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ABSTRACT
Why might markets tend toward and remain near equilibrium prices?
In an effort to shed light on this question from an algorithmic per-
spective, this paper formalizes the setting of Ongoing Markets, by
contrast with the classic market scenario, which we term One-Time
Markets. The Ongoing Market allows trade at non-equilibrium
prices, and, as its name suggests, continues over time. As such,
it appears to be a more plausible model of actual markets.

For both market settings, this paper defines and analyzes vari-
ants of a simple tatonnement algorithm that differs from previous
algorithms that have been subject to asymptotic analysis in three
significant respects: the price update for a good depends only on
the price, demand, and supply for that good, and on no other in-
formation; the price update for each good occurs distributively and
asynchronously; the algorithms work (and the analyses hold) from
an arbitrary starting point.

Our algorithm introduces a new and natural update rule. We
show that this update rule leads to fast convergence toward equi-
librium prices in a broad class of markets that satisfy the weak
gross substitutes property. These are the first analyses for compu-
tationally and informationally distributed algorithms that demon-
strate polynomial convergence.

Our analysis identifies three parameters characterizing the mar-
kets, which govern the rate of convergence of our protocols. These
parameters are, broadly speaking:

1. A bound on the fractional rate of change of demand for each
good with respect to fractional changes in its price.

2. A bound on the fractional rate of change of demand for each
good with respect to fractional changes in wealth.

3. The closeness of the market to a Fisher market (a market with
buyers starting with money alone).

We give two types of protocols. The first type assumes global
knowledge of only (an upper bound on) the first parameter. For
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this protocol, we also provide a matching lower bound in terms
of these parameters for the One-Time Market. Our second proto-
col, which is analyzed for the One-Time Market only, assumes no
global knowledge whatsoever.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms
Algorithms, Economics

Keywords
Tatonnement, market equilibria

1. INTRODUCTION
The impetus for this work comes from the following question:

why are well-functioning markets able to stay at or near equilibrium
prices?1 This raises two issues: what are plausible price adjustment
mechanisms and in what types of markets are they effective?

This question was originally considered by Walras in 1874, when
he suggested that prices adjust by tatonnement: upward if there
is too much demand and downward if too little [30]. Since then,
the study of market equilibria, their existence, stability, and their
computation has received much attention in Economics, Operations
Research, and most recently in Computer Science. Of late, this has
led to a considerable number of polynomial time algorithms for
finding approximate and exact equilibria in a variety of markets
with divisible goods. However, these algorithms do not seek to,
and do not appear to provide methods that might plausibly explain
these markets’ behavior.

We argue here for the relevance of this question from a computer
science perspective. Much justification for looking at the market
problem in computer science stems from the following argument:
If economic models and statements about equilibrium and conver-
gence are to make sense as being realizable in economies, then
they should be concepts that are computationally tractable. Our
viewpoint is that it is not enough to show that the problems are
computationally tractable; it is also necessary to show that they are
tractable in a model that might capture how a market works. Unless
one has a controlled economy, markets surely do not perform overt
global computations, using global information.

In formalizing the tatonnement model, economists have proposed
models to capture aspects of how a market might work; and conver-
gence of several of these formalizations has been demonstrated for
1We are not concerned with the question of whether this assertion
is indeed correct.



some types of markets [1, 2, 21, 27]. However, there is no demon-
stration that these proposed models converge reasonably quickly.
Indeed, without care in the specific details, they won’t.2

At first sight, it is not clear why these models are realistic. The
most studied, due to Walras, is the auctioneer model: an auctioneer
announces prices, receives the market demand at these prices in the
form of buy and sell requests, but with no trade actually occurring,
adjusts prices according to the tatonnement procedure, and iterates.
Only when prices reach equilibrium is trade allowed. In reality, it
is trade that reveals demand and hence needed price adjustments.
Thus any realistic model has to enable trade in disequilibrium.

In this paper we propose a simple market model in which the
market extends over time and trading occurs out of equilibrium (as
well as at equilibrium). We call this the Ongoing Market. Here,
the market repeats from one time unit to the next; we call the ba-
sic unit a day. The link from one day to the next is that goods
unsold one day are available the next day, in addition to the new
supply, which for simplicity, we take as being the same from day
to day. This appears to provide a simple and natural way of allow-
ing out-of-equilibrium trade. The algorithmic task is to converge
to equilibrium prices while clearing unsold stocks. We develop a
novel tatonnement algorithm for this model and show that it results
in rapid convergence toward equilibrium prices in this market.

Our analysis of the algorithm for the Ongoing Market relies on
new tatonnement algorithms and understanding which we develop
by analyzing the more traditional market problem discussed in the
paragraph preceding the last. In this paper, we call this the One-
Time Market. The algorithmic technique of iteratively computing
prices for the One-Time Market can be seen as a plausible approx-
imation to the Ongoing Market (but with no carry over of unsold
goods). Our work can be seen as a formal justification for this ap-
proach, as well as a validation of Walras’ intuition regarding taton-
nement. Further, in our opinion, the intuitive understanding that
markets are usually similar from one time period to the next has
been a factor in the previous appeal of iterative price update al-
gorithms, including, in the Computer Science literature, the recent
tatonnement algorithm of Codenotti et al. [5] and the auction algo-
rithms of Garg et al. [12].

Our proposed price update protocols capture important charac-
teristics of trading as proposed in the economic literature, features
that are lacking from previous algorithms subject to asymptotic
analysis. Namely, our algorithms consist of price updates satisfy-
ing the following three criteria: the price update for a good depends
only on the price, demand, and supply for that good, and on no
other information about the market; the price update for each good
occurs distributively and asynchronously; the algorithms can start
with an arbitrary set of prices. We show that our update protocols
converge quickly in many markets that satisfy the weak gross sub-
stitutes property. In the process, we identify three natural parame-
ters characterizing markets that govern the rate of convergence.

1.1 The Market Problems
The One-Time Market3 A market comprises two sets, goods

G, with |G| = n, and agents A, with |A| = m. The goods
are assumed to be infinitely divisible. Each agent l starts with
an allocation wil of good i. Each agent l has a utility function

2Of the referenced papers, only one formalization [27] is a discrete
algorithm, and, as we make more specific later, it may not converge
quickly.
3The market we describe here is often referred to as the exchange
market or Arrow-Debreu market. We use a different term because
we consider this problem in a new computational model as de-
scribed in Section 1.2

ul(x1l, · · · , xnl) expressing its preferences: if l prefers a basket
with xil units (possibly a real number) of good i, to the basket with
yil units, for 1 ≤ i ≤ n, then ul(x1l, · · · , xnl) > ul(y1l, · · · , ynl).
Each agent l intends to trade goods so as to achieve a personal op-
timal combination (basket) of goods given the constraints imposed
by their initial allocation. The trade is driven by a collection of
prices pi for good i, 1 ≤ i ≤ n. Agent l chooses xil, 1 ≤ i ≤ n,
so as to maximize ul, subject to the basket being affordable, that
is:

Pn
i=1 xilpi ≤

Pn
i=1 wilpi. Prices p = (p1, p2, · · · , pn) are

said to provide an equilibrium if, in addition, the demand for each
good is bounded by the supply:

Pm
j=1 xil ≤

Pm
l=1 wil. The mar-

ket problem is to find equilibrium prices.4

Standard notation wi =
P

l wil is the supply of good i. xi =P
l xil is the demand for good i, and zi = xi − wi is the excess

demand for good i (which can be positive or negative). vl(p) =P
i wilpi is the wealth of buyer l given prices p. Where p is clear

from context, we express wealth simply as vl. Note that while w
is part of the specification of the market, v, x and z are functions
of the vector of prices: v directly so, and x and z as determined by
individual agents maximizing their utility functions subject to v.

We follow standard practice5 and view the actions of individual
buyers and sellers as being encapsulated in the price adjustments
for each good. More specifically, we imagine that there is a sepa-
rate, “virtual” price setter for each good in the market. Henceforth,
for ease of exposition, we describe price setters as if they were ac-
tual entities, although in reality they are virtual entities induced by
agents’ trades.
The Ongoing Market In order to have non-equilibrium trade, we
need a way to allocate excess supply and demand. To this end, we
suppose that for each good there is a warehouse which can store
excess demand and meet excess supply. This is most readily ana-
lyzed in the Fisher market setting, a special case of the exchange
market in which buyers and sellers are distinct. In a Fisher market,
a buyer’s initial allocation is just money and its desire is to pur-
chase non-money goods. A seller’s allocation is a single good and
its desire is for money alone. Without loss of generality, there is a
single seller for each good, who is therefore the price setter for that
good. The seller has a warehouse of finite capacity to enable it to
cope with fluctuations in demand. It will change prices as needed
to ensure its warehouse neither overfills nor runs out of goods.

The market consists of a set G of n goods and a set B of m buy-
ers. The market repeats over an unbounded number of time inter-
vals called days. Each day, seller of good i (called seller i) receives
wi new units of good i, and buyer ` is given v` money, 1 ≤ ` ≤ m.
As before, each buyer ` has a utility function u`(x1`, · · · , xn`)
expressing its preferences. Each day, buyer ` selects a maximum
utility basket of goods (x1`, · · · , xn`) of cost at most v`. Each
seller i provides the demanded goods

Pm
`=1 xi`. The resulting ex-

cess demand or surplus,
Pm

`=1 xi` − wi, is taken from or added to
the warehouse stock. Seller i has a warehouse of capacity ci.

Given initial prices p◦i , warehouse stocks s◦i , where 0 < s◦i < ci,
1 ≤ i ≤ n, and ideal warehouse stocks sF

i , 0 < sF
i < ci, the task

is to repeatedly adjust prices so as to converge to equilibrium prices
with the warehouse stocks converging to their ideal values. We let
si denote the current contents of warehouse i, and hi = si − sF

i

denote the excess warehouse reserves.
The difficulty with the problem as stated is that the initial prices

could be arbitrarily low and hence demand arbitrarily high, thereby
causing the seller(s) to run out of stock. To avoid this, we allow
4Equilibria exist under quite mild conditions (see [19] §17.C, for
example).
5See Varian [28] §21.5.



sellers to change prices sufficiently often. This entails measuring
demand on a finer scale than day units. We take a very simple
approach: we assume that each buyer spends their money at a uni-
form rate throughout the day. (Equivalently, this is saying that buy-
ers with collectively identical profiles occur throughout the day,
though really similar profiles suffice for our analysis.) Likewise,
if one supposes there is a limit to the granularity, this imposes a
limit on how extreme the initial prices can be for convergence to be
assured.
Market Properties In an effort to capture the distributed nature of
markets and the likely limited computational power of individual
interactions and consequently of each of the virtual price setters,
we impose several constraints on procedures we wish to consider:

1. Limited information: the (virtual) price setter for good i knows
only the price, supply, and excess demand of good i, both
current and past history. Thus the price updates can depend
on this information only. Notably, this precludes the use not
only of other prices or demands, but also of any information
about the specific form of utility functions.

2. Simple actions: The price setters’ procedures should be sim-
ple.

3. Asynchrony: Price updates for different goods are allowed to
be asynchronous.

4. Fast Convergence: The price update procedure should con-
verge quickly toward equilibrium prices from any initial price
vector.

We call procedures that satisfy the first three constraints local, by
contrast with centralized procedures that use more complete (global)
information about the market.

Next, we discuss the motivations for these constraints.
Constraint (1) stems from the plausible assertion that not every-

thing about the market will be known to a single price setter. While
no doubt some information about several goods is known to a price
setter, it is a conservative assumption to assume less is known, for
any convergence result carries over to the broader setting. Further,
it is far from clear how to model the broader setting.

Constraint (2), simplicity, is in the eye of the beholder. Its pres-
ence reflects our view that without further information, this is both
generally applicable and plausible.

Constraint (3), asynchrony, is an inherent property of indepen-
dent price adjustments. Since the price setter of good i reacts only
to trade in good i, the price adjustment of good i occurs indepen-
dently of other price adjustments.

Constraint (4) arises in an effort to recognize the dynamic na-
ture of real markets, which are subject to changing supplies and
demands over time. However, surely much of the time, markets are
changing gradually, for otherwise there would be no predictability.
A natural approximation is to imagine fixed conditions and seek to
come close to an equilibrium in the time they prevail — hence the
desire for rapid convergence.

1.2 Our Contribution
We describe new and natural local price update protocols that

converge quickly toward equilibrium prices starting from arbitrary
initial prices: the longer they run, the closer they come. To specify
this more precisely we need to define the computational model, our
complexity measure, and our measure for approximation quality.

Computational model Since we are proposing a model for how
a market might reach equilibrium, instead of how one might com-
pute an equilibrium given all the information about the market, our

computational model is a bit different from the standard computer
science model. Our model is based on iterations, defined below.

Iteration r:

1. Price updates Simultaneously for each good i in some sub-
set Gr of goods, the price setter for good i updates the price
of good i using knowledge only of pi, zi, and the history of
pi and zi.

2. Demand updates Given new prices pr , agents compute the
wealth they could achieve by selling all their goods. Ideally,
agents express their interest in a set of goods that maximizes
their utility subject to their current wealth. We relax this re-
quirement by allowing aggregate demand to depart from this
optimal value as follows: for an input parameter σ > 0, real-
ized demand yi(p) for good i satisfies 1

1+σ
≤ yi(p)

xi
≤ 1+σ,

where xi(p) is the demand if each agent maximizes his or
her utility. This allows for suboptimal behavior on the part
of the agents, as well as for a non-exact aggregation pro-
cess. We call this the behavior of σ-approximate optimizers.
Regardless of whether we assume exact or approximate op-
timization by the agents, utility functions are revealed only
implicitly and partially through the aggregate demands for
goods subject to a price vector.

It might seem more natural that the price setter for a good i that
has not updated the price in the previous iteration would use an
old value of the excess demand, or some convex combination of
the excess demands seen since the last price update. Our analysis
works for any of these variants. This provides further evidence that
the update procedure proposed here is robust.

Complexity measure In the One-Time market, as is standard for
asynchronous algorithms, we measure the complexity in rounds.
The basic unit of time is a price update iteration as specified above.
A round comprises a minimum length sequence of iterations in
which every price updates at least once. The rounds are specified
uniquely by defining them beginning from a fixed start time.

In the Ongoing Market, we will require each price to be updated
at least once a day, and then a day has the same role as the round in
the One-Time market.6

b-Bounded asynchrony Sometimes it is useful to limit the extent
of the asynchrony. We define b-bounded asynchrony to impose the
requirement that in a single round any price updates at most b times.

Approximation quality The main approach in the Computer Sci-
ence literature has been to define the quality of an allocation x as
1 − ε = minl∈A{ul(xl)/ul(Optl)}, where Optl is agent l’s pre-
ferred affordable allocation at the prevailing prices. This does not
seem a feasible approach in our setting, where no allocation mecha-
nism is specified, where there is no direct knowledge of the agents’
utilities, and our algorithms are just responding to excess demands
and not to the degree to which agents wish to change their alloca-
tions. More generally, the dependence of the approximation criteria
on u could be viewed as problematic: The role of u is to describe
a preference order on allocations. Different u give the same pref-
erence order, but widely varying approximation guarantees accord-
ing to the above measure. Instead, we simply measure the distance

6This requirement is only necessary if we are interested in the con-
vergence of prices to the equilibrium of a market that includes all
the goods. We could omit some goods from this daily update re-
quirement, but then the best we could hope for is that the market
converges to an equilibrium on a submarket of the remaining goods
and remaining funds not spent on the excluded goods.



from the equilibrium prices, p∗i , directly: maxi |p∗i − pi|/p∗i .7

Our update algorithms For the One-Time market, we analyze
protocols where price setters use the rule

pi ← pi(1 + λi min{1, zi/wi}). (1)

The price of money remains at one. This is a new price update rule.
It differs significantly from the update suggested by Uzawa [27] in
that it scales a bounded excess demand by the current price. These
differences are crucial for enabling a proof of rapid convergence. In
particular, the min term prevents overreaction to large values of zi;
these can be unbounded in their effect in Uzawa’s algorithm. The
scaling by pi can also improve the rate of convergence significantly.

For the Ongoing Market, we need to clear the warehouse excess;
however, if we try to do it all in one day, this will cause prices to
overreact. Instead, we use a target demand of exi = wi + κihi,
where κi is a suitable parameter to be specified. We define ezi =
xi − exi. Here, our price setters use the rule:

pi ← pi(1 + λi min{1, z̃i/wi}). (2)

We begin by analyzing the protocol in the One-Time market
when λi is fixed for all goods i, and given by a simple charac-
teristic of the market. Our motivation for this is two-fold. First, in
stable markets, it seems reasonable that the appropriate step sizes
for the price adjustments are known (within constant factors). Sec-
ond, such an analysis has not been done before, and it is helpful to
understand this case first.

Then, again for the One-Time market, we analyze an oblivious
protocol where the appropriate choice of λi is not known at the
start, and is therefore repeatedly adjusted to ensure that it is even-
tually small enough for convergence.

Finally, we analyze the non-oblivious protocol in the Ongoing
Market.

The performance of all algorithms depends on several global pa-
rameters of the market. These relate to how effectively surpluses
and scarcities signal the level of price inequities. The parameters
are denoted by α, β, E, where α, β ≤ 1 and E ≥ 1, and are dis-
cussed in further detail in Section 2.1.

In suitable markets (specified in Section 3), we show that in One-
Time markets our first algorithm improves the accuracy of the least
accurate price by at least one bit in O(E/(αβ)) rounds. (For small
prices, this means doubling the price; for large ones, this means
halving it; and for prices pi close to equilibrium price p∗i , this
means halving |p∗i − pi|.) We can show that we show that there are
examples for which this complexity bound is tight for our update
procedures. In Ongoing Markets, the performance is analogous,
but the improvement is to whichever is worse, the warehouse ex-
cess or the price imbalance, and it requires O((E/β)2) rounds for
a one-bit improvement (in the Fisher market setting, α = 1).

Our second algorithm is oblivious in that it does not assume
that a convergent value for λi is known. Instead the protocol for
good i gradually reduces the value of λi. To obtain a complex-
ity bound, we need to assume b-bounded asynchrony, and then we
obtain roughly the square of the above complexity. Specifically, a
d-bit improvement in accuracy takes O( b

α2β2
(E2 + d2)) rounds.

1.3 Paper Organization
In Section 2 we give some relevant definitions and describe the

parameters. In Section 3 we specify our protocols and results. Sec-
7One might be tempted to argue that one should measure the qual-
ity of an approximate equilibria in terms of the excess demands
rather than the error in the prices, but this will have no effect on the
rate of convergence, although it can change the percentage error.

tion 4 discusses prior work. In Section 5 we note some open ques-
tions. In Section 6 we sketch a proof of an upper bound on the rate
of convergence of the fixed protocol for the One-Time and ongoing
settings in Fisher markets (α = 1) with parameters β, E.

2. DEFINITIONS AND NOTATION
A market satisfies the gross substitutes property if for any good

i, increasing pi leads to increased demand for all other goods. The
market satisfies weak gross substitutes if the demand for every other
good increases or stays the same. Examples of markets that may
satisfy the gross substitutes property include markets of raw ma-
terials, energy, airline seats, toll roads. A broad enough market
will not satisfy this property. Consider, for example, the market for
bread and jam.

Next, we state some common concepts/assumptions regarding
the market problem.

Walras’ Law:8 For any price vector p,
P

i∈G zi(p)pi = 0.

Homogeneity of degree 0:9 For all price vectors p and scalars
a > 0, x(p) = x(ap).

Numeraire: Under the assumption of homogeneity, if there is at
least one equilibrium price vector, then there is an entire ray of
equilibria. It is convenient to use normalization to remove this du-
plication. A common form of normalization used in the economics
literature is the concept of the numeraire: choose one good as the
numeraire; set its price to 1; scale all other prices accordingly.10

We use money as the numeraire, and use the index $ to denote this
good. Usually the choice of a good to be the numeraire is viewed
as arbitrary. However, as we will see, the rate of convergence of
our algorithms also depends on how pervasively the numeraire is
present throughout the market, and consequently we do not view it
as an arbitrary choice.

Uniqueness of Equilibria: It is well-known that under normal-
ization, markets of gross substitutes have a unique equilibrium.11

Since we focus on markets satisfying gross substitutes, the markets
we consider have a unique equilibrium. Throughout the paper we
will use the superscript ∗ to denote a characteristic of an equilib-
rium. For example, p∗ is the equilibrium price vector; x∗ is the
equilibrium demand.

2.1 The Parameters
Here, we define the three parameters E, α, β appearing in our

analysis.

Elasticity of Demand and the Parameter E: The price elasticity
of demand is the fractional rate of change of demand with respect
to price: ∂xi/∂pi

xi/pi
.12 Under the assumption of gross substitutes, this

is negative. The parameter E is an upper bound on the absolute
value of this quantity over all goods and all prices:

E = −min
i,p

∂xi/∂pi

xi/pi

In markets of weak gross substitutes, E ≥ 1. In general E could be
unbounded (e.g., when utility functions are linear). Intuitively, it is
clear that the larger E is, the smaller the price adjustments should
be for a given level of excess demand; as a result λ needs to be
8See Mas-Colell [19], page 23.
9Ibid.

10Ibid., page 24.
11Ibid., page 613.
12Ibid., page 27.



chosen correspondingly small enough so that adjustments ensure
convergence. Were the value of the fractional derivative consistent
for all prices this would not matter. However, when E is large,
(∂xi/∂pi)/(xi/pi) cannot be large for all prices and goods13. The
outcome is an O(1/E) convergence speed.

Similarly, it would be reasonable to expect a lower bound on the
elasticity of demand to affect the convergence rate, and indeed it
does. However, if we simply bound this value, by say β, 0 < β ≤
1, analogous to the upper bound E, the rate of convergence appears
to depend linearly on |G|, the number of goods. To avoid this we
make a stronger assumption.

Normal Goods and the Parameter β: Good i is said to be normal
for agent l if ∂xil(p, vl)/∂vl ≥ 0, where here vl is the wealth
of agent l at prices p.14 We impose the slightly stronger con-
straint that states for all (p, vl(p)) there is a β > 0 such that
∂xil(p, vl(p))/∂vl(p) ≥ βxil/vl. In words, it says that the frac-
tional rate of change of demand with respect to wealth is lower
bounded by a strictly positive value. We call this the wealth effect.
More precisely, we define the parameter 0 < β as

β = min
l,i

∂xil(p, vl)/∂vl

xil/vl
.

In markets of weak gross substitutes, β ≤ 1. We conjecture that
the following alternate assumption leads to the same convergence
rate, again independent of |G|: β is simply a lower bound on the
elasticity and in addition each agent desires O(1) goods. (However,
this appears to need a different analysis.)

The Numeraire and the Parameter α: A separate parameter αi

is defined for each good i. To calculate αi, determine the wealth
used to purchase good i; αi is the fraction of this wealth that came
from the initial allocation of money (the numeraire), evaluated at
equilibrium prices. Formally,

αi =
1

wi

X
l

x∗ilw$l

vl(p∗)
.

We then define α = mini αi.
To see why the α could have a natural effect on the convergence

rate in markets with a numeraire (such as money), consider the fol-
lowing example market: a market in which there is no allocation
of money. Then doubling all prices (given homogeneity of degree
zero) would have no effect on demand. It is now plausible, and
turns out to be the case, that if only very little money is present
in the market (i.e. at equilibrium, the value of the money is very
small compared to that of the other goods), then the effect of price
changes on demand is muted (or viewed inversely, even if the prices
are quite far from equilibrium, the excess demands, and hence the
signal they provide, are small).

We note that in markets with CES utilities15, E is a parameter of
the utility (sometimes denoted s) and β = 1, while in markets with
Cobb-Douglas utilities E = 1 and β = 1.

13For if E > 1 for all prices and goods, imagine starting at equilib-
rium prices and then reducing the price for one good; eventually all
interested buyers would be purchasing only that good; any further
price reductions would induce a rate of change of demand for that
good with E ≤ 1.

14See Mas-Colell [19], p. 25. This is considered a reasonable con-
straint for broad categories of goods, such as “food”: i.e. as wealth
increases, spending on food generally increases, although spending
on specific types of food may decrease.

15ibid., p. 97.

3. PROTOCOLS AND RESULTS
Our convergence result depends on a natural, but slightly techni-

cal, notion of distance of a price to the equilibrium price. We define
the distance between prices pi and p∗i to be p∗i

pi
if p∗i ≥ 3pi,

p∗i −pi

p∗i

if pi ≤ p∗i < 3pi, and pi−p∗i
p∗i

if p∗i < pi.16 The motivation for this
definition is that if there is a big gap between pi and p∗i , then our
goal is to reduce the ratio, while if pi is close to p∗i , then our goal
is to reduce their difference. We let η(pi) denote this distance for
good i, and η(p) = maxi η(pi).

The ideal case for our update rule occurs in the One-Time Fisher
Market where all buyers have Cobb-Douglas utilities. That is, each
buyer wants to spend preset fractions of its wealth on specified
goods (e.g. 5% on Good 1, 15% on Good 2, etc. for Buyer 1, 10%
on Good 1 etc. for Buyer 2, . . .). In this setting α = β = E = 1,
and if each λi = 1, our protocol converges in one step.

In general, 0 ≤ α, β ≤ 1, and E ≥ 1. The values of these pa-
rameters indicate the divergence of the market from the ideal case,
and the greater the divergence, the slower the convergence. We
have already discussed why the performance of tatonnement algo-
rithms are likely to depend on E and β, and we have lower bound
examples showing that the analysis in the one-time market is tight
with respect to all three parameters simultaneously.

One-Time Market Results
THEOREM 3.1 (UPPER BOUND). In the One-Time Market, the

price update protocol given by (1), in weak gross substitutes mar-
kets with parameters α, β, E, and initial prices p◦ > 0, yields
price vector p satisfying η(p) ≤ δ in O( 1

αβλ
(log η(p◦)

δ
)) rounds,

where λi ≤ 1
2E−1

for all i, and λ = mini λi.

Although prior work has shown that for suitably small choices
of λi there is a tatonnement-style price update protocol that con-
verges to equilibrium prices, there has been no prior successful
effort to devise and analyze a protocol for which convergence is
rapid. Theorem 3.1 provides the first polynomial convergence guar-
antee for any tatonnement-style protocol with independent price
updates, even with λi at a fixed value 17.

As the following theorem asserts, this bound is tight for the fixed
protocol defined by (1).

THEOREM 3.2 (LOWER BOUND). For all 1
3
≥ α > 0, 1 ≥

β > 0, E ≥ 1, in weak gross substitutes markets with parameters
α, β, E, there are initial prices p◦ > 0 such that for any final
prices p satisfying η(p) ≤ δ, the price update procedure takes
Ω( 1

αβλ
(log η(p◦)

δ
)) rounds in the One-Time Market setting.

If the buyers are σ-approximate optimizers as allowed by our
computational model, the price updater does not learn zi = xi−wi,
but only the apparent demand yi. Thus the update rule becomes

pi ← pi(1 + λi min{1,
yi − wi

wi
}). (3)

16The combination of the assumptions of weak gross substitutes and
the wealth effect prevent p∗i = 0. To see this, start with equilibrium
prices and reduce all prices (except money) by factor f > 1. The
demand for all goods other than money increases by at least fβ ,
including the goods with price zero. But the price of these goods
has not changed, and other prices have only decreased. This con-
tradicts the weak gross substitute property. Accordingly, it seems
reasonable to assume that p◦ > 0.

17It might not be necessary that λi be as small as stated in the the-
orem for all i to get convergence. This depends on the individual
changes in rates of demand with respect to price.



Now prices converge to an interval [pL,pH ], where pL are the
equilibrium prices if the estimates yi are always maximized, and
pH are the equilibrium prices for minimum estimates. We let η(pi)
denote the distance from pi to the nearer of pL and pH if it outside
the interval, and set it to 0 if pi lies within the interval.

THEOREM 3.3 (APPROXIMATE OPTIMIZERS). In the One-Time
Market, the price update protocol given by (3), in weak gross sub-
stitutes markets with parameters α, β, E, initial prices p◦ > 0, and
σ-approximate optimizers, for σ < (1−α)−β−1, yields price vec-
tor p satisfying η(p) ≤ δ in O( 1

[1−(1−α)(1+σ)1/β ]βλ
(log η(p◦)

δ
))

rounds, where λi ≤ 1
2E−1

for all i, and λ = mini λi.

If the market is liable to change, it is helpful to have a more
flexible update protocol. We consider the following. To start, λi =
1
2

. Let ni be the number of updates to pi.

pi ← pi +
1

2dlog4 nie
pi min{1,

zi

wi
} (4)

THEOREM 3.4. [Oblivious Market] In the One-Time oblivious
market, the price update protocol (4) with b-bounded asynchrony,
in weak gross substitutes markets with parameters α, β, E, and ini-
tial prices p◦ > 0, yields price vector p satisfying η(p) ≤ δ after
O( b

αβ
(E + log max{1,η(p◦)}

δ
)2) rounds.

It is possible to consider the protocols for the One-Time Markets
as algorithms that could be used to compute equilibria. In this case,
our analysis simplifies, as we can assume synchrony. Thus, the
notion of rounds is not needed and the complexity revolves around
iterations in which the price of each good is updated exactly once.
The parameter b drops out. It is interesting to note that viewed
in this context the number of iterations is independent of both the
number of goods and the number of agents. This contrasts with
prior work on tatonnement algorithms (e.g. [5]). Admittedly, our
analysis does involve other parameters that are absent from these
prior analyses.

Ongoing Market Result To state our final result, it is helpful to
extend the definition of η to the vector s of warehouse contents,
with the distance to sF being measured by η. We first refine the up-
date rule given in (2) to allow pi to be updated several times during
the day, and to allow use of stale information about the demands
and the warehouse stock levels. Recall that exi = wi + κihi. Let
ta, tb be times since the last update to pi. Then

p′i ← pi(1 + λi min{1,
xi(ta)− exi(tb)

wi
}) (5)

THEOREM 3.5. Given initial prices po and initial warehouse
contents so, the price update (5) results in a price that satisfies
η(p) ≤ δ and warehouse contents satisfing η(s) ≤ δ, in

O

„
1

βλ
[log η(po) + log E] +

„
1

κ
+

1

βλ

« „
log

1

β
+ log

1

δ

««
days, if κ = O(minj{

“
β
E

maxj
wj

cj

”
, λβ2

E
}) and λ = O( 1

E
).

4. PREVIOUS WORK
To the best of our knowledge, asynchronous price update al-

gorithms have not been considered previously. Further, there has
been no complexity analysis of even synchronous tatonnement al-
gorithms with this type of limited information. While Uzawa [27]
gave a synchronous algorithm of this type, he only showed conver-
gence, and did not address speed of convergence.

The existence of market equilibria has been a central topic of
economics since the problem was formulated by Walras in 1874
[30]. Tatonnement was described more precisely as a differential
equation by Samuelson [23]:

dpi/dt = µizi. (6)

The µi are arbitrary positive constants that represent rates of adjust-
ment for the different prices; they need not all be the same. Arrow,
Block, and Hurwitz, and Nikaido and Uzawa [1, 2, 21] showed that
for markets of gross substitutes the above differential equation will
converge to an equilibrium price.

Unfortunately, for general utility functions (i.e. that do not lead
to gross substitutability), the equilibrium need not be stable and
the differential equation (and thus also discretized versions) need
not converge [24]. Partly in response, Smale described a conver-
gent procedure that uses the derivative matrix of excess demands
with respect to prices [26]. Following this, Saari and Simon [22]
showed that any price update algorithm which uses an update that
is a fixed function of excesses and their derivatives with respect to
prices needs to use essentially all the derivatives in order to con-
verge in all markets. However, this is viewed as being an excessive
amount of information, in general.

There are really two questions here. The first is how to find an
equilibrium, and the second is how does the market find an equi-
librium. The first question is partially addressed by the work of
Arrow et al. and Smale, and addressed further in papers in opera-
tions research (notably Scarf [25] gives a (non-polynomial) algo-
rithm for computing equilibrium prices), and theoretical computer
science, where there are a series of very nice results demonstrating
equilibria as the solutions to convex programs, or describing com-
binatorial algorithms to compute such equilibria exactly or approx-
imately. (An early example of a polynomial algorithm for comput-
ing market equilibria for restricted settings is [9]. An extensive list
of references is given in the surveys [6, 29].)

We are interested in the second question. The differential equa-
tions provide a start here, but they ignore the discrete nature of
markets: prices typically change in discrete increments, not con-
tinuously. In 1960, Uzawa showed that there is a choice of λ for
which an obvious discrete analog of (6) does converge [27]. How-
ever, determining the right λ depends on knowing properties of the
matrix of derivatives of demand with respect to price, or in other
words, this requires global information.

More recently, three separate groups have proposed three dis-
tinct discrete update algorithms for finding equilibrium prices and
showed that their algorithms converge in markets of gross substi-
tutes [18, 8, 5]. However, all of these algorithms use global infor-
mation. With the exception of [5], none of this work gives (good)
bounds on the rate of convergence. The algorithm in Codenotti et
al. [5] describes a tatonnement algorithm (albeit not asynchronous);
however, it begins by modifying the market by introducing a ficti-
tious player with some convenient properties that capture global
information about the market and have a profound effect on market
behavior. Even in this transformed setting, the price update step
uses a global parameter based on the desired approximation guar-
antee, and starts with an initial price point that is restricted to lie
within a bounded region containing the equilibrium point. Trans-
lating their algorithm back into the real market, one can see that it
does not meet our definition of simplicity or locality.

There are some auction-style algorithms for finding approximate
equilibria which also have a distributed flavor but depend on buyer
utilities being separable over the set of goods [12, 13].18 However,

18These algorithms start their computation at a non-arbitrary set of
artificially low prices; global information is used for price initial-



these algorithms are not seeking to explain market behavior and not
surprisingly do not obey natural properties of markets.

The design and analysis of procedures and convergence to equi-
libria has been a recent topic of study for game theoretic problems
as well. Examples include studying convergence in some network
routing and network design games [4, 11, 14, 20]. In partial con-
trast, it is known that finding equilibria via local search (e.g., via
best response dynamics) is PLS-complete in many contexts [17,
10]. Recently, Hart and Mansour [16] gave communication com-
plexity lower bounds to show that in general games, players with
limited information require an exponential (in the number of play-
ers) number of steps to reach an equilibrium.

The design and analysis of convergent asynchronous distributed
protocols has also arisen in network routing, for example [15], and
in high latency parallel computing [3], and these lines of work are
perhaps the most similar to ours.

5. REMARKS AND FURTHER QUESTIONS

1. In the Ongoing Market, buyers are myopic optimizers; and
no assumption is made that sellers are strategic.

2. Discreteness: It would be interesting to extend this work to
markets with indivisible goods and discrete prices, for this
seems more realistic. (See [7] for some hardness results.)

3. Can this work be extended to incorporate producers?

4. Can the analyses be extended to classes of markets not obey-
ing weak gross substitutes? While the current analysis de-
pends on this assumption, it is not clear that it is necessary.
But also note that in markets with linear utilities, for exam-
ple, our protocol will not converge to equilibrium prices.

5. Devise rapidly convergent protocols that allow the λi to in-
crease as well as decrease.

6. It seems plausible that our analysis extends to the Ongoing
market, in the Arrow-Debreu setting with parameter α > 0.
There is a modeling issue though: what do warehouse stocks
correspond to? In markets for which each good has a market
maker, these can be seen as the stocks they hold.

7. In the Arrow-Debreu market without a numeraire we believe
that our algorithm converges to the ray of equilibria at the
same rate as for the One-Time Fisher market, but it is not
clear what is the meaning of this model in the Ongoing set-
ting.

6. PROOFS OF CONVERGENCE
Here we provide sketches of the proofs of our upper bound re-

sults.
One-Time Market. For simplicity of notation, we assume through-
out this section and the remainder of the paper that wi = 1 for all
goods.19 The implications of this is that now the updates have the
form

pi ← pi(1 + λi min{zi, 1}); (7)

the excess demand zi = xi − wi ≥ 0 − 1 = −1 for all goods i,
for any set of prices; and αi =

P
l

x∗ilw$l

vl(p
∗)

.

ization; and they work with a global approximation measure —
each price update uses the goal approximation guarantee in its up-
date.

19This is without loss of generality and may be attained by changing
the units of good i.

We want to show that the update rule (7) “improves” the worst
price by an O(αβλ) factor in one round. In particular, this means
that if zi is small, then it is roughly proportional to p∗i −pi

p∗i
. To

demonstrate this we bound xi by a polynomial in pi
p∗i

which yields

an O(
|p∗i −pi|

p∗i
) bound for |zi| when pi is close to p∗i .

LEMMA 6.1. Let p,q with q ≤ p be two price vectors. Then

xi(q)

xi(p)
≤

„
pi

qi

«E

.

PROOF. Using the definition of E, we have that ∂
∂pi

(pE
i xi) =

EpE−1
i xi + pE

i
∂xi
∂pi
≥ EpE−1

i xi − EpE−1
i xi = 0. Thus pE

i xi

is an increasing function of pi. Consequently, for p′i < pi and all
other prices fixed, and corresponding demand x′i, (p

′
i)

Ex′i ≤ pE
i xi

or x′i
xi
≤ ( pi

p′i
)E .

Now, let eq be the price vector q with qi replaced by pi. By
weak gross substitutes, xi(eq) ≤ xi(p). Thus xi(q)

xi(p)
≤ xi(q)

xi(eq)
≤

( pi
qi

)E .

LEMMA 6.2. Suppose that the wealth vl of buyer l is multiplied
by a ≥ 1 with no change in prices (e.g., by increasing wil uniformly
for all i). Let x′ denote the new demand and x the old demand.
Then x′il

xil
≥ aβ .

PROOF. Using the definition of β, we have that ∂
∂vl

(v−β
l xil) =

−βv−β−1
l xil+v−β

l
∂xil
∂vl
≥ −βv−β−1

l xil+βv−β−1
l xil = 0. Thus

v−β
l xil is an increasing function of vl. Consequently, (avl)

−βx′il ≥
v−β

l xil or x′il
xil
≥ aβ .

The important component of our analysis is to consider the ratio
of pi to p∗i and show that over all i the extremes of these ratios get
closer to 1 as the protocol proceeds. With this in mind, and without
loss of generality, let 1 = argmini

pi
p∗i

and n = argmaxi
pi
p∗i

. Also,
let r = p∗1/p1 and ri = (p∗1/p1)/(p∗i /pi). Note that ri ≥ 1.

LEMMA 6.3. If r ≥ 1, xi ≥ rβ/rE
i .

Instead of proving this directly, we prove a more general lemma
that will imply this and be useful later.

LEMMA 6.4. Let p and p′ satisfy pi = abip
′
i for all i ∈ G;

and let x′ and x be the corresponding demands.
(i) If a ≤ 1 and bi ≥ 1, ∀i, then xi ≥ a−βb−E

i x′i.
(ii) If a ≥ 1 and bi ≤ 1, ∀i, then xi ≤ a−βb−E

i x′i.

PROOF. We argue (i). (ii) is symmetric. We change p′ to p
in several steps, and track the change in demand. At prices p′a,
the wealth of each buyer is (relatively) increased by 1

a
. Thus by

Lemma 6.2, the new demand is at least x′a−β . Then, increas-
ing price of i by bi, reduces demand for i by at most b−E

i , by
Lemma 6.1. By weak gross substitutes, increasing the other prices
to their actual values only increases xi.

The proof of Lemma 6.3 follows from Lemma 6.4(i) by choosing
p′ = p∗, a = 1

r
and b = ri.

LEMMA 6.5. Let λi ≤ 1/(2E − 1) for all i, and let λ =
miniλi. In Fisher markets, after one update to pi (yielding p′i),
(i) if p1 ≥ p∗1 then p′i ≥ p∗i ; and if p1 < p∗1 then p′i/p∗i ≥
p1/p∗1[1 + λ min{1, (

p∗1
p1

)β − 1}];
(ii) if pn ≤ p∗n then p′i ≤ p∗i ; and if pn > p∗n then p′i/p∗i ≤
pn/p∗n[1 + λ (

p∗n
pn

)β − 1].



PROOF. If r ≥ 1 by Lemma 6.3, x1 ≥ rβ and xi ≥ rβ/rE
i .

Then, it suffices to show that

p′i
p∗i

=
pi

p∗i
[1 + λ(xi − 1)] ≥ p1

p∗1
[1 + λ min{1, rβ − 1}].

Let s = rβ . It then suffices that

f(s, ri) = ri[1 + λ(s/rE
i − 1)]− [1 + λ min{1, s− 1}] ≥ 0.

Now df
ds
≤ 0 for s ≤ 2 so f is minimized at s = 2. f(2, ri) =

ri[1+2λ/rE
i −λ)]−(1+λ). df

dri
= 1+2λ/rE

i −λ−2Eλ/rE
i ≥ 0

if (2E − λ) ≤ 1. Then f is minimized at ri = 1 with f(2, 1) = 0
as desired.

For r < 1, it suffices that pi
p∗i

[1 + λ(xi − 1)] ≥ 1, or that

(ri/r)[1 + λ(r/ri)
E − 1] ≥ 1, i.e. that f(1, ri/r) ≥ 0. But

this is already shown, as ri/r ≥ 1.
The argument for pn is similar, but simpler.

PROOF. (Of Theorem 3.1 for α = 1.) We show the rate of con-
vergence of p1 toward p∗1. By Lemma 6.2, if (

p∗1
p1

)β ≥ 2, then

mini
p′i
p∗i
≥ p1

p∗1
(1 + λ). Thus while (

p∗1
p1

)β ≥ 2, in O(1/λ) rounds,
p′i
p∗i

doubles. Otherwise, if p1 ≤ p∗1, mini
p′i
p∗i
≥ p1

p∗1
[1+λ(( p1

p∗1
)β −

1)]. Then„
p1

p∗1

«β

=

„
1− p∗1 − p1

p∗1

«−β

≥ 1 + β
p∗1 − p1

p∗1

as p∗1 ≥ p1. So mini
p′i
p∗i
≥ p1

p∗1
[1+λβ(

p∗1−p1
p∗1

)]. Hence mini
p∗i −p′i

p∗i

≤ p∗1−p1
p∗1

[1+λβ(
p∗1−p1

p∗1
)]. Thus, in O(1/(λβ)) rounds, mini

p∗i −pi

p∗i
is reduced by half.
A similar argument applies to the improvement to maxi

pi−p∗i
p∗i

.

In the setting of σ-approximate demand, the above arguments are
easily modified to show that after one price update if p1 ≥ pL

1 , then

p′i ≥ pL
i ; and if p1 < pL

1 , then p′i ≥ pi[1+λ min{1, (
pL
1

p1
)β−1}];

while if pn ≤ pH
n , then p′i ≤ pH

i ; and if pn > pH
n , then p′i ≤

pi[1 + λ (
pH

n
pn

)β − 1}]. Theorem 3.3 for α = 1 now follows.
We can show this all works when using stale information, which

appears to be the natural approach in an asynchronous setting, Sup-
pose that instead of using the current value of zi for calculating the
update to pi, the price setter uses a value of zi from some point
since the last update to pi, or any convex combination of such
values. Then, the arguments presented above are readily modified
to cover this case, but instead of assuring progress from round to
round, they now assure progress every second round.

In the oblivious setting, initially prices may veer off in the wrong
direction due to too large λ. Eventually all λi become small enough,
and then we show that there is a long enough phase of rounds when
the smallest λi is stable so that sufficient progress is achieved in
moving prices towards the equilibrium.

Ongoing Market. For simplicity in the analysis we set all κi

equal: κi = κ.
Our analysis proceeds in two phases. First, the prices enter an

interval [pL
i /(1 + ν), pH

i (1 + ν)], 1 ≤ i ≤ n, where pH
i are the

prices achieving demand wi−κsF
i , and pL

i those achieving demand
wi + κ(ci− sF

i ). The analysis for this phase is similar to that used
to account for approximate optimizers.

LEMMA 6.6. Given an initial price vector po, the price vector
lies in the range [ 1

(1+ν)
pL, (1+ν)pH ] after O( 1

βλ
log η(po)

ν
) days.

For the second phase, our analysis proceeds in days. The behav-
ior of the current day is expressed in terms of parameters l,el, eν. The
corresponding parameters for the next day are l′,el′, eν′. We let ep de-
note the price vector attaining demand ex. We prove by induction
on the days, that the protocol maintains the following properties:

1. At the start of the day,

x∗i e−
el ≤ exi ≤ x∗i e

el. (8)

2. Let exi(t) denote the value of exi at time t. Let t1 ≤ t2 be
times in the current day and let t2 = t1 + τ , where 0 ≤ τ ≤
1. Then, exi(t1)e

−eντ ≤ exi(t2) ≤ exi(t1)e
eντ . (9)

3. Let t̂ be the time of the last update to pi in the previous day.
Then, epi(t̂)e

−l ≤ pi(t̂) ≤ epi(t̂)e
l. (10)

Let ρ = eν/β(1 − µ), ρ1 = 2E(l + ρ), ρ2 = ρ1+eνel , and ρ3 =
β
e
− 2ρ

λl
. We will show that we can set l′ = l(1−µ), el′ = el(1−µ),

and eν′ = eν(1 − µ), where µ = min{λρ3, κ
1−ρ2

e
} (see Lemmas

6.13 and 6.14).

LEMMA 6.7. Let t1 ≤ t2 be times in the current day and let
t2 = t1 + τ , where 0 ≤ τ ≤ 1. Then,epi(t1)e

−eντ/β ≤ epi(t2) ≤ epi(t1)e
eντ/β . (11)

PROOF. We show the first inequality. By Lemma 6.2, (9), and
weak gross substitutes,»

max
j

epj(t1)epj(t2)

–β

≤ exi(t2)exi(t1)
≤ eeντ .

LEMMA 6.8. Let t be a time in the current round.

e−ρ1 ≤ xi(t)exi(t)
≤ eρ1

PROOF. We show the second inequality. Let t′ be the start of the
current day. By Lemma 6.7 applied separately to each interval [t̂, t′]
and [t′, t], (10), and using the weaker value of eν/(1−µ) for today,
we have that e−l−ρ ≤ piepi

≤ el+ρ as τ ≤ 1. Let ef = maxj
pjepj

,

eg = maxj
epj

pj
at time t. Note that f + g ≤ ρ1/E. Applying

Lemma 6.4(ii) to change ep to p via a = ef and b = e−f−g and
noting that 1

efβ ≤ 1 yields the result.

COROLLARY 6.9. Let t be the current time and τ be t minus
the start of current day.

e−(ρ1+el+eντ) ≤ xi(t)

x∗i
≤ eρ1+el+eντ .

PROOF. Use (8) and (9) with Lemma 6.8.

Let x+
i denote the largest value of xi during the current round

and x−i the smallest one. Then the warehouse stocks grow by at
least (x∗i − x+

i )τ and at most (x∗i − x−i )τ during a length τ subin-
terval of the current round. Thus:

LEMMA 6.10. Let τ = t2 − t1.
(i) exi(t1)− exi(t2) ≤ κ(x+

i − x∗i )τ .
(ii) exi(t2)− exi(t1) ≤ κ(x∗i − x−i )τ.



LEMMA 6.11. Relation (9) holds for τ ≤ 1 if ρ1 + el + eν ≤ 1,
and κ(ρ1 + el + eν)(1 + eν/2) ≤ 1

e
eν(1− 1

2
(ρ1 + el + eν)).

PROOF. Here we show the second bound exi(t2) ≤ exi(t1)e
eντ .

Equivalently, exi(t2)− exi(t1) ≤ exi(t1)(e
eντ − 1).

By Lemma 6.10(ii), it suffices to show that κ(x∗i − x−i )τ ≤exi(t1) (eeντ − 1). By Corollary 6.9, x−i ≥ x∗i e−{ρ1+el+eντ}, so it
suffices to show that

κx∗i (1− e−ρ1−el−eν)τ ≤ exi(t1)(e
eντ − 1).

Then, it suffices to show that κ(ρ1+el+eν)τ ≤ e−
el−eν eντ , as ρ1 ≤ 1.

In turn, it suffices that κ(ρ1 + el + eν) ≤ eν/e as el + eν ≤ 1. But this
is true by assumption.

The appeal to Corollary 6.9 might appear to create a circularity
in the argument, but in fact there is no problem. Strictly, exi(t2) −exi(t1) = κ

R t2
t1

[x∗i − xi(t)]dt, and then we inductively substitute
from Corollary 6.9.

Simple calculus yields the following technical lemma.

LEMMA 6.12. Let 0 ≤ κ, x, η ≤ 1. Then

1. ex(1−ηκ/e) ≥ ex − κ(exη − 1).

2. e−x(1−ηκ/e) ≤ e−x + κ(1− e−xη).

3. ex(1+ηκ/e) ≤ ex + κ(1− e−xη).

LEMMA 6.13. If ρ2, κ,el ≤ 1, then el′ ≤ el [1− κ(1− ρ2)/e].

Let t1 be the time at the start of the current day.

PROOF. Case 1: exi(t1) ≥ x∗i . Let exi(t1) = x∗i e
el−δ . Note that

by (8), δ ≥ 0. By Lemma 6.8 and (9),

x−i ≥ x∗i e
el−δe−eν−ρ1 ≥ x∗i e

el−δ−ρ2el.
By Lemma 6.10(ii), exi(t1)−exi(t1+1) ≥ κx∗i (e

el(1−ρ2)−δ−1).
So exi(t1 + 1) ≤ exi(t1)− κx∗i (e

el(1−ρ2)−δ − 1)

≤ x∗i [e
el−δ − κ(e

el(1−ρ2)−δ − 1)]

≤ x∗i [e
el − κ(e

el(1−ρ2) − 1)].

The last inequality follows as the derivative of the previous right
hand side with respect to δ is negative for δ ≥ 0; it is:

x∗i [−e
el−δ + κe

el(1−ρ2)−δ] = −x∗i e
el−δ[1− κe−

elρ2 ] < 0.

So by Lemma 6.12(1), exi(t1 + 1) ≤ e
el[1−κ(1−ρ2)/e].

Case 2: exi(t1) ≤ x∗i . Details omitted.

LEMMA 6.14. l′ ≤ l(1−λβ
e

+ 2ρ
l
) if λeE ≤ 1, β max{2ρ, l} ≤el ≤ 1, el + ρ1 ≤ 1, and eρ1+el+eν − e

el ≤ 1.

PROOF. The update to pi uses the rule p′i = pi(1 + λ(xi−exi
x∗i

))

where xi = xi(ta) and exi = exi(tb), with ta, tb being times since

the last update to pi. Note that we are assuming
˛̨̨

xi−exi
x∗i

˛̨̨
≤ 1. By

Lemma 6.8, (8) and (9), this amounts to (eρ1 − 1)e
el+eν ≤ 1.

Let t1 be the time at the start of the current day. Without loss of
generality, let 1 = arg maxi

piepi(ta)
and let p1 = ep1(ta)el+ρ−r.

Case 1: pi(ta) = epi(ta)el+ρ−r−si .

Note that this implies that r+si ≤ 2l+2ρ. Applying Lemma 6.4(ii)
to change epi(ta) to pi(ta) using a = el+ρ−r and b = 1

esi yields

xi(ta)exi(ta)
≤ e−β[l+ρ−r]eEsi ≤ e−βl−βρ+Esi+βr (12)

By (9), exi(ta) ≤ exi(t1)e
|ta−t1|βρ ≤ exi(t1)e

βρ (note that ta

may occur in the previous round). Similarly,exi(ta)e−βρ ≤ exi(tb). Let t be the update time. Then

p′i(t) = pi(t)

»
1 + λ

„
xi(ta)− exi(tb)

x∗i

«–
≤ pi(t)

„
1 + λ

exi(t1)

x∗i

exi(ta)exi(t1)

»
xi(ta)exi(ta)

− exi(tb)exi(ta)

–«
≤ pi(t)

„
1 + λ

exi(t1)

x∗i

exi(ta)exi(t1)

h
e−βl+Esi+βr−βρ − e−βρ

i«

Case 1.1: βl ≥ Esi + βr.

p′i(t)epi(t)
≤ pi(t)epi(t)

{1 + λ
exi(t1)

x∗i

exi(ta)exi(t1)
[e−βl+Esi+βr−βρ

−e−βρ]}

≤ el+2ρ−r−si [1− λe−
ele−2βρ(1− e−βl+Esi+βr)]

using Case 1 assumption and Lemma 6.7 to bound pi(t)/epi(t), (8)
for exi(t1)/x∗i , and (9) for exi(ta)/exi(t1).

We differentiate w.r.t. si and then w.r.t. r to show that the right
hand side is maximized at si = 0 and r = 0; the derivative w.r.t. si

is:

−el+2ρ−r−si [1− λe−
ele−2βρ(1− e−βl+Esi+βr)

−λEe−
ele−2βρe−βl+Esi+βr]

≤ −el+2ρ−r−si [(1− λ)− λ(E − 1)]

≤ 0 if λE ≤ 1.

Differentiating with respect to r gives similar results. We obtain

p′i(t)epi(t)
≤ el+2ρ[1− λe−

ele−2βρ(1− e−βl)]

≤ el+2ρ−el−2βρ−βl
h
e

el+2βρ+βl − λ
“
eβl − 1

”i
≤ el+2ρ−el−2βρ−βle[el+2βρ+βl]−λ

e
βl

by Lemma 6.12(1), assuming el + 2βρ + βl ≤ 1

≤ el+2ρ−λβl/e

≤ el(1−λβ/e+2ρ/l).

Case 1.2: βl ≤ Esi + βr. Details omitted.

Case 2: pi = epi(ta)e−l−ρ+r+si . Details omitted.

LEMMA 6.15. The conditions of Lemmas 6.11, 6.13 and 6.14
hold if el = 8El ≤ 1

3
, eν = λβ2(1−µ)

4e
l, β ≤ 1, λ ≤ 1/eE, κ ≤

λβ2
65e2E

.

PROOF. The conditions that need to be met are:



ρ1 + el + eν ≤ 1 (from Lemma 6.11) (13)

κ(ρ1 + el + eν)(1 +
eν
2
) ≤ eν(1− (ρ1 + el + eν)/2)/e

(from Lemma 6.11) (14)

ρ2 =
ρ1 + eνel ≤ 1 (from Lemma 6.13) (15)

eρ1+eν+el − e
el ≤ 1 (from Lemma 6.14) (16)

The other constraints are subsumed by these. (13)–(16) are read-
ily verified given the constraints on l, el, eν, and κ.

The remaining issue is the requisite bound on κ in order that the
first round end with el and l small enough.

LEMMA 6.16. If κ ≤ β
144E

mini
wi
ci

, then l ≤ 1
24E

and el ≤ 1
3

at the start of the second phase,
after O[ 1

βλ
(log η(p0) + log E)] days.

PROOF. At all times the target demand for the ith good lies in
the range x∗i ± κci = x∗i (1 ± κci/wi). Let us rewrite this as
e−a ≤ exi

x∗i
≤ ea, for all i, for a suitable a. Then, by Lemma

6.2, e−a/β ≤ epi
p∗i
≤ ea/β , for all i. Since in the first phase pi

approaches the interval [epL
i , epH

i ] ⊆ [e−a/β epi, e
a/β epi] we readily

obtain that at the end of Phase 1, e−3a/β ≤ piepi
≤ e3a/β for all i

(set 1 + ν = ea/β in Lemma 6.6).
For (10), we need 3a/β ≤ 1

24E
. Hence ν = O(1/E), which

yields the stated running time by Lemma 6.6.
Finally, for all i, as a ≤ 1, it suffices to have κci/wi ≤ a/2,

which gives the stated bound on κ.

PROOF. (Of Theorem 3.5.) First, we note that ρ3 = β
2e

and
ρ2 ≤ 1

2
. Consequently, the improvement to l,eν and el in Phase 2

is by a factor of at least 1 − µ = min{θ(λβ), θ(κ)} per round.
Thus, in O(max 1

κ
, 1

λβ
) rounds the upper bounds of el+ρ − 1 on

maxi
epi−pi

pi
and on maxi

pi−epi
pi

halve, as do the upper bounds of

e
el+eν on maxi

x∗i −exiexi
and maxi

exi−x∗i
x∗i

.
By Lemma 6.2,

max
i

epi

p∗i
≤

„
max

i

x∗iexi

« 1
β

≤ 1−
„

x∗i − exi

x∗i

« 1
β

≤ 1 +
1

β

„
x∗i − exiexi

«
+

1

β

„
x∗i − exiexi

«e
el+ev

+ · · ·

≤ 1 +
1

β(1− eel+eν )

„
x∗i − exiexi

«
= 1 + O(

1

β
)

„
x∗i − exiexi

«
.

A similar bound holds for mini
epi
p∗i

. It follows that in at most an

additional O(log 1
β
) rounds, the same reduction to maxi

pi−p∗i
pi

as

to maxi
pi−epi

pi
is achieved and likewise to maxi

p∗i −pi

p∗i
compared

to
maxi

epi−piepi
. Thus using O

““
1
κ

+ 1
βλ

” “
log 1

β
+ log 1

δ

””
rounds

in the second phase, a price η(p) ≤ δ and a warehouse contents
η(s) ≤ δ are achieved. Lemma 6.16 bounds the cost of Phase
1.
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