for all t,

φ(pt)− φ(p∗) ≤ 6γdKL(p∗, p0)

t

where γ = 5 ·maxj{x◦j + 2 ·
∑

i maxk
bij
bik
}.
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The theorem follows by showing that the sandwiching property (9) required by Theorem 2 is
satisfied, which is done in Lemma 27 below (recall that dh = 6 · γ · dKL here).

We also show that in general the convergence rate is Ω(1/
√
ε) as specified in the next theorem

(the proof of this result can be found in the appendix).

Theorem 26. There is a 2-good, 2-buyer Leontief market such that

φ(pt)− φ(p∗) = Ω

[
φ(p0)− φ(p∗)

t2

]
.

By Lemma 7, φ(pt) =
∑

j p
t
j −
∑

i ei log νi, where νi is the minimum cost buyer i has to pay to
obtain one unit of utility. By (2) the maximum utility obtainable by buyer i equals ei/

∑
j bijpj.

This utility is obtained by spending ei money; consequently, the minimum cost for one unit of
utility is

∑
j bijpj. Thus the potential function is given by

φ(pt) =
∑
j

pt −
∑
i

ei log
∑
j

bijpj.

Notation We let xt denote the demands following the price update at time t, and x◦ denote
the initial demands. We also let ∆pj = pt+1

j − ptj for all j.

Lemma 27. If |∆pj| ≤ pj/4, then

φ(pt+1)− `φ(pt+1; pt) ≤ 6γdKL(pt+1, pt).

Thus the sandwiching property (9) holds if |∆pj| ≤ pj/4. To ensure this, we require that
γ ≥ 5 ·maxj,t{1, xtj}, where we are maximizing the xtj over all the time steps of the algorithm,

for then pt+1
j ≤ ptje

1/5 and |∆pj|/pj ≤ e1/5 − 1 ≤ 1
4
. Of course, γ has to be picked at the

beginning, at which point one may not know the value of maxj,t{1, xtj}. In the following

lemma, we show that picking γ = 5 ·maxj{x◦j + 2 ·
∑

i maxk
bij
bik
} suffices. However, if a better

bound were known, that could be used instead.

Proof. (of Theorem 25.) The result follows by applying Theorem 2. To do this, it suffices to
ensure that Equation (9) holds for every price update. This is guaranteed by Lemma 27, for,
as we have just seen, by construction |∆pj| ≤ pj/4 for every price update.

Lemma 28. For any continuous tatonnement, xtj ≤ x◦j +
∑

i maxk
bij
bik

, and for the discrete

tatonnement with update rule (21), xtj ≤ x◦j + 2 ·
∑

i maxk
bij
bik

, for all goods j and all times t.

Proof. We drop the superscript t when the meaning is clear from the context. Suppose that
xij = ei ·bij/

∑
k bikpk ≥ 1; then xj ≥ 1 and so pj can only increase. If minl ei ·bi`/

∑
k bikpk ≥ 1,

or equivalently if ei/
∑

k bikpk ≥ 1/minl bi`, then every pk for which bik 6= 0 can only in-
crease, and hence the xik for which bik 6= 0 can only decrease; i.e. if xij = ei · bij/

∑
k bikpk ≥

bij/minl bi` = maxk bij/bik, xij can only decrease. Hence, for any continuous tatonnement, xij is
never larger than the maximum of this value and its initial value; i.e. xij ≤ maxk{x◦ij, bij/bik}.
Thus, in this case, xtj ≤ x◦j +

∑
i maxk

bij
bik

. In the case of the discrete price updates, in

one round of price changes, the prices drop by at most exp(1
5
), and hence the demands in-

crease by at most exp(1
5
) ≤ 2. Thus, unless initially larger, xij < 2 · maxk bij/bik

16. Thus

xij ≤ maxk{x◦ij, 2 · bij/bik}. Consequently, xj =
∑

i xij ≤ x◦j + 2 ·
∑

i maxk
bij
bik

.

16A more careful argument shows the multiplier of 2 is not needed.
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Before proving Lemma 27, we state the following claims, proved in the appendix. We let ∆pj
denote pt+1 − pt. In the following claims, the index t on the prices and demands is implicit.

Claim 29. For all j,
1

ei

∑
j,k

xijxik|∆pj| · |∆pk| ≤
∑
l

xi`
p`

(∆p`)
2.

Claim 30. Suppose that for all j, |∆pj| ≤ pj/4. Then

(∆pj)
2

pj
≤ 9

2
dKL(pj + ∆pj, pj).

Proof of Lemma 27. We write φ(pt) and φ(pt+1) as functions of the pj, and then upper bound
these terms using the inequalities x(1 + x)−1 ≤ x + 4

3
x2 for |x| ≤ 1

4
and log(1 + y) ≤ y for

|y| ≤ 1, along with Claims 29 and 30.

φ(pt+1)− `φ(pt+1; pt)

=φ(pt+1)− φ(pt)−∇φ(pt) · (pt+1 − pt)

=
∑
j

(pj + ∆pj)−
∑
i

ei log
∑
k

bik(pk + ∆pk)−
∑
j

pj +
∑
i

ei log
∑
k

bikpk +
∑
j

zj∆pj

=
∑
j

xj∆pj +
∑
i

ei log

∑
k bikpk∑

k bik(pk + ∆pk)

=
∑
j

xj∆pj +
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

(
1 +

∑
l bi`∆p`∑
l bi`p`

)−1
]
.

Next we use the bound x(1 + x)−1 ≤ x + 4
3
x2 for |x| ≤ 1

4
, noting that |

∑
l bi`∆p`∑
l bikp`

| ≤ 1
4
, as every

|∆p`| ≤ 1
4
p` by assumption. Thus:

φ(pt+1)− `φ(pt+1) ≤
∑
j

xj∆pj +
∑
i

ei log

[
1−

∑
k bik∆pk∑
k bikpk

+
4

3

∑
k bik∆pk

∑
l bi`∆p`∑

k bikpk
∑

l bi`p`

]
.

Now we use the bound log(1 + y) ≤ y, which applies as the second and third terms in the log

are each bounded by 1
4

(note that |
∑

l bi`∆p`∑
l bikp`

| ≤ 1
4
). Hence:

φ(pt+1)− `φ(pt+1)

≤
∑
j

xj∆pj −
∑
i

ei

∑
k bik∆pk∑
k bikpk

+
4

3
ei

∑
k bik∆pk

∑
l bi`p`∑

k bikpk
∑

l bikp`

≤
∑
j

xj∆pj −
∑
k

xk∆pk +
4

3

∑
i

1

ei

∑
k

xik∆pk
∑
l

xi`∆p` (by (1))

≤4

3

∑
i,j

xij
pj

(∆pj)
2 (by Claim 29)

=
4

3

∑
j

xj
pj

(∆pj)
2 ≤ 6

∑
j

xj · dKL(pj + ∆pj, pj) (by Claim 30).
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6 Complementary CES Utilities

In this section we consider the weighted update rule,

pt+1
j = ptje

(zj/γ
t
j), (22)

for markets in which every buyer has a complementary CES utility, i.e. the ith buyer has a
parameter ρi in the range −∞ < ρi < 0. In addition, the weights γtj are allowed to change from
one time step to the next; our updates to price pj will use the weight γtj = 5 · max{1, xtj}.17

This seems a very natural distributed rule, and indeed a linearization of this rule, pt+1
j =

ptj[1 + λmax{1, zj}]18 was used in the prior works by Cole et al. [12] and Cheung et al. [10].

For these markets we will show that φ(pt) − φ(p∗) reduces by at least a 1 − µ factor at each
time step, where 0 < µ < 1 depends on the initial price and the market parameters we will
specify.

Henceforth, the index t on all the parameters except prices will be implicit.

Notation Recall that ei denotes buyer i’s budget. We set γ = maxj γj, and again, we let
∆pj denote pt+1

j − ptj. We define
ci := ρi/(ρi − 1).

Note that ci = σi − 1, where σi = 1/(1 − ρi) is the demand elasticity of the associated CES
utility function. Finally, let c = maxi ci.

As is well known, the demand for good j when buyer i optimizes her utility is given by

xij = eibijp
ci−1
j S−1

i , (23)

where bij := a1−ci
ij and Si =

∑
` bi`p

ci
` . Substituting in (3) shows that this optimal utility equals

eiS
−1/ci
i . It follows that the minimum cost for one unit of utility is S

1/ci
i . Thus, by Lemma 7,

φ is given by

φ(pt) =
∑
j

ptj −
∑
i

ei logS
1/ci
i .

In the next two subsections we will show that the potential function in this case satisfies a
stronger sandwiching property, as specified in Lemmas 32 and 33 (their proofs occur later in
this section). This stronger property immediately yields the claimed bound on the convergence
rate (Theorem 35).

Claim 31. |pt+1
j − ptj| ≤ 1

4
ptj.

Proof. |pt+1
j − ptj| ≤ (e1/5 − 1)ptj ≤ 1

4
ptj.

Lemma 32. Suppose that |pt+1
j − ptj| ≤ 1

4
ptj for all j. Then

φ(pt)− φ(pt+1) ≥ 1

2

∑
j

z2
j p

t
j

γj
.

17Any greater value for γj would work too, but would entail a proportionate change to the bound in Lemma 33.
18The λ replaces the constant of 5 used here, as a greater range of values for this parameter is needed in

markets of substitutes.
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Lemma 33.

φ(pt)− φ(p∗) ≤ max
j

{
10,

5

2mj

}∑
j

z2
j p

t
j

γj
,

where mj = (1− c)/2 for rj ≤ 1 and mj =
1−rcj+c(rj−1)

c(rj−1)2
otherwise, and rj = p∗j/p

t
j. Recall that

c = maxi ci.

It is a simple calculation to check that the definitions of mj coincide at rj = 1.

The following claim gives a lower bound on mj and is shown in the appendix.

Claim 34. Let hc(rj) = mj/c. Then

i. For 0 < c < 1, hc(r) := 1−rc+c(r−1)
(r−1)2

is a decreasing function of r.

ii. hc(r)/c is a decreasing function of c.

iii.

mj ≥ min

{
(21/c − 1)

21/c (rj − 1)
,
(21/c − 1)c1/(1−c)

22/c

}
.

We can now deduce our main result.

Theorem 35. For all complementary CES markets, for the sequence of prices pt defined by
the update rule (22), for all t,

φ(pt)− φ(p∗) ≤ [(1−Θ(1)]tdKL(p∗, p0).

In other words, for any ε > 0, φ(pt)− φ(p∗) ≤ εdKL(p∗, p0), if t = Ω(log(1/ε)).

Proof.

φ(pt+1)− φ(p∗) =φ(pt)− φ(p∗)− [φ(pt)− φ(pt+1)]

≤φ(pt)− φ(p∗)− 1

2

∑
j

z2
j p

t
j

γj
(by Lemma 32)

≤[φ(pt)− φ(p∗)]

[
1− 1

2

(
max
j

{
10,

5

2mj

})−1
]

(by Lemma 33).

Lemma 38, stated in Section 6.3, will show that rj = p∗j/pj remains bounded throughout the
tatonnement process for all j, and hence mj remains bounded away from zero. Consequently,

φ(pt)− φ(p∗) = (1−Θ(1))[φ(pt)− φ(p∗)].
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6.1 The Upper Bound: Good Progress on a Price Update

The proof of Lemma 32 proceeds in two steps. First, we show that φ(pt+1)−φ(pt)+
∑

j zj[p
t+1
j −

ptj] ≤ 2
∑

j
xj
pj

[pt+1
j − ptj]2. We then choose γj = 5 ·max{1, xj}. Finally, we deduce the bound

in Lemma 32. Our first bound uses the following result.

Lemma 36. Suppose that for all j, |∆pj|/pj ≤ 1
4
. Then φ(p + ∆p) − `φ(p + ∆p; p)

.
= φ(p +

∆p)− φ(p) +
∑

j zj∆pj ≤ 2
∑

j
xj
pj

(∆pj)
2.

Proof. As in the proof of Lemma 27, we use two bounds: First, a bound on log(1 + ε), namely:

log(1 + ε) ≥ ε− 2

3
ε2, when |ε| ≤ 7

24
. (24)

And second, a bound on the following polynomial, which follows from a simple power series
expansion: if |∆pj/pj| ≤ 1/4 and 0 ≤ c ≤ 1,

(pj + ∆pj)
c ≥ pcj + cpc−1

j (∆pj)−
2

3
cpc−2
j (∆pj)

2. (25)

We let Dφ denote φ(p+ ∆p)− `φ(p+ ∆p; p), for short. Recall that Si(p) =
∑

` bi`p
ci
` . Then:

Dφ =φ(p+ ∆p)− φ(p) +
∑
j

zj∆pj

=
∑
j

∆pj +
∑
j

zj∆pj −
∑
i

ei
ci

log
Si(p+ ∆p)

Si(p)
.

=
∑
j

xj∆pj −
∑
i

ei
ci

log

(∑
` bi`(p` + ∆p`)

ci

Si(p)

)
.

As ρ < 0, 0 < ci < 1. So we can apply (25), yielding:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆p`)

Si(p)
−

2
3

∑
` bi`cip

ci−2
` (∆p`)

2

Si(p)

)
.

Recalling from (23) that xi` = eibi`p
ci−1
` /Si(p), yields:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)
.

On applying (24), which we can do as
∑

` xi`p` ≤ ei, ci ≤ 1, and |∆p`|/p` ≤ 1
4
, we obtain the

bound:

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)

+
∑
i

ei
ci

2

3

(∑
`

ci
xi`
ei

(∆p`)−
2

3

∑
`

ci
xi`
p`ei

(∆p`)
2

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`(∆p`)−
2

3

∑
`

xi`
p`

(∆p`)
2

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`(∆p`)

(
1− 2∆p`

3p`

))2

.
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Now recall that ∆p`/p` ≤ 1
4
, to give the bound:

Dφ ≤
2

3

∑
`

x`
p`

(∆p`)
2 +

2

3

∑
i

ci
ei

(∑
`

xi`|∆p`| ·
7

6

)2

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

(∑
`

xi`|∆p`|

)2

(as ci ≤ 1)

=
2

3

∑
`

x`
p`

(∆p`)
2 +

49

54

∑
i

1

ei

∑
j,k

xijxik|∆pj||∆pk|

≤
(

2

3
+

49

54

)∑ x`
p`

(∆p`)
2 (by Claim 29)

≤ 2
∑ x`

p`
(∆p`)

2.

Proof of Lemma 32. Recall that ∆pj = pt+1
j − ptj and that pt+1

j = ptje
(zj/γj). By Lemma 36,

φ(pt)− φ(pt+1) ≥
∑
j

zj[p
t+1
j − ptj]− 2

∑
j

xj
ptj

[pt+1
j − ptj]2. (26)

Next, using the formula for pt+1 and the fact that γj ≥ 5xj gives the bound:

φ(pt)− φ(pt+1) ≥
∑
j

zjp
t
j[e

(zj/γj) − 1]− 2

5

∑
j

γjp
t
j[e

(zj/γj) − 1]2 (27)

=
∑
j

zjp
t
j[e

(zj/γj) − 1]

(
1− 2

5

γj
zj

[e(zj/γj) − 1]

)

≥
∑
zj≥0

z2
j p

t
j

γj

(
1− 2

5
· 10

9

)
+
∑
zj<0

z2
j p

t
j

γj

9

10

(
1− 2

5

)

≥1

2

∑
j

z2
j p

t
j

γj
.

6.2 An Upper Bound on the Distance to Equilibrium

Lemma 37. Suppose that p∗j/pj ≤ rj for all j, where rj ≥ 1. Let c = maxi ci. Then

φ(p∗)− `φ(p∗; p) ≥
∑
`

hc(r`)

c
x` ·

(p∗` − p`)2

p`
.

Proof. As with previous lemmas, we use a bound on the polynomial (p∗j−pj)ci , but now we use
the bound given by Claim 34 i. Specifically, if p∗j/pj ≤ rj and 0 < c ≤ 1, hc(p

∗
j/pj) ≥ hc(rj),

i.e.
1
pcj

[pcj − (p∗j)
c + cpc−1

j (p∗j − pj)]
1
p2j

(p∗j − pj)2
≥ hc(rj),
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so
(p∗j)

c ≤ pcj + cpc−1
j (p∗j − pj)− hc(rj)pc−2

j (p∗j − pj)2. (28)

We also use a simple bound on the log function, namely log(1 + ε) ≤ ε for ε ≥ −1. To avoid
clutter, we omit the superscript t on the prices.

Let ∆∗pj = p∗j − pj. Then

φ(p∗)− `φ(p∗; p) =
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
` bi`(p

∗
l )
ci

Si(p)

)
.

Recalling that Si(p) =
∑

l bi`(p`)
ci and using the upper bound on (p∗j)

ci from (28) gives:

φ(p∗)− `φ(p∗; p)

≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
` bi`cip

ci−1
` (∆∗p`)

Si(p)
−
∑

` bi`hci(r`)p
ci−2
` (∆∗p`)

2

Si(p)

)

=
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(
1 +

∑
`

ci
xi`
ei

(∆∗p`)−
∑
`

hci(r`)
xi`
p`ei

(∆∗p`)
2

)
.

On noting that the argument for the log is positive (as it is an upper bound for Si(p
∗)/Si(p)),

we can apply the bound ε ≥ log(1 + ε) for ε ≥ −1 to give:

φ(p∗)− `φ(p∗; p) ≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

(∑
`

ci
xi`
ei

(∆∗p`)−
∑
`

hci(r`)
xi`
p`ei

(∆∗p`)
2

)

=
∑
i

∑
`

hci(r`)

ci
xi`

(∆∗p`)
2

p`

≥
∑
i

∑
`

hc(r`)

c
xi`

(∆∗p`)
2

p`
(by Claim 34 ii.)

=
∑
`

hc(r`)

c
x`

(∆∗p`)
2

p`
.

Proof of Lemma 33. Note that mj = hc(rj)/c. Then, by Lemma 37:

φ(pt)− φ(p∗) =lφ(p∗, pt)− φ(p∗)−∇φ(pt) · (p∗ − pt)

≤
∑
j

zj(p
∗
j − ptj)−

∑
j

mjxj
(p∗j − ptj)2

ptj

≤max
p′

∑
j

(
zj(p

′
j − ptj)−mjxj

(p′j − ptj)2

ptj

)
.

There are two cases.

Case 1: 0 ≤ xj ≤ 1/2.

Then −1 ≤ zj ≤ −1/2 and hence zj ≥ −2z2
j . Thus
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zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ −zjptj ≤ 2z2

j p
t
j = 2γj

z2
j p

t
j

γj
.

As xj ≤ 1/2 < 1, 2γj = 10. Hence

zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ 10

z2
j p

t
j

γj
.

Case 2: xj ≥ 1/2.

zj(p
′
j − ptj) − mjxj

(p′j−ptj)2

ptj
is a quadratic function of (p′j − ptj). The quadratic function is

maximized when (p′j − ptj) =
zjp

t
j

2mjxj
, with its maximum value being

z2j p
t
j

4mjxj
=

γj
4mjxj

z2j p
t
j

γj
.

As xj ≥ 1/2 and γj = 5 ·max {1, xj}, γj/xj ≤ 10. Hence

zj(p
′
j − ptj)−mjxj

(p′j − ptj)2

ptj
≤ 5

2mj

z2
j p

t
j

γj
.

Combining the two cases yields the result.

6.3 Bounding mj

Let pU = maxj{p◦j}, the maximum initial price, U = max{pU,M}, and L∗ = minj{p∗j}. The
following bound is shown in the appendix.

Lemma 38. Let U = U for any continuous tatonnement, and let U = 2U for the discrete taton-
nement with update rule (22). For any continuous tatonnement, p∗j/p

t
j ≤ max{p∗j/p◦j , (L∗/U)mini ρi},

and for the discrete tatonnement , p∗j/p
t
j ≤ 2 ·max{p∗j/p◦j , (L∗/U)mini ρi}.

7 Substitute CES Utilities

The analysis in Section 6 can be extended to Fisher markets with substitute CES utilities, i.e.
CES utility functions with parameter ρ ≥ 0. Cole and Fleischer [12] showed that tatonnement
converges in these markets via a different potential function. For completeness, we reprove
this result here with the technique developed in Section 6. We will prove lemmas similar to
Lemmas 32, 33, 36, 37 and then prove a theorem similar to Theorem 35.

For substitute CES utilities, the parameter ci = ρi/(ρi − 1) is negative, while it is positive
in the complementary case. Due to the sign switch, some of the proofs of the lemmas in this
section differ from the corresponding proofs in Section 6.

7.1 The Upper Bound: Good Progress on a Price Update

In this section, we defer most of the proofs to the appendix, due to their similarility with the
proofs in the preceding section.

Let cmin = mini ci.
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Lemma 39. Suppose that for all j, |∆pj|/pj ≤ min{1/4, 1/|cmin|}. Then φ(p + ∆p) − `φ(p +
∆p; p) ≤ (1− cmin)

∑
j
xj
pj

(∆pj)
2.

To allow us to apply Lemma 39 in our analysis, we will require that γtj = 5 · max{1, (1 −
cmin)/2} ·max{1, xtj}.

Lemma 40. Suppose that |pt+1
j − ptj| ≤ min{1/4, 1/|cmin|} · ptj for all j. Then

φ(pt)− φ(pt+1) ≥ 1

2

∑
j

z2
j p

t
j

γj
.

Proof. It is almost identical to the proof of Lemma 32. It uses the bound from Lemma 39
instead of the bound from Lemma 36. This changes the factor 2 in (26) to 1− cmin, and then
the new value for γj yields Equation (27). The rest of the proof is identical.

7.2 An Upper Bound on the Distance to Equilibrium

Lemma 41. Suppose that p∗j/pj ≤ rj for all j, where rj ≥ 1. Then

φ(p∗)− `φ(p∗; p) ≥
∑
j

rj − 1− log rj
(rj − 1)2

xj
(p∗j − pj)2

pj
.

Lemma 42.

φ(pt)− φ(p∗) ≤ max {1, (1− cmin)/2}
∑
j

max
j

{
10,

5(rj − 1)2

2(rj − 1− log rj)

}
·
z2
j p

t
j

γj
,

where rj = max{1, p∗j/pj}.

Proof. The proof is almost identical to the proof of Lemma 33. The ratio (rj−1− log rj)/((rj−
1)2) from Lemma 41 plays the role of hc(rj)/c = mj from Lemma 37. In the proof of Lemma 33,
we used the fact that γj = 5 in Case 1, and that γj = 5xj in Case 2. Here, we replace the 5
with 5 ·max{1, (1− cmin)/2}, yielding the new bound.

Theorem 43. For all substitute CES markets, for the sequence of prices pt defined by update
rule (22), for all t,

φ(pt)− φ(p∗) ≤ [(1−Θ(1)]tdKL(p∗, p0)

In other words, for any ε > 0, φ(pt)− φ(p∗) ≤ εdKL(p∗, p0), if t = Ω(log(1/ε)).

Proof. This is almost identical to the proof of Theorem 35. Instead of the bounds from Lem-
mas 32 and 33, we use the bounds from Lemmas 40 and 42. This gives

φ(pt+1)− φ(p∗) ≤ φ(pt)− φ(p∗)

max{1, (1− cmin)/2}

[
1− 1

2

(
max
j

{
10,

2(rj − 1− log rj)

(rj − 1)2

})−1
]
.

We then note that Cole and Fleisher [12] showed that maxj rj remains bounded by its initial
valure r0

j throughout the tatonnement process, yielding the desired bound (we consider r0
j to

be a constant).
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8 Discussion

We have shown that discrete versions of tatonnement converge for Leontief and CES utilities.
The main open question is whether these convergence results extend to the Ongoing Market
model defined by Cole and Fleisher [12]. In this model, the market repeats from one time
period to the next, and excess demands and supplies are carried forward to successive time
periods using finite buffers, which they called warehouses. The purpose of this model was to
provide a more natural setting for the tatonnement update process.

There are two aspects to the Ongoing Market that our results do not address.

• Warehouses. There is a separate warehouse for each good. The price update for each good
is adjusted to take account of whether the warehouse is relatively full or empty. The goal
is to show, as in [10], that the tatonnement price update converges to the equilibrium
prices and that in addition this can be achieved without having the warehouse either
overflow or run out of stock, and further that it too converges to an ideal state, namely
half-full. We conjecture that this is possible for the markets with CES utilities at least.

• Asynchrony. This allows the prices to be updated independently, at separate times, with
the sole constraint that each price updates at least once per time unit. Further, each
price update uses the accumulated demand since the previous update, as opposed to the
instantaneous demand, to determine its size. Again, both the asynchrony itself, and the
price update rule, are intended to provide a process that seems more natural.
We also conjecture that this variant of the price update will converge for markets with
CES utilities.

The previous analyses for the Ongoing Market used non-trivial amortized arguments. It seems
they will not extend to the present setting, for they were intrinsically linear, whereas the
potential function employed here for the CES utilities is quadratic. Still, we suspect there may
be extensions of the current analyses that will lead to the conjectured results.

Also, it would be interesting to resolve the behavior of a discrete tatonnement for nested CES
Fisher markets. Our belief is that this will require resolving whether this class of utilities is
controlled.
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A Additional Proofs

A.1 Proofs for Continuous Time Tatonnement

Proof of Lemma 20. We first observe that in Fisher markets prices remain bounded. The
following notation will be helpful. Let U be the maximum initial price and M the total money
in the market, and let U = max{U,M}. Observe that for any j, if pj = U , then xj ≤ 1, and
consequently any tatonnement rule will not increase pj beyond U .

We can now show that for Fisher markets 1/h′′ remains bounded. For h′′ > 0 and consequently
in the bounded region Rn

+∩{p ≤ U 1} the supremum of 1/h′′ is its maximum, which is therefore
finite.

Thus to prove the result of the lemma it suffices to show that−∇jφ(p) = zj(p) remains bounded
throughout the tatonnement.

We begin by considering substitutes CES utilities. Let f = minj{pj/p∗j , 1}. Cole and Fleis-
cher [12] showed that if pj = f p∗j , then xj ≥ 1. Thus if pj is ever reduced to f p∗j , the
tatonnement update will not decrease it further. Consequently, for all j, pj ≥ fp∗j throughout
the tatonnement process. Hence xj ≤M/(fp∗j) throughout the tatonnement process, for all j,
where M is the total money in the market. It follows that zj ≤ M/(fp∗j) − 1, for all j. This
analysis applies to linear utilities too.

We turn to complementary CES utilities. By Lemma 38, ptj ≥ p∗j · min{p0
j/p
∗
j , (U/L

∗)mini ρi},
where L∗ = minj{p∗j}. It follows that the demands are upper bounded by

xj ≤ max{p∗j/p0
j , (L

∗/U)mini ρi}, and hence zj ≤ max{p∗j/p0
j , (L

∗/U)mini ρi} − 1.

Finally, we consider Leontief utilities. By Lemma 28, xtj ≤ x◦j +
∑

i maxk
bij
bik

, and hence

ztj ≤ z◦j +
∑

i maxk
bij
bik

.

A.2 Proofs for Complementary CES

Proof of Claim 29. This result follows by rewriting ei as
∑

k xikpk.

ei
∑
l

xil
p`

(∆p`)
2 =

∑
l

xil (
∑

k xikpk)

p`
(∆p`)

2 =
∑
l,k

xilxik
pk
p`

(∆p`)
2

=
∑
l

x2
il(∆p`)

2 +
∑
k,l:k 6=l

xikxil
pk
p`

(∆p`)
2

=
∑
l

x2
il(∆p`)

2 +
∑
k<l

xikxil

(
pk
p`

(∆p`)
2 +

p`
pk

(∆pk)
2

)
.

Now, we apply the AM-GM inequality:

ei
∑
l

xil
p`

(∆p`)
2 ≥

∑
l

x2
il(∆p`)

2 +
∑
k<l

xikxil · 2|∆p`||∆pk|

=
∑
j,k

xijxik|∆pj||∆pk|.
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Proof of Claim 30. We use the bound log x ≥ x− 11
18
x2 for |x| ≤ 1

4
.

dKL(pj + ∆pj, pj) =(pj + ∆pj) log(pj + ∆pj)− (pj + ∆pj)− pj log pj + pj − (log pj)∆pj

(by (4) and (5))

=−∆pj + (pj + ∆pj) log

(
1 +

∆pj
pj

)
≥−∆pj + (pj + ∆pj)

(
∆pj
pj
− 11

18

(∆pj)
2

p2
j

)
=

7

18

(∆pj)
2

pj

(
1− 11

7

∆pj
pj

)
=

7

18

17

28

(∆pj)
2

pj

≥2

9

(∆pj)
2

pj
.

Proof of Claim 34. (i) and (ii) are readily checked by calculus. For (iii) we argue as follows.
For rj ≥ 2,

mj =
1− (rj − 1)c[1 + 1/(rj − 1)]c + c(rj − 1)

c(rj − 1)2

≥
1− (rj − 1)c[1 + c/(rj − 1)− 1

2
c(1− c)/(rj − 1)2] + c(rj − 1)

c(rj − 1)2
(as rj ≥ 2)

≥
c(rj − 1) + 1− (rj − 1)c − c/(rj − 1)− 1

2
c(1− c)/(rj − 1)2)1−c

c(rj − 1)2

≥c(rj − 1)− (rj − 1)c

c(rj − 1)2
(as 1 ≥ c[1 + 1

2
(1− c)], for c ≤ 1).

If rj − 1 = c−1/(1−c), c(rj − 1) = (rj − 1)c. So when rj − 1 = 21/cc−1/(1−c),

c(rj − 1)− (rj − 1)c = (21/c − 1)c · c−1/(1−c).

And as c(rj − 1) grows faster than (rj − 1)c, for rj − 1 ≥ 21/cc−1/(1−c),

c(rj − 1)− (rj − 1)c ≥ (21/c − 1)c(rj − 1)2−1/c.

Then mj ≥ (21/c − 1)2−1/c/(rj − 1).

mj is a decreasing function of rj. It follows that for 0 ≤ rj − 1 ≤ 21/cc−1/(1−c),

mj ≥ (21/c − 1)2−2/cc1/(1−c).

Proof of Lemma 38. We first not two observations.

Observation 1. No price will exceed U during the entire tatonnement.

Reason. Suppose not, then let t = τ be the first time when some price, say pk, exceed U . Then
pτk ≥ M and xτk ≤ M/pτk ≤ 1. In the continuous tatonnement, the price update rule will not
increase pk any further.
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For the discrete tatonnement we argue as follows. At t = τ − 1, pτ−1
k < U = 2U . But

pτ−1
k ≥ U ≥ M , as pk can at most double in one time unit. By the same argument as for xτk,
xτ−1
k ≤ 1. By the price update rule, pτk ≤ pτ−1

k < 2U , a contradiction.

Observation 2. pk ≥ min{p◦k, (U/L∗)mini ρip∗k} throughout the entire continuous tatonnement
process, and half this value in the discrete case.

Reason. Suppose that for some k, pk ≤ L∗(U/L∗)mini ρip∗k. We claim that xk ≥ 1. At equilib-

rium prices, all demands equal 1. If the prices are all raised by a factor of U
L∗

, then all demands

equal L∗

U
. Note that now all prices are at least U .

Now reduce the price of pk from U
L∗
p∗k to

(
U
L∗

)mini ρi
p∗k, that is, reduce the price by a factor of(

U
L∗

)1−mini ρi
. The price reduction can only decrease Si. It then follows from (23) that the new

demand x′k for good k is bounded as follows

x′k ≥ xk ·

[(
U

L∗

)1−mini ρi
]1/(1−mini ρi)

=
L∗

U
· U
L∗

= 1.

We just proved that when pk =
(
U
L∗

)mini ρi
p∗k and all other prices are at values specified which

are all at most U , the demand for good k is at least 1. By Observation 1, no price exceeds
U during the entire tatonnement process. In complementary markets, since the demand for
one good increases when the prices of other goods decrease, we have shown that xk ≥ 1 if

pk ≤
(
U
L∗

)mini ρi
p∗k.

In the case of the continuous tatonnement, it follows that no price can decrease below the
minimum of this value and the initial value of this price. For the discrete case, we argue as
follows. Let L̄k = (1/2) ·min{p◦k, (U/L∗)mini ρip∗k}. Suppose that Observation 2 were incorrect,
then let t = τ be the first time when some price, say pj, is below L̄j.

At t = τ − 1, pτ−1
j ≥ L̄j. But pτ−1

j ≤ 2L̄j, as pj can reduce by at most half in one time unit.

Then xτ−1
j ≥ 1. By the price update rule, pτj ≥ pτ−1

j ≥ L̄j, a contradiction.

The lemma now follows from Observation 2.

A.3 Proofs for Substitutes CES

Proof of Lemma 39. We will use the following bound, which follows from a simple power series
expansion: if c is negative and |∆pj/pj| ≤ min{1/4, 1/|c|},

(pj + ∆pj)
c ≤ pcj + cpc−1

j (∆pj) + c(c− 1)pc−2
j (∆pj)

2. (29)

Recall from the proof of Lemma 36 that

Dφ = φ(p+ ∆p)− `φ(p+ ∆p; p) =
∑
j

xj∆pj −
∑
i

ei
ci

log

(∑
` bi`(p` + ∆p`)

ci

Si(p)

)
.
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We apply (29) and the simple bound log(1 + ε) ≤ ε for ε ≥ −1 to yield

Dφ ≤
∑
j

xj∆pj −
∑
i

ei
ci

log

(∑
` bi`

(
pci` + cip

ci−1
` ∆p` + ci(ci − 1)pci−2

` (∆p`)
2
)

Si(p)

)

=
∑
j

xj∆pj −
∑
i

ei
ci

log

(
1 + ci

∑
k

bik(pk)
ci−1

Si(p)
∆pk + ci(ci − 1)

∑
k

bik(pk)
ci−2

Si(p)
(∆pk)

2

)

≤
∑
j

xj∆pj −
∑
i

ei
ci

(
ci
∑
k

xik
ei

∆pk + ci(ci − 1)
∑
k

xik
eipk

(∆pk)
2

)
≤
∑
j

xj∆pj −
∑
k

xk∆pk + (1− cmin)
∑
k

xk
pk

(∆pk)
2

=(1− cmin)
∑
j

xj
pj

(∆pj)
2.

We will need the following bound.

Claim 44. Let r be a fixed number greater than 1. If x ≤ r − 1, then

log(1 + x) ≤ x− r − 1− log r

(r − 1)2
x2. (30)

Proof. Simply note that [x− log(1 + x)]/x2 is a decreasing function for x ≥ 1.

Proof of Lemma 41. We need the following inequality.

First,

φ(p+ ∆∗p)− `φ(p+ ∆∗p; p) =
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
k

bik(pk)
ci∑

` bi`(p`)
ci

(
1 +

∆∗pk
pk

)ci)

=
∑
j

xj∆
∗pj −

∑
i

ei
ci

log

(∑
k

eik
ei

(
1 +

∆∗pk
pk

)ci)
.

Note that
∑

k
eik
ei

= 1. Thus, by the concavity of the log function,

log
(∑

k
eik
ei

(
1 + ∆∗pk

pk

)ci)
≥
∑

k
eik
ei

log
(

1 + ∆∗pk
pk

)ci
. Then

φ(p∗)− `φ(p∗; p) ≥
∑
j

xj∆
∗pj −

∑
i

ei
ci

∑
k

eikci
ei

log

(
1 +

∆∗pk
pk

)
=
∑
j

xj∆
∗pj −

∑
k

ek log

(
1 +

∆∗pk
pk

)

≥
∑
j

xj∆
∗pj −

∑
k

ek

(
∆∗pk
pk
− rk − 1− log rk

(rk − 1)2

(
∆∗pk
pk

)2
)

(By (30))

=
∑
j

rj − 1− log rj
(rj − 1)2

xj
(∆∗pj)

2

pj
.
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B Leontief Lower Bound

We prove Theorem 26 here.

We consider the following Leontief Fisher market with two buyers and two goods. Buyer 1 has
budget e1 = 3 and b11 : b12 = 1 : 3; buyer 2 has budget e2 = 2 and b21 : b22 = 2 : 1. There is
a unique market equilibrium (p∗1, p

∗
2) = (0, 5), with equilibrium demands (x∗11, x

∗
12, x

∗
21, x

∗
22) =

(1/5, 3/5, 4/5, 2/5). We will show that if tatonnement starts at a carefully chosen price vector,
(p1, p2), the potential function value is Θ((p1)2) but in the next time step the potential function
drops by only Θ((p1)3).

LetB =
{

(p1, p2 | p1 ≤ δ̄,−2
5
p2

1 ≤ p1 + p2 − 5 ≤ 2
5
p2

1

}
, where δ̄ > 0 is a sufficiently small positive

number which satisfies several conditions stated in the proofs below.

The price update rule of good j is pt+1
j = ptj · ez

t
j/γ.

Lemma 45. If a tatonnement starts at a price vector in B, the set of prices remain in B
throughout the whole tatonnement.

Proof. Let (p1, p2) be a price vector in B and let (p1, p2) = (δ, 5 − δ + Cδ2), where |C| ≤ 2
5
.

Then the demands are

x1 =
3

15− 2δ + 3Cδ2
+

4

5 + δ + Cδ2
x2 =

9

15− 2δ + 3Cδ2
+

2

5 + δ + Cδ2
.

Let (p′1, p
′
2) denote the new prices after an update, i.e.

p′1 = δe(x1−1)/γ p′2 = (5− δ + Cδ2)e(x2−1)/γ

The Taylor expansions of x1, x2, p
′
1, p
′
2 (with respect to δ) are

x1 = 1− 2

15
δ +O(δ2), x2 = 1 +

(
2

75
− C

5

)
δ2 +O(δ3),

p′1 = δ − 2

15γ
δ2 +O(δ3), p′2 = 5− δ +

(
C − C

γ
+

2

15γ

)
δ2 +O(δ3).

We choose δ̄ to be sufficiently small so that p′1 < p1, and hence p′1 < δ̄.

The Taylor expansion of
p′1+p′2−5

(p′1)2
is

p′1 + p′2 − 5

(p′1)2
= C

(
1− 1

γ

)
+O(δ).

We choose δ̄ to be sufficiently small so that

C

(
1− 1

γ

)
− 1

10γ
≤ p′1 + p′2 − 5

(p′1)2
≤ C

(
1− 1

γ

)
+

1

10γ
.

Since |C| ≤ 2
5

and γ ≥ 1, C
(

1− 1
γ

)
− 1

10γ
≥ −2

5
and C

(
1− 1

γ

)
+ 1

10γ
≤ 2

5
. So (p′1, p

′
2) is in

B.

Lemma 46. If (pt1, p
t
2) is in B, then φ(pt)− φ(pt+1) = Θ((p1)3) and φ(pt)− φ(p∗) = Θ((p1)2).
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Proof. Let (pt1, p
t
2) = (δ, 5− δ + Cδ2). Since the potential function is convex,

φ(pt)− φ(pt+1) ≤ −∇φ(pt) · (pt+1 − pt)
= (x1 − 1)

(
e(x1−1)/γ − 1

)
p1 + (x2 − 1)

(
e(x2−1)/γ − 1

)
p2

= O

(
p1(x1 − 1)2

γ

)
+O

(
p2(x2 − 1)2

γ

)
.

Recall the Taylor expansions of x1 and x2. We choose δ̄ to be sufficiently small so that

|x1 − 1| = Θ(δ), |x2 − 1| = O(δ2).

Then

φ(pt)− φ(pt+1) = δ ·Θ
(
δ2

γ

)
+ Θ(1) ·O

(
δ4

γ

)
=

1

γ
Θ(δ3).

Next, we will show that the potential function is Θ(δ2). The following derivation is similar to
the one for the upper sandwiching bound. Let ∆∗p` = p∗` − p`. Recall that

φ(p∗)− `φ(p∗; p) =
∑
j

xj∆
∗pj −

∑
i

ei log

(
1 +

∑
` bi`∆

∗p`∑
` bi`p`

)
.

We choose δ̄ to be sufficiently small so that 3
4
≤

∑
` bi`(p`+∆∗p`)∑

` bi`p`
≤ 5

4
. Then we can use (24) to

obtain

φ(p∗)− `φ(p∗; p) ≤
∑
j

xj∆
∗pj −

∑
i

ei

[∑
` bi`∆

∗p`∑
` bi`p`

− 2

3

(∑
` bi`∆

∗p`∑
` bi`p`

)2
]

=
2

3

∑
i

ei

(∑
`

xi`
ei

∆∗p`

)2

=
2

3

∑
i

1

ei

(∑
`

xi`∆
∗p`

)2

.

Note that ∆∗p1 = −δ and ∆∗p2 = δ − Cδ2. The taylor expansions for the {xij} are

x11 =
1

5
+O(δ) x12 =

3

5
+O(δ) x21 =

4

5
+O(δ) x22 =

2

5
+O(δ).

Hence, the Taylor expansions of 1
ei

(
∑

` xi`∆
∗p`)

2 are

1

e1

(x11∆∗p1 + x12∆∗p2)2 =
4

75
δ2 +O(δ3),

1

e2

(x21∆∗p1 + x22∆∗p2)2 =
2

25
δ2 +O(δ3).

Thus

φ(p∗)− `φ(p∗; p) ≤ 4

45
δ2 +O(δ3).

Then

φ(p∗)− φ(p) ≤ 4

45
δ2 +O(δ3)− z1∆∗p1 − z2∆∗p2

=
4

45
δ2 −

(
− 2

15
δ

)
(−δ)−

(
2

75
− C

5

)
δ2 · (δ − Cδ2) +O(δ3)

= − 2

45
δ2 +O(δ3).

We can choose δ̄ sufficiently small so that φ(p)− φ(p∗) = Θ(δ2).
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Proof. (of Theorem 26.) By Lemma 46, it takes Θ(1/p1) steps for φ(p) to halve. So starting at

p1 = δ̄, to reduce φ(p) by a 2i factor takes Θ([1 +
√

2 + . . .+
√

2i] · [1/
√
δ̄]) = Θ(

√
2i/δ̄) steps.

In other words,

φ(pt)− φ(p∗) = Θ

(
φ(p0)− φ(p∗)

t2δ̄

)
= Θ

(
φ(p0)− φ(p∗)

t2

)
.
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