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This paper continues the study, initiated by Cole and Fleischer in [Cole and Fleischer 2008], of the behavior
of a tatonnement price update rule in Ongoing Fisher Markets. The prior work showed fast convergence to-
ward an equilibrium when the goods satisfied the weak gross substitutes property and had bounded demand
and income elasticities.

The current work shows that fast convergence also occurs for the following types of markets:

— All pairs of goods are complements to each other, and
— the demand and income elasticities are suitably bounded.

In particular, these conditions hold when all buyers in the market are equipped with CES utilities, where
all the parameters ρ, one per buyer, satisfy −1 < ρ ≤ 0.

In addition, we extend the above result to markets in which a mixture of complements and substitutes
occur. This includes characterizing a class of nested CES utilities for which fast convergence holds.

An interesting technical contribution, which may be of independent interest, is an amortized analysis
for handling asynchronous events in settings in which there are a mix of continuous changes and discrete
events.
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1. INTRODUCTION
This paper continues the investigation, begun in [Cole and Fleischer 2008; Rastogi
2008] of when a tatonnement-style price update in a dynamic market setting could
lead to fast convergent behavior. This paper shows that there is a class of markets
with complementary goods which enjoy fast convergence; prior results applied only to
goods which are substitutes.

The impetus for this work comes from the following question: why might well-
functioning markets be able to stay at or near equilibrium prices? This raises two
issues: what are plausible price adjustment mechanisms and in what types of markets
are they effective?
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This question was considered in [Walras 1874], which suggested that prices adjust
by tatonnement: upward if there is too much demand and downward if too little. Since
then, the study of market equilibria, their existence, stability, and their computation
has received much attention in economics, operations research, and most recently in
computer science. A fairly recent account of the classic perspective in economics is
given in [McKenzie 2002]. The recent activity in computer science has led to a con-
siderable number of polynomial time algorithms for finding approximate and exact
equilibria in a variety of markets with divisible goods; we cite a selection of these
works [Codenotti et al. 2005b, 2006; Devanur and Vazirani 2004; Devanur et al. 2002;
Devanur and Kannan 2008; Garg and Kapoor 2004; Jain and Vazirani 2007; Orlin
2010; Vazirani 2010; Vazirani and Yannakakis 2010; Zhang 2010]. However, these al-
gorithms do not seek to, and do not appear to provide methods that might plausibly
explain these markets’ behavior.

We argue here for the relevance of this question from a computer science perspec-
tive. Much justification for looking at the market problem in computer science stems
from the following argument: If economic models and statements about equilibrium
and convergence are to make sense as being realizable in economies, then they should
be concepts that are computationally tractable. Our viewpoint is that it is not enough
to show that the problems are computationally tractable; it is also necessary to show
that they are tractable in a model that might capture how a market works. It seems im-
plausible that markets with many interacting players (buyers, sellers, traders) would
perform overt global computations, using global information.

Recently, a different perspective was put forward in [Echenique et al. 2011], which
argues that the fundamental question is whether computationally tractable instances
of the model can fit rational data sets. But at this point, to the best of our knowledge,
there are no results for the market problem.

It has long been recognized that the tatonnement price adjustment model is not
fully realistic: for example, [Fisher 1972] states: “such a model of price adjustment
· · · describes nobody’s actual behavior.” Nonetheless, there has been a continued in-
terest in the plausibility of tatonnement, and indeed its predictive accuracy in a non-
equilibrium trade setting has been shown in some experiments [Hirota et al. 2005].

Plausibly, in many consumer markets buyers are myopic: based on the current
prices, goods are assessed on a take it or leave it basis. It seems natural that this
would lead to out of equilibrium trade. This is the type of setting which was studied
in [Cole and Fleischer 2008] and in which we will address our main question: under
what conditions can tatonnement style price updates lead to convergence?

1.1. The Market Problems
The One-Time Fisher Market1 A market comprises a set of goods G =
{G1, G2, · · · , Gn}, and two sets of agents, buyers B = {B1, B2, · · · , Bm}, and sellers
S. The sellers bring the goods G to market and the buyers bring money with which to
buy them. The trade is driven by a collection of prices pi for good Gi, 1 ≤ i ≤ n. For
simplicity, we assume that there is a distinct seller for each good; further it suffices
to have one seller per good. The seller of Gi brings a supply wi of this good to market.
Each seller seeks to sell its goods for money at the prices pi.

Each buyer B` comes to market with money b`; B` has a utility function
u`(x1`, · · · , xn`) expressing its preferences: if B` prefers a basket with xi` units to the
basket with yi` units, for 1 ≤ i ≤ n, then u`(x1`, · · · , xn`) > u`(y1`, · · · , yn`). Each buyer

1The market we describe here is often referred to as the Fisher market. We use a different term because we
want to distinguish it from the Ongoing Fisher Market model described below.
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B` intends to buy goods costing at most b` so as to achieve a personal optimal combi-
nation (basket) of goods.

Prices p = (p1, p2, · · · , pn) are said to provide an equilibrium if, in addition, the
demand for each good is bounded by the supply:

∑m
`=1 xi` ≤ wi, and if pi > 0 then∑m

`=1 xi` = wi. The market problem is to find equilibrium prices.2 The symbol ∗ mark-
ing a variable will be used to denote the value of the variable at equilibrium.

The Fisher market is a special case of the more general Exchange or Arrow-Debreu
market.

While we define the market in terms of a set of buyers B, all that matters for our
algorithms is the aggregate demand these buyers generate, so we will tend to focus
on properties of the aggregate demand rather than properties of individual buyers’
demands.
Standard notation xi =

∑
l xil is the demand for good i, and zi = xi−wi is the excess

demand for good i (which can be positive or negative). si = pixi is the total spending on
good i by all buyers. Note that while w is part of the specification of the market, x and
z are functions of the vector of prices as determined by individual buyers maximizing
their utility functions given their available money. We will assume that xi is a function
of the prices p, that is a collection of prices induce unique demands for each good.

In order to have a realistic setting for a price adjustment algorithm, it would appear
that out-of-equilibrium trade must be allowed, so as to generate the demand imbal-
ances that then induce price adjustments. But then there needs to be a way to handle
excess supply and demand. To this end, we suppose that for each good there is a ware-
house which can meet excess demand and store excess supply. Each seller has a ware-
house of finite capacity to enable it to cope with fluctuations in demand. It changes
prices as needed to ensure its warehouse neither overfills nor runs out of goods.
The Ongoing Fisher Market [Cole and Fleischer 2008] The market consists of a set
G of n goods and a set B of m buyers. The seller of good i, called Si, has a warehouse of
capacity χi. As before, each buyer B` has a utility function u`(x1`, · · · , xn`) expressing
its preferences. The market repeats over an unbounded number of time intervals called
days. Each day, each seller Si receives wi new units of good i, and each buyer B` is
given b` money. Each day, B` selects a maximum utility basket of goods (x1`, · · · , xn`)
of cost at most b`. Si, for each good i, provides the demanded goods xi =

∑m
`=1 xi`.

The resulting excess demand or surplus, zi = xi − wi, is taken from or added to the
warehouse stock.

Given initial prices p◦i , warehouse stocks v◦i , where 0 < v◦i < χi, 1 ≤ i ≤ n, and
ideal warehouse stocks v∗i , 0 < v∗i < χi, the task is to repeatedly adjust prices so as
to converge to equilibrium prices with the warehouse stocks converging to their ideal
values; for simplicity, we suppose that v∗i = χi/2.

We suppose that it is the sellers that are adjusting the prices of their goods. In order
to have progress, we require them to change prices at least once a day. However, for the
most part, we impose no upper bound on the frequency of price changes. This entails
measuring demand on a finer scale than day units. Accordingly, we assume that each
buyer spends their money at a uniform rate throughout the day. (Equivalently, this is
saying that buyers with collectively identical profiles occur throughout the day, though
really similar profiles suffice for our analysis.) If one supposes there is a limit to the
granularity, this imposes a limit on the frequency of price changes.
Notation We let vi denote the current contents of warehouse i, and ve

i = vi−v∗i denote
the warehouse excess (note that ve

i ∈ [−χi/2, χi/2]).

2Equilibria exist under quite mild conditions (see [Mas-Collel et al. 1995] §17.C, for example).
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Market Properties We recall from [Cole and Fleischer 2008] that the goal of the
ongoing market is to capture the distributed nature of markets and the possibly limited
knowledge of individual price setters. One important aspect is that the price updates
for distinct goods are allowed to occur independently and asynchronously. We refer the
reader to the prior work for a more extensive discussion.

1.2. Our Contribution
As it is not possible to devise a tatonnement-style price update for general markets
[Papadimitriou and Yannakakis 2010; Saari and Simon 1978; Scarf 1960], the goal,
starting in [Cole and Fleischer 2008], has been to devise plausible constraints that
enable rapid convergence. This entails devising (i) a reasonable model, (ii) a price up-
date algorithm, (iii) a measure of closeness to equilibrium, and then (iv) analyzing
the system to demonstrate fast convergence; (v) this also entails identifying appropri-
ate constraints on the market. (i)–(iii) were addressed in [Cole and Fleischer 2008],
though there was an unsatisfactory element to the price update rule when coming
close to breaching a warehouse bound (i.e. the warehouse becoming empty or full); this
is fixed in the current work.

The constraints in [Cole and Fleischer 2008] were for markets of substitutes. These
constraints take the form of bounds on the elasticities of demand and wealth (defined
later). Curiously, the best performance occurred at the boundary between substitutes
and complements (with the buyers having so-called Cobb-Douglas utilities). Despite
this, the result did not extend into the complements domain. The present paper car-
ries out such an extension, handling markets in which a mixture of complements and
substitutes occur. The markets for which we show convergence again have bounded
elasticities (the precise constraints are detailed later). These markets include the fol-
lowing scenarios.

(1) All the goods are complements. A particular instance of this setting occurs when
each buyer has a CES utility with parameter ρ satisfying −1 < ρ ≤ 0 (defined later).

(2) (A generalization of (1)) The goods are partitioned into groups. Each group com-
prises substitutes, while the groups are complementary. A particular instance of
this setting occurs when each buyer has a suitable 2-level nested CES utility [Keller
1976] (defined later).

(3) Each buyer has a suitable arbitrary depth nested CES utility.

Overall, we believe this result significantly expands the class of markets for which
the rapid convergence of tatonnement is known to hold, and thereby enhances the
plausibility of tatonnement as a usable price adjustment mechanism.

There are relatively few positive results for markets of complementary goods, and to
the best of our knowledge none for tatonnement algorithms. [Codenotti et al. 2005a]
gave a polynomial time algorithm based on convex programming to compute equilib-
rium prices for an Exchange Market in which every agent has a CES utitility with ρ
in the range −1 ≤ ρ ≤ 0. [Codenotti and Varadarajan 2004] gave a polynomial time
algorithm for Fisher markets with Leontief utilities, which was generalized in [Chen
et al. 2009], which considered hybrid linear-Leontief utility functions, in which goods
are grouped, and within a group the utilities are Leontief, and the group utilities are
combined linearly.

The economics literature has many results concerning tatonnement, but the positive
results largely concerned markets in which utilities satisfied weak gross substitutes,
i.e. the goods were substitutes.

Finally we discuss the amortized analysis technique we introduce to handle asyn-
chronous events. We use a potential function φ which satisfies two properties:
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— dφ
dt ≤ −Θ(κ)φ for a suitable parameter κ > 0 whenever there is no event.

— φ is non-increasing when an event occurs (a price update in our application).

One can then conclude that φ(t) ≤ e−Θ(κ)tφ(0), and so φ decreases by at least a 1−Θ(κ)
factor daily (for κ = O(1)).

It is not clear how to craft a more standard amortized analysis, in which φ changes
only when an event occurs. The difficulty we face is that we model the warehouse
imbalances as changing continuously, and it is not clear how to integrate the resulting
cost with the gains from the price update events if φ changes only discretely.

1.3. Roadmap
In Section 2 we state the price update rules and review the definitions of elasticity.
We state our main results in Section 3, Then in Section 4 we provide an outline of the
analysis for markets where all the goods are complementary, illustrating this with the
scenario in which every buyer has a CES utility function. Finally, in Section 5, we ana-
lyze the mixed complements and substitutes scenario, illustrating it first with markets
in which the buyers all have 2-level nested CES-like utilities, and then expanding the
result to arbitrary levels of nesting. Some of the proofs are deferred to the appendix.

2. PRELIMINARIES
We review the price update rule and the definitions of elasticities. The basic price
update rule for the one-time market, proposed in [Cole and Fleischer 2008], is given
by

pi ← pi

(
1 + λ ·min

{
1,

xi − wi

wi

})
, (1)

where 0 < λ ≤ 1 is a suitable parameter whose value depends on the market elastici-
ties.

In the ongoing market, the excess demand is computed as the excess demand since
the previous price change at time τi. Thus in Equation 1, xi is replaced by the average
demand since time τi, x̄i[τi, t] = 1

t−τi

∫ t

τi
xi(t) dt, where t is the current time. Recall we

assumed that each seller adjusts the price of its good at least once each day, so t−τi ≤ 1.
In addition, one needs to take account of the warehouse excess, with prices dropping

if there is too much stock in the warehouse, and increasing if too little. To this end, we
define the target demand w̃i to be

w̃i := wi + κ(vi − v∗i ),

where κ > 0 is chosen to ensure that |κ(vi − v∗i )| ≤ δwi, for a suitable δ > 0.
Now, as in [Cole and Fleischer 2008], we define the target excess demand to be

z̄i := x̄i[τi, t]− w̃i = x̄i[τi, t]− wi − κ(vi − v∗i ).

As it takes time for the warehouse stock to adjust as a result of a price change, it
turns out that the price change needs to be proportional to the time since the last price
update (this is where the price update rule differs from [Cole and Fleischer 2008]).
This yields the price update rule

pi ← pi

(
1 + λ ·min

{
1,

z̄i

wi

}
∆t

)
, (2)

where ∆t is the time since the last price update.
Implicitly, the price update rule is using a linear approximation to the relationship

between pi and xi. The analysis would be cleaner if the linear update were to log pi;
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however, this seems a less natural update rule, and having a natural rule is a key
concern when seeking to argue tatonnement could be a real process.

Next, we review the definitions of income and price elasticity.

Definition 2.1. The income elasticity of the demand for good i by a buyer with in-
come (money) b is given by dxi

db

/
xi

b . We let γ denote the least upper bound on the income
elasticities over all buyers and goods.

If all buyers are spending their budgets in full, then γ ≥ 1.

Definition 2.2. The price elasticity of the demand for good i is given by −dxi

dpi

/
xi

pi
.

We let α denote the greatest lower bound on the price elasticities over all goods.

In a market of complementary goods 0 ≤ α ≤ 1; in the markets we consider, α >
γ/2 ≥ 1/2.

For the markets with mixed complements and substitutes we need a generalized
version of elasticity, which we call the Adverse Market Elasticity. These are the extreme
changes in demand that occur to one good, WLOG G1, when its price changes, and
other prices also change but by no larger a fraction than p1. For suppose that p1 were
reduced with the goal of increasing x1. But suppose that at the same time other prices
may change by the same fractional amount (either up or down). How much can this
undo the desired increase in x1? The answer is that in general it can more than undo
it. However, our proof approach depends on x1 increasing in this scenario, which is
why we introduce this notion of elasticity and consider those markets in which it is
sufficiently bounded from below.

Definition 2.3. Define P̄ to be the following set of prices:{
((1 + δ)p1, q2, · · · , qn) | for i ≥ 2, qi ∈ [ pi

1+δ , (1 + δ)pi]
}

. The (low) Adverse Market
Elasticity for G1 is defined to be

−max
p̄∈P̄

lim
δ→0

x1(p̄)− x1(p)
δx1

We let β be a lower bound on the Adverse Market Elasticity over all goods and prices.

It is not hard to see that for the case that all the goods are complements, β ≥ 2α− γ.

3. OUR RESULTS
3.1. Markets with Complementary Goods
The analysis of these markets introduces the techniques needed for the more general
setting.

Our bounds will depend on the market parameters α and γ. It is convenient to set
β = 2α − γ; note that by assumption, 0 < β ≤ 1. In addition, our bounds will depend
on the initial imbalance in the prices. To specify this we define the notion of f -bounded
prices.

Definition 3.1. fi(p) = max
(

pi

p∗i
,

p∗i
pi

)
, and f(p) = max1≤i≤n fi(p). The prices are f -

bounded if f(p) ≤ f .

Clearly, f(p) ≥ 1 and f(p) = 1 if and only if p = p∗. When there is no ambiguity, we use
f as a shorthand for f(p). We let fI denote the maximum value f takes on during the
first day, which will also bound f thereafter, as we will see.

It will turn out that we can assume χi/wi are equal for all i; we denote this ratio by
r.
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Our results will require λ and κ to obey the following conditions.

κ ≤ 2
r
·min

{
β

4γ + β
,

1
2(8 + 4γ/β)

ln
1

2(1− α)

}
(3)

24
r
≤ λ ≤ min

{
3
7
,
3
7

ln
1

2(1− α)
,

√
κr

32

}
. (4)

We then show the following bound on the convergence rate.

THEOREM 3.2. Suppose that β > 0, the prices are f -bounded throughout the
first day, and in addition that Equations (3)–(4) hold. Let M =

∑
j bj be the daily

supply of money to all the buyers. Then the prices become (1 + η)-bounded after
O

(
1
λ ln f + 1

λβ ln 1
δ + 1

κ log M
η mini wip∗i

)
days.

We also bound the needed warehouse sizes. We say that warehouse i is safe if vi ∈
[ 14χi,

3
4χi]. We define d(f) = maxi xi/wi when the prices are f -bounded. In a market of

complementary goods, d(f) ≤ fγ .
As we will see, the analysis of Theorem 3.2 proceeds in two phases. We need to

specify some parameters relative to Phase 1. We define v(fI) to be the total net change
to vi during Phase 1. As we will see, v(fI) = O(wi

λ d(fI) + wi

λβ d(2) log β
δ ). We define D(f)

to be the duration of Phase 1 in days. As we will see, D(f) = O
(

1
λ ln f + 1

λβ ln 1
δ

)
. We

will show:

THEOREM 3.3. Suppose that the ratios χi/wi are all equal. Suppose that the prices
are always f -bounded. Also suppose that each price is updated at least once a day.
Suppose further that initially the warehouses are all safe. Finally, suppose that Equa-
tions (3)–(4) hold. Then the warehouse stocks never either overflow or run out of stock;
furthermore, after D(f) + 32

β + 2
κ days the warehouses will be safe thereafter.

3.1.1. Example Scenario: All buyers have CES Utilities with −1 < ρ ≤ 0. We begin by re-
viewing the definition of CES utilities. We focus on a single buyer B`, and to simplify
notation, we let (y1, y2, · · · , yn) = (x1`, x2` · · · , xn`). A CES utility has the form

u(y1, y2, · · · , yn) =

(
n∑

i=1

aiy
ρ`

i

)1/ρ`

.

It is well known that when ρ` ≥ 0, all goods are substitutes, and when ρ` ≤ 0,
all goods are complements. We will focus on the case −1 < ρ` ≤ 0. It is also
well known that with a budget constraint of b, the resulting demands are given by

yi = pr
i ba

−r
i

(∑n
j=1

pr+1
j

ar
j

)−1

, where r = 1/(ρ` − 1). A further calculation yields that
∂yi/∂pi

yi/pi
≤ r = −1/(1 − ρ`). Let ρ = min` ρ`. Then ∂xi/∂pi

xi/pi
≤ −1/(1 − ρ). In addition, it is

easy to show that for CES utilities, γ = 1. Consequently, when ρ > −1, β > 0; it follows
that the bounds from Theorems 3.2 and 3.3 apply.

3.2. Markets with Mixtures of Substitutes and Complements
To understand the constraints needed in this setting, we need to know that the anal-
ysis for markets of complements, which we adapt to the current setting, proceeds in
two phases. Recall that the prices are f -bounded. In Phase 1, (f − 1) reduces mul-
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tiplicatively each day. Phase 1 ends when further such reductions can no longer be
guaranteed. In Phase 2, an amortized analysis shows that the misspending, roughly∑

i |zi|pi + |w̃i − wi|pi, decreases multiplicatively each day.
Also, now that substitutes are present, we will need an upper bound on the price

elasticity (see Definition 2.2), as in [Cole and Fleischer 2008]. We let E ≥ 1 denote this
upper bound. For convergence we will need that λ = O(1/E).

Denote the spending on all goods which are substitutes of G1 by Ss and the spend-
ing on all goods which are complements of G1 by Sc. We need to introduce a further
constraint. The reason is that the amortized analysis depends on showing the mis-
spending decreases. However, the current constraints do not rule out the possibility
that when, say p1 is increased, the spending decrease on G1’s complements, |∆Sc|, and
the spending increase on G1’s substitutes, |∆Ss|, are both larger than the reduction in
misspending on G1. It seems quite unnatural for this to occur. We rule it out with the
following assumption.

ASSUMPTION 1. Suppose that pi changes by ∆pi. Then there is a constant α′ < 1
2 ,

such that |∆Sc| ≤ α′xi|∆pi|.
We require that β, as defined in Definition 2.3, satisfy β > 0. Our results will require

λ and κ to obey the following conditions.

κ ≤ 2
r
·min

{
β

β + 4(2E − β)
,

(1− 2α′)β
8α′(2E − β) + 4β

}
(5)

24
r
≤ λ ≤ min

{
1

8E + 4α′ − 6
,

√
κr

32

}
(6)

THEOREM 3.4. Suppose that β > 0, the prices are f -bounded throughout
the first day, and Equations (5)–(6) hold. Let M =

∑
j bj be the daily sup-

ply of money to all the buyers. Then the prices become (1 + η)-bounded after
O

(
1
λ ln f + 1

λβ ln 1
δ + 1

κ log M
η mini wip∗i

)
days.

Theorem 3.3 with Equations (5)–(6) replacing Equations (3)–(4) also continues to
apply. Here d(f) ≤ f2E−β .

3.2.1. Example Scenario: 2-Level Nested CES Type Utilities. Keller [Keller 1976] proposed
and analyzed nested CES-type utility functions, which we use to provide an example of
utility functions yielding a mixture of substitutes and complements. Goods are parti-
tioned into different groups. Two goods in the same group are substitutes, while two
goods in different groups are complements.

Again, we focus on the demands (y1`, y2`, · · · , yn`) of a single buyer B`. For each group

G, we define uG,` :=
(∑

i∈G ai` y
ρG,`

i`

)1/ρG,`

, which is called a utility component; 0 <

ρG,` < 1. The overall utility function is given by u` :=
(∑

G aG,` uρ`

G,`

)1/ρ`

, where −1 <

ρ` < 0. The bounds on ρG,` and ρ` are needed to allow us to show convergence; Keller
allowed arbitrary values (no larger than 1).

We will show that E = maxG,`
1

1−ρG,`
and β = min`

2
1−ρ`

− 1. The bounds from Theo-
rems 3.4 and 3.3 will apply.

3.2.2. Example Scenario: N -Level Nested CES Type Utilities. This result extends to arbi-
trary levels of nesting. A Nested CES Type Utility is best visualized as a utility tree.
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A leaf represents a good, and an internal node represents a utility component. There
is a value of ρ associated with each internal node. Each utility component is of the
form (

∑m
k=1 akuρ

k)1/ρ, in which uk may be the quantity of one good xk or another utility
component.

We focus on one particular good i. Let A1, A2, · · · , AN be the internal nodes along the
path from good i to the root of the utility tree, and let ρ1, ρ2, · · · , ρN be the associated
ρ values. Let σk = 1

1−ρk
for 1 ≤ k ≤ N . Define βi = σ1 − |σN − 1| −∑N−1

q=1 |σq − σq+1|,
Ei = max {1, max1≤k≤N σk} and α′i = (1 − λ)−E

(
|σN − 1|+ ∑N−1

q=1 |σq − σq+1|
)

. We set
β = mini βi, E = maxi Ei and α′ = maxi α′i. Again, the bounds from Theorems 3.4
and 3.3 apply.

3.3. Comparison to Prior Work
[Cole and Fleischer 2008] introduced the notion of ongoing markets and analyzed a
class of ongoing Fisher markets satisfying WGS. The current work extends this analy-
sis to classes of ongoing Fisher markets with respectively, only complementary goods,
and with a mixture of complements and substitutes. The present work also handles
the warehouses in the ongoing model more realistically.

This entails a considerably changed analysis and some modest changes to the price
update rule. As in [Cole and Fleischer 2008], the analysis proceeds in two phases. The
new analysis for Phase 1, broadly speaking, is similar to that in [Cole and Fleischer
2008], though a new understanding was needed to extend it to the new markets. The
analysis for Phase 2 is completely new. The analysis of the bounds on the warehouse
sizes is also new.

A preliminary unrefereed report on these techniques, applied to markets of substi-
tutes, was given in [Cole et al. 2010]; this manuscript included other results too (on
managing with approximate values of the demands, and on extending the results to
markets of indivisible goods). The current paper subsumes the analysis techniques
in [Cole et al. 2010].3

4. THE ANALYSIS FOR COMPLEMENTARY GOODS
The largest challenge in the analysis is to handle the effect of warehouses. In [Cole
and Fleischer 2008], the price updates increased in frequency as the warehouse lim-
its (completely full or empty) were approached, which ensured these limits were not
breached. It was still a non-trivial matter to demonstrate convergence. In the present
paper, the only constraint is that each price is updated at least once every full day.
This seems more natural, but entails a different and new analysis.

The analysis partitions into two phases, the first one handling the situation when at
least some of the prices are far from equilibrium, and for these prices, the warehouse
excesses have a modest impact on the updates. This portion of the analysis is some-
what similar to the corresponding analysis in [Cole and Fleischer 2008], except that we
manage to extend it to markets including complementary goods. In the second phase,
the warehouse excesses can have a significant effect. For this phase, we use a new and
amortized analysis. The imbalance being measured and reduced during Phase 2 is the
misspending (roughly speaking,

∑
i[pi|xi − wi| + pi|w̃i − wi|]). It is only when prices

are reasonably close to their equilibrium values that we can show the misspending de-
creases, which is why two phases are needed. Interestingly, in a market of substitutes,

3Note for the reviewers: This is the one refereed venue where these techniques are being submitted for
publication. We make this point because with an earlier submission of this work, one referee appeared to
consider [Cole et al. 2010] to be prior work.
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regardless of the prices, the misspending is always decreasing, so here one could carry
out the whole analysis within Phase 2.

Phase 1. In Phase 1, we show that each day (f − 1) shrinks by a factor of at least
1−Θ(λβ).

For simplicity, we begin by considering the one-time market.
Suppose that currently the prices are exactly f -bounded, and that there is a good,

WLOG good G1, with price p1 = p∗1/f . We will choose the market properties to ensure
that x1 ≥ fβw1, regardless of the prices of the other goods, so long as they are f -
bounded. This ensures that the price update for p1 will be an increase, by a factor of at
least 1 + λ min{1, (fβ − 1)}) .= 1 + µ.

To demonstrate the lower bound on x1, we identify the following scenario as the one
minimizing x1: all the complements Gi of G1 have prices fp∗i .

A symmetric observation applies when p1 = fp∗1, and then the price decreases by a
factor of at least 1− λ(1− f−β) .= 1− ν.

We can show that the same market properties imply that after a day of price updates
every price will lie within the bounds [p∗(1+µ)/f, fp∗(1− ν)], thereby ensuring a daily
reduction of the term (f − 1) by a factor of at least 1−Θ(λβ).

We use a similar argument for the ongoing market. First, we observe that if the price
updates occurred simultaneously exactly once a day, then exactly the same bounds
would apply to x̄i, so the rate of progress would be the same, aside the contribution
of the warehouse excess to the price update. So long as this contribution is small com-
pared to (fβ−1)w1 or to (1−f−β)w1, say at most half this value, then the price changes
would still be by a factor of at least 1+ 1

2λ min{1, (fβ−1)}) and 1− 1
2λ(1−f−β), respec-

tively.
To take account of the possible variability in price update frequency, we demonstrate

progress as follows: we can show that if the prices have been f -bounded for a full day,
then after two more days have elapsed, the prices will have been f ′-bounded for a full
day, for (f ′−1) = (1−Θ(λβ))(f−1). The reason we look at the f -bound over the span of
a day is that the price updates are based on the average excess demand over a period
of up to one day. A second issue we need to handle is that the price updates may have
a variable frequency; the only guarantee is that each price is updated within one full
day of its previous update. The net effect is that it takes one day to guarantee that f
shrinks and hence two days for the shrinkage to have lasted at least one full day.

It follows that Phase 1 lasts O( 1
λβ log[(fI − 1)/(fII − 1)]) days, where fI is the initial

value of f , and fII is its value at the start of Phase 2.
We want the following conditions to hold in Phase 2: x̄i, xi ≤ (2 − δ)wi and pi ≤ 2p∗i .

As we will see, choosing fII = min{(1− 2δ)−1/β , (2− δ)1/γ} suffices. As it turns out, the
calculations simplify if we also enforce that (1− 2δ)−1/β ≤ (2− δ)1/γ . If 2δ/β ≤ 1

2 , then
1 + 2δ/β ≤ fII ≤ 1 + 4δ/β ≤ 2.

As already argued, the behavior of the ongoing and one-time markets are within a
constant factor of each other in Phase 1 (the ongoing market progresses in cycles of
two days rather than one day, and reduces (f − 1) by a factor in which λ is replaced by
λ/2). So in this phase we analyze just the one-time market.

First, we state several inequalities we use. They can be proved by simple arith-
metic/calculus.

LEMMA 4.1.

(a) If 0 ≤ λ ≤ 1, then 1
1+λ ≤ 1− λ

2 .
(b) If 0 ≤ λ ≤ 1 and 1 ≤ x ≤ 2, then 1− λ(1− 1/x) ≤ x−λ/(2 ln 2).
(c) If 0 ≤ λ ≤ 1 and 1 ≤ x ≤ 2, then 1

1+λ(x−1) ≤ x−λ.
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Using the definitions of γ and α in Definitions 2.1 and 2.2, one can easily obtain the
following lemma.

LEMMA 4.2.

(a) If the prices of all goods are raised from pi to p′i = qpi, where q > 1, then x′i ≥ xi/qγ .
(b) If the prices of all goods are reduced from pi to p′i = qpi, where q < 1, then x′i ≤ xi/qγ .
(c) If pi is raised to p′i = tpi, where t > 1, and all other prices are fixed, then x′i ≤ xi/tα.
(d) If pi is reduced to p′i = tpi, where t < 1, and all other prices are fixed, then x′i ≥ xi/tα.

LEMMA 4.3. When the market is f -bounded,

(1) if pi = rp∗i /f where 1 ≤ r ≤ f2, then xi ≥ wif
2α−γr−α;

(2) if pi = fp∗i /q where 1 ≤ q ≤ f2, then xi ≤ wif
γ−2αqα.

PROOF. We prove the first part; the second part is symmetric. By the definition of
complements, xi is smallest when pj = fp∗j for all j 6= i. Consider the situation in which
pk = fp∗k for all goods k. By Lemma 4.2(a), xi ≥ wi

fγ . Now reduce pi = fp∗i to pi = rp∗i /f .
By Lemma 4.2(d), xi ≥ wi

fγ(r/f2)α = wif
2α−γr−α.

LEMMA 4.4. Suppose that β = 2α − γ > 0. Further, suppose that the prices are
updated independently using price update rule (1), where 0 < λ ≤ 1. Let p denote the
current price vector and let p′ denote the price vector after one day.

(1) If f(p)β ≥ 2, then f(p′) ≤ (
1− λ

2

)
f(p).

(2) If f(p)β ≤ 2, then f(p′) ≤ f(p)1−λβ/(2 ln 2).

PROOF. Suppose that pi = r
p∗i

f(p) , where 1 ≤ r ≤ f(p)2. By Lemma 4.3, xi ≥
wif(p)βr−α and hence xi−wi

wi
≥ f(p)βr−α − 1. When pi is updated using price update

rule (1), the new price p′i satisfies

p′i ≥ r
p∗i

f(p)
[
1 + λ ·min

{
1, f(p)βr−α − 1

}]
.

Let h1(r) := r
[
1 + λ ·min

{
1, (f(p)βr−α − 1)

}]
. Then

d

dr
h1(r) ≥ 1− λ + (1− α)λf(p)βr−α ≥ 0.

Thus

p′i ≥
p∗i

f(p)
[
1 + λ ·min

{
1, f(p)β − 1

}]
.

Similarly, suppose that pj = 1
q f(p)p∗j , where 1 ≤ q ≤ f(p)2. By Lemma 4.3, xj ≤

wjf(p)−βqα and hence xj−wj

wj
≤ f(p)−βqα − 1. When pj is updated using price update

rule (1), the new price p′j satisfies

p′j ≤
1
q
f(p)p∗j

[
1 + λ ·min

{
1, f(p)−βqα − 1

}]
.

Let h2(q) := 1
q

[
1 + λ ·min

{
1, f(p)−βqα − 1

}]
. Then

d

dq
h2(q) ≤ 1

q2

(
λ− 1− (1− α)λf(p)−βqα

) ≤ 0.
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Thus

p′j ≤ f(p)p∗j
[
1 + λ ·min

{
1, f(p)−β − 1

}]
= f(p)p∗j

[
1 + λ(f(p)−β − 1)

]
.

Hence, after one day, a period in which each good updates its price at least once, we
can guarantee that

f(p′) ≤ f(p) ·max
{

1− λ(1− f(p)−β),
1

1 + λ ·min {1, (f(p)β − 1)}
}

,

which, by Lemma 4.1(a), is at most
(
1− λ

2

)
f(p) when f(p)β ≥ 2.

When f(p)β ≤ 2, by Lemma 4.1(b), 1 − λ(1 − f(p)−β) ≤ f(p)−λβ/(2 ln 2). By Lemma
4.1(c), 1

1+λ(f(p)β−1)
≤ f(p)−λβ . So f(p′) ≤ f(p)1−λβ/(2 ln 2).

THEOREM 4.5. Suppose that β > 0, λ ≤ 1, and that the prices are initially f -
bounded. When δ/β ≤ 1, Phase 1 will complete within O

(
1
λ ln f + 1

λβ ln 1
δ

)
days.

PROOF. Suppose that initially f > 21/β and 1+2δ/β < 21/β . By Lemma 4.4, after n1

days, where n1 satisfies the inequality f
(
1− λ

2

)n1 ≤ 21/β , the market is 21/β-bounded.
It suffices that:

n1 =
ln f − 1

β ln 2

ln
(
1− λ

2

) = O

(
1
λ

ln f

)
.

If 21/β ≤ 1 + 2δ/β, then O( 1
λ ln f) days suffice.

After this, by Lemma 4.4, after an additional n2 days, the market becomesa 1 +
(2δ/β)-bounded, if n2 satisfies the inequality (21/β)(1−λβ/(2 ln 2))n2 ≤ 1+2δ/β. It suffices
that:

n2 =
ln β + ln ln(1 + 2δ/β)− ln ln 2

ln(1− λβ/(2 ln 2))
= O

(
1

λβ

(
ln

1
β

+ ln
1
δ

))
.

The last equality holds as δ/β ≤ 1 and hence ln ln(1 + 2δ/β) = ln (δ/β) + O(1).
The sum n1 + n2 bounds the number of days Phase 1 lasts.

Comment. If we wish to analyze the one-time market or the ongoing market without
taking account of the warehouses, then arbitrarily accurate prices can be achieved in
Phase 1, and the time till prices are (1+ η)-bounded, for any η is given by the bound in
Theorem 4.5, on replacing the term 1

β log 1
δ by 1

β log 1
η .

To apply this analysis of Phase 1 to other markets, it suffices to identify conditions
that ensure x1 ≥ fβw1 when p1 = p∗1/f , and x1 ≤ f−β when p1 = fp∗1.

Phase 2. Once the warehouse excesses may have a large impact on the price updates,
we can no longer demonstrate a smooth shrinkage of the term (f − 1). Instead, we use
an amortized analysis. We associate the following potential φi with good Gi.

φi := pi[span{x̄i, xi, w̃i} − c1λ(t− τi)|x̄i − w̃i|+ c2|w̃i − wi|],
where span{t1, t2, t3} = max{t1, t2, t3}−min{t1, t2, t3} and 1 ≥ c1 > 0, c2 > 1 are suitably
chosen constants. We define φ :=

∑
i φi. The term −c1λ(t − τi)|x̄i − w̃i| ensures that

φ decreases smoothly when no price update is occurring, as shown in the following
lemma.

LEMMA 4.6. Suppose that 4κ(1 + c2) ≤ λc1 ≤ 1/2. If |w̃i − wi| ≤ 2 · span(xi, x̄i, w̃i),
then d φi

d t ≤ −κ(1+c2)
1+2c2

φi and otherwise d φi

d t ≤ −κ(c2−1)
2c2

φi, at any time when no price
update is occuring (to any pj).
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PROOF. To simplify the presentation of this proof, let K denote κ(xi − wi) and let S
denote span(xi, x̄i, w̃i).

Note the following equalities: d xi

d t = d wi

d t = 0, d w̃i

d t = −K and d x̄i

d t = xi−x̄i

t−τi
. Then

d c2|w̃i−wi|
d t = −c2K · sign(w̃i − wi) and hence

dφi

d t
= pi

[
dS

d t
− c1λ|x̄i − w̃i| − c1λ(t− τi)

d |x̄i − w̃i|
d t

− c2K · sign(w̃i − wi)
]

= pi

[
dS

d t
− c1λ|x̄i − w̃i| − c1λ [(xi − x̄i) + (t− τi)K] · sign(x̄i − w̃i)− c2K · sign(w̃i − wi)

]

= pi

[
dS

d t
− c1λ(xi − w̃i) · sign(x̄i − w̃i)− c1λ(t− τi)K · sign(x̄i − w̃i)− c2K · sign(w̃i − wi)

]
.

Next by means of a case analysis, we show that
dφi

d t
≤ pi [|K| − c1λS − c2K · sign(w̃i − wi)] . (7)

We show Case 1 in detail. Cases 2 and 3 are similar.
Case 1: xi ≥ x̄i ≥ w̃i or w̃i ≥ x̄i ≥ xi. d S

d t = K · sign(xi − w̃i).

dφi

d t
= pi [(K − c1λ(xi − w̃i)− c1λ(t− τi)K)sign(xi − w̃i)− c2K · sign(w̃i − wi)]

= pi [K(1− c1λ(t− τi))sign(xi − w̃i)− c1λ|xi − w̃i| − c2K · sign(w̃i − wi)]
≤ pi [|K| − c1λS − c2K · sign(w̃i − wi)] .

Case 2: xi ≥ w̃i ≥ x̄i or x̄i ≥ w̃i ≥ xi.
Case 3: w̃i ≥ xi ≥ x̄i or x̄i ≥ xi ≥ w̃i.

Now we use the bound from (7) to obtain the bounds on the derivatives stated in the
lemma. There are two cases: |w̃i − wi| ≤ 2S and |w̃i − wi| > 2S.
Case 1: |w̃i − wi| ≤ 2S.
Then |xi − wi| ≤ |xi − w̃i|+ |w̃i − wi| ≤ S + 2S = 3S. And

d φi

d t
≤ −c1λpiS + (1 + c2)pi|K| ≤ − c1λpiS + 3(1 + c2)piκS

= −(c1λ− 3(1 + c2)κ)piS ≤ − c1λ− 3(1 + c2)κ
1 + 2c2

pi(S + c2|w̃i − wi|)

≤ −c1λ− 3(1 + c2)κ
1 + 2c2

φi ≤ − κ(1 + c2)
1 + 2c2

φi.

Case 2: |w̃i − wi| > 2S.
Then |w̃i − wi| ≤ |w̃i − xi| + |xi − wi| ≤ S + |xi − wi| < |w̃i−wi|

2 + |xi − wi| and hence
|w̃i −wi| < 2|xi −wi|. Note that sign(xi −wi) = sign(w̃i −wi), so −c2K · sign(w̃i −wi) =
−c2κ|xi − wi|.

dφi

d t
≤ −c1λpiS + κpi|xi − wi| − c2κpi|xi − wi| = − c1λpiS − (c2 − 1)κpi|xi − wi|

< −c1λpiS − c2 − 1
2

κpi|w̃i − wi| < − c2 − 1
2c2

κpi(c2S + c2|w̃i − wi|)

≤ −κ(c2 − 1)
2c2

φi.
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The remaining task is to show that φ is non-increasing when a price update occurs.
This entails showing that the decrease to the term pi·span{x̄i, xi, w̃i} is at least as large
as the increase to the term pic2|w̃i−wi| plus the value of the term pic1λ(t− τi)|x̄i− w̃i|,
which gets reset to 0.

LEMMA 4.7. Let β = 2α − γ and suppose that β > 0 and the following conditions
hold:

(1) f ≤ (1− 2δ)−1/β ≤ (2− δ)1/γ since the last price update to pi;
(2) ᾱ + c1 + c2δ ≤ 1− δ;
(3) (1 + δ + c1 + c2δ)λ ≤ 1,

where ᾱ := 2(1−α)(1−2δ)−γ/β
(
1 + αλ(1+δ)

2(1−λ(1+δ))

)
. Then, when a price pi is updated using

rule (2), the value of φ stays the same or decreases.

If δ and λ are small, then ᾱ = (2− 2α)
(
1 + O

(
γδ
β

))
(1 + O(λ)) = 2− 2α + O

(
γδ
β

)
+

O(λ), and Condition (2) becomes 2−2α+c1+O(δ(1+γ/β))+O(λ) ≤ 1, which is satisfied
on setting c1, λ, δ(1 + γ/β) = O(2α− 1). The third condition is then satisfied by having
λ = O(1). More precise bounds are given later.

To demonstrate a continued convergence of the prices during Phase 2, we need to
relate the prices to the potential φ. We show the following bound.

THEOREM 4.8. Suppose that the conditions in Lemmas 4.6 and 4.7 hold. Let M =∑
j bj be the daily supply of money to all the buyers. Then, in Phase 2, the prices become

(1 + η)-bounded after O
(

1
κ log M

η mini wip∗i

)
days.

PROOF. During Phase 2, pi ≤ 2p∗i and xi ≤ 2wi. Consequently, φ = O(
∑

i p∗i wi) =
O(M). Once φ has shrunk to η mini p∗i wi, we know that all prices are (1 + η)-bounded.
Finally, Lemmas 4.6 and 4.7 imply that φ shrinks by a (1−Θ(κ)) factor each day.

If the updates in Phase 2 start with an initial value for the potential of φI ¿ M , then
in the bound on the number of days one can replace M with φI.

Summing the bounds from Theorems 4.5 (note that δ ≤ β) and 4.8, yields Theo-
rem 3.2, modulo showing that Equations (3)–(4) suffice to ensure the conditions in
Theorems 4.5 and 4.8.

4.1. Bounds on the Warehouse Sizes
Phase 1. Recall that fI is the initial value of f . Define d(f) = maxi xi/wi when the

prices are f -bounded. In a market of complementary goods, d(f) ≤ fγ . We can show:

LEMMA 4.9. In Phase 1, the total net change to vi is bounded by O(wi

λ d(fI) +
wi

λβ d(2) log β
δ ).

Phase 2. Because Phase 2 may last χ(1/κ) days, we cannot simply use a bound on its
duration to bound the capacity needed for warehouse i, for its capacity is O(wi

κ ), which
could be smaller than the bound based on the duration of Phase 2.

Instead, we observe that in Phase 2 the price adjustments are always strictly within
the bounds of 1 ± λ∆t, where ∆t is the time since the previous update to pi. If vi ≤
χi/2 − bwi, then an update of pi by a factor 1 − λµ∆t, implies that wi − x̄i ≥ (µwi +
κbwi)∆t, and (wi − x̄i)∆t is exactly the amount by which vi decreases between these
two price updates. As the prices are ((1 − 2δ)−β)-bounded, the difference between the
price increases and decreases is bounded, and consequently, over time the change to
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the warehouse stock will be dominated by the sum of the κbwi∆t terms. This is made
precise in the following lemma (an analogous result applies if vi ≥ χi/2 + bwi).

LEMMA 4.10. Let a1, a2, k > 0. Suppose that vi ≤ v∗i − a1wi and that κa1 ≥ 4λ2. Let
τ be the time of a price update of pi to pi,1. Suppose that henceforth pi ≤ ef̄pi,1 for some
f̄ ≥ 0. If k ≥ 2

κa1
(f̄ +a2), then by time τ +(k+1) the warehouse stock will have increased

to more than v∗i − a1wi, or by at least a2wi, whichever is the lesser increase.

PROOF. Suppose that vi ≤ v∗i − a1wi throughout (or the result holds trivially).
Each price change by a multiplicative (1 + µ∆t) is associated with a target excess

demand z̄i = x̄i − wi − κ(vi − v∗i ), where zi = µwi. Furthermore, the increase to the
warehouse stock since the previous price update is exactly −(xi − wi)∆t = [−µwi −
κ(vi − v∗i )]∆t ≥ (−µ + κa1)wi∆t.

Note that 1 + x ≥ ex−2x2
for |x| ≤ 1

2 . Thus 1 + µ∆t ≥ eµ∆t−2λ2∆t (recall that all price
changes are bounded by 1± λ∆t).

Suppose that over the next k days there are l − 1 price changes; let the next l price
changes be by 1 + µ1∆t1, 1 + µ2∆t2, · · · , 1 + µl∆tl. Note that the total price change
satisfies ef̄ ≥ Π1≤i≤l(1+µi∆ti) ≥ e

∑
1≤i≤l(µi∆ti−2λ2∆ti)). Thus

∑
1≤i≤l ∆ti(µi−2λ2) ≤ f̄ .

We conclude that when the l-th price change occurs, the warehouse stock will have
increased by at least

∑
1≤i≤l(−µi+κa1)wi∆ti ≥ −f̄ +k(−2λ2+κa1)wi ≥ (−f̄ + 1

2kκa1)wi,
both inequalities following because 4λ2 ≤ κa1. If k ≥ 2

κa1
(f̄ + a2), then the warehouse

stock increases by at least a2wi.

Comment. The relationship between the change in capacity and the size of the price
update is crucial in proving this lemma, and this depends on having the factor ∆t in
the price update rule.

To complete the analysis of Phase 2, we view each warehouse as having 8 equal sized
zones of fullness, with the goal being to bring the warehouse into its central four zones.
The role of the outer zones is to provide a buffer to cope with initial price imbalances.

Definition 4.11. The four zones above the half way target are called the high zones,
and the other four are the low zones. Going from the center outward, the zones are
called the central zone, the inner buffer, the middle buffer, and the outer buffer. The
warehouse is said to be safe if it is in one of its central zones or one of its inner buffers.

Let D(fI) bound the duration of Phase 1 and let v(fI) be chosen so that v(fI)wi bounds
the change to vi, for all i, during Phase 1. We gave a bound on v(fI) in Lemma 4.9.

We will assume that the ratios χi/wi are all the same, i.e. that every warehouse can
store the same maximum number of days supply. This will be without loss of generality,
for if the smallest warehouse can store only 2d days supply, Theorem 3.3 in effect shows
that every warehouse remains with a stock within dwi of χi/2. An alternative approach
is to suppose that each seller Si has a separate parameter κi (replacing κ). The only
effect on the analysis is that the convergence rate is now controlled by κ = mini κi.

To prove Theorem 3.3 it will suffice that the following conditions hold. for all i:

(1) χi ≥ 512
β wi and χi ≥ 8v(fI)wi.

(2) δ = κχi

2wi
.

(3) λ2 ≤ κχi

32wi
.

Comment. We note that were the price update rule to have the form p′i ←
pie

λ min{1,z̄/wi}∆t rather than p′i ← pi(1 + λ min{1, z̄/wi}∆t) then the constraint (3) in
Theorem 3.3 would not be needed (this constraint comes from setting a1 in Lemma
4.10 to the width of a zone). We call this alternate rule the exponential price update
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rule. However, we prefer the form of the rule we have specified as it strikes us as being
simpler and hence more natural.

4.2. Condition Summary
Lemma 4.7 and Theorem 3.3 require several constraints on the parameters
κ, δ, λ, c1, c2. We can unwind these conditions to show how these parameters depend
on the market parameters α, γ and β.

Let r = χi/wi. Then the conditions can be satisfied when Equations (3) and (4) hold.
Note that r needs to be sufficiently large, or in other words χi for every i needs to be
sufficiently large, to ensure that there is a choice of λ which satisfies both the upper
and lower bounds. Further note that the term

√
κτ
32 , which is due to Constraint (3),

would not be needed were we to use the exponential price update rule.

5. MARKETS WITH MIXTURES OF SUBSTITUTES AND COMPLEMENTS
For the markets with mixtures of substitutes and complements, we defined Adverse
Market Elasticity and made Assumption 1 in Section 3.2. Note that for the case that
all the goods are complements, β as defined in Definition 2.3 equals 2α− γ.

We can then show that Theorem 4.5 applies here too. We can also show the following
results, analogs of Lemma 4.7, and Theorems 4.8 and 3.2.

LEMMA 5.1. Suppose Assumption 1 holds and β, as defined in Definition 2.3, sat-
isfies β > 0. Suppose that the following conditions hold:

(1) f ≤ (1− 2δ)−1/β ≤ (2− δ)1/(2E−β) since the last price update to pi;
(2) 2α′(1− 2δ)−(2E−β)/β + c1 + c2δ ≤ 1− δ;
(3)

(
2α′′(1− 2δ)−(2E−β)/β + 1 + δ + c1 + c2δ

)
λ ≤ 1,

where α′′ := α′ + 2(E − 1). Then, when a price pi is updated using rule (2), the value of
φ stays the same or decreases.

THEOREM 5.2. Suppose that the conditions in Lemmas 4.6 and 5.1 hold. Let M =∑
j bj be the daily supply of money to all the buyers. Then, in Phase 2, the prices become

(1 + η)-bounded after O
(

1
κ log M

η mini wip∗i

)
days.

Theorem 3.4 follows on summing the bounds from Theorems 4.5 and 5.2, and on
showing that Equations (3)–(4) imply the constraints in Lemmas 4.6 and 5.1. Theo-
rem 3.3 also continues to apply unchanged. Here d(f) ≤ f2E−β .

5.1. Example Scenario: 2-Level Nested CES Type Utilities
We will use index i to denote a good, Gi to denote the group containing good i, index j
to a denote a good in Gi (but not good i) and index k to denote a good in a group other
than Gi. Denote the spending on all the goods in the group Gi by sGi

and the total
income of the buyer by b. Keller [Keller 1976] derived the following formulae:

∂xi/∂pi

xi/pi
= − 1

1− ρGi

(
1− si

sGi

)
− 1

1− ρ

(
si

sGi

− si

b

)
− si

b

∂xi/∂pj

xi/pj
=

sj

b

(
1

1− ρGi

b

sGi

− 1
1− ρ

(
b

sGi

− 1

)
− 1

)

∂sk

∂pi
=

sk

b

ρ

1− ρ
xi.
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As 1 > ρG > 0, ρ < 0 and b ≥ sG, ∂xi

∂pj
≥ 0 and ∂xi/∂pi

xi/pi
≥ − 1

1−ρG
; i.e. every pair of goods

in the same group are substitutes and E = maxG
1

1−ρG
.

As ρ < 0, ∂sk

∂pi
< 0, which is equivalent to ∂xk

∂pi
< 0; i.e. two goods in different groups

are complements.
To compute β, we note that when pi changes by a factor t, the smallest change in

demand occurs if the prices for its substitutes, namely, the goods in its group, all also
change by t, while the prices for its complements, namely all the other goods, change
by a factor 1/t. As ρ < 0, ∂xi/∂pi

xi/pi
+

∑
j∈G,j 6=i

∂xi/∂pj

xi/pj
= − 1

1−ρ −
sG

b

(
1− 1

1−ρ

)
≤ − 1

1−ρ .
When the prices of all goods are raised by a factor t > 1 and then the prices of all goods
in G are reduced by a factor 1/t2, x′i ≥ xit

2/(1−ρ)−1; when the prices of all goods are
reduced by a factor t < 1 and then the prices of all goods in G are raised by a factor
1/t2, x′i ≤ xit

2/(1−ρ)−1. Thus β = 2
1−ρ − 1.

Finally, note that
∑

k
∂sk

∂pi
=

∑
k sk

b
ρ

1−ρxi and |∆Sc| =
∑

k |∆sk|. When pi is raised,
x′i ≤ xi, and hence |∆Sc| ≤ −ρ

1−ρxi|∆pi|; when pi is reduced, it is reduced by a factor of
t ≥ (1 − λ). As x′i ≤ xi(1 − λ)−E , |∆Sc| ≤ −ρ

1−ρ (1 − λ)−Exi|∆pi|. Thus Assumption 1 is
satisfied with α′ = −ρ

1−ρ (1− λ)−E . Hence the bounds from Theorems 3.4 and 3.3 apply.

ACKNOWLEDGMENT

The second author thanks Lisa Fleischer for helpful comments regarding the complementary goods case.

REFERENCES

CHEN, X., HUANG, L.-S., AND TENG, S.-H. 2009. Market equilibria with hybrid
linear-Leontief utilities. Theoretical Computer Science 410, 17, 1573–1580.

CODENOTTI, B., MCCUNE, B., PENUMATCHA, S., AND VARADARAJAN, K. R. 2005a.
Market Equilibrium for CES Exchange Economies: Existence, Multiplicity, and
Computation. In FSTTCS. 505–516.

CODENOTTI, B., MCCUNE, B., AND VARADARAJAN, K. 2005b. Market equilibrium
via the excess demand function. In Proceedings of the Thirty Seventh Annual ACM
Symposium on Theory of Computing. STOC’05. 74–83.

CODENOTTI, B., SABERI, A., VARADARAJAN, K., AND YE, Y. 2006. Leontief economies
encode nonzero sum two-player games. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA’06. 659–667.

CODENOTTI, B. AND VARADARAJAN, K. 2004. Efficient computation of equilibrium
prices for markets with leontief utilities. In Proceedings of the Thirty First Interna-
tional Colloquium on Automata, Languages and Programming.

COLE, R. AND FLEISCHER, L. 2008. Fast-converging tatonnement algorithms for one-
time and ongoing market problems. In Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing. STOC’08. ACM Press, 315–324.

COLE, R., FLEISCHER, L., AND RASTOGI, A. 2010. Discrete price updates yield fast
convergence in ongoing markets with finite warehouses. CoRR abs/1012.2124.

DEVANUR, N. AND VAZIRANI, V. 2004. The spending constraint model for market
equilibrium: Algorithmic, existence and uniqueness results. In Proceedings of the
Thirty Sixth Annual ACM Symposium on Theory of Computing. STOC’04. 519–528.

DEVANUR, N. R. AND KANNAN, R. 2008. Market equilibria in polynomial time for
fixed number of goods or agents. In Proceedings of the Forty Ninth Annual IEEE
Symposium on Foundations of Computer Science. FOCS’08. 45–53.

DEVANUR, N. R., PAPADIMITRIOU, C. H., SABERI, A., AND VAZIRANI, V. V. 2002.

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2012.



X:18

Market equilibrium via a primal-dual-type algorithm. In Proceedings of the Forty
Third Annual IEEE Symposium on Foundations of Computer Science. FOCS’02.
389–395. Full version with revisions available on line.

ECHENIQUE, F., GOLOVIN, D., AND WIERMAN, A. 2011. A revealed preference ap-
proach to computational complexity in economics. In Proceedings of the 12th ACM
conference on Electronic commerce. EC ’11. ACM, New York, NY, USA, 101–110.

FISHER, F. M. 1972. On price adjustment without an auctioneer. The Review of Eco-
nomic Studies 39, 1, pp. 1–15.

GARG, R. AND KAPOOR, S. 2004. Auction algorithms for market equilibrium. In
Proceedings of the Thirty Sixth Annual ACM Symposium on Theory of Computing.
STOC’04. 511–518.

HIROTA, M., HSU, M., PLOTT, C. R., AND ROGERS, B. W. 2005. Divergence, closed
cycles and convergence in Scarf environments: Experiments in the dynamics of gen-
eral equilibrium systems. Working Papers 1239, California Institute of Technology,
Division of the Humanities and Social Sciences. Oct.

JAIN, K. AND VAZIRANI, V. V. 2007. Eisenberg-Gale markets: algorithms and struc-
tural properties. In Proceedings of the Thirty Ninth Annual ACM Symposium on
Theory of Computing. STOC’07. 364–373.

KELLER, W. J. 1976. A Nested CES-Type Utility Function and Its Demand and Price-
Index Functions. European Economic Review 7, 2, 175–186.

MAS-COLLEL, A., WHINSTON, M. D., AND GREEN, J. R. 1995. Microeconomic Theory.
Oxford University Press.

MCKENZIE, L. W. 2002. Classical General Equilibrium Theory. The MIT press.
ORLIN, J. B. 2010. Improved algorithms for computing Fisher’s market clearing prices.

In Proceedings of the Forty Second Annual ACM Symposium on Theory of Comput-
ing. STOC’10. 291–300.

PAPADIMITRIOU, C. H. AND YANNAKAKIS, M. 2010. An impossibility theorem for
price-adjustment mechanisms. Proceedings of the National Academy of Sciences 107,
1854–1859.

RASTOGI, A. 2008. Theory and algorithms for modern problems in machine learning
and an analysis of markets. Ph.D. thesis, New York University.

SAARI, D. AND SIMON, C. 1978. Effective price mechanisms. Econometrica 46, 1097–
125.

SCARF, H. 1960. Some examples of global instability of the competitive equilibrium.
International Econ Review 1, 157–172.

VAZIRANI, V. 2010. Spending Constraint Utilities with Applications to the Adwords
Market. Mathematics of Operations Research 35, 2, 458–478.

VAZIRANI, V. AND YANNAKAKIS, M. 2010. Market equilibrium under separable,
piecewise-linear, concave utilities. In Innovations in Computer Science (ICS).
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A. POTENTIAL FUNCTION LEMMAS
We complete the proof of the missing cases for Lemma 4.6.

LEMMA 4.6. Suppose that 4κ(1+c2) ≤ λc1 ≤ 1/2. If |w̃i−wi| ≤ 2·span(xi, x̄i, w̃i), then
d φi

d t ≤ −κ(1+c2)
1+2c2

φi and otherwise d φi

d t ≤ −κ(c2−1)
2c2

φi, at any time when no price update is
occuring (to any pj).

PROOF. To simplify the presentation of this proof, let K denote κ(xi − wi) and let S
denote span(xi, x̄i, w̃i). Here we show the details for Cases 2 and 3, which were deferred
from the main paper.
Case 2: xi ≥ w̃i ≥ x̄i or x̄i ≥ w̃i ≥ xi. d S

d t = x̄i−xi

t−τi
· sign(xi − x̄i).

dφi

d t
= pi

[(
x̄i − xi

t− τi
+ c1λ(xi − w̃i) + c1λ(t− τi)K

)
sign(xi − x̄i)− c2K · sign(w̃i − wi)

]

≤ pi [−|x̄i − xi|+ c1λ|xi − w̃i|+ |K| − c2K · sign(w̃i − wi)]
≤ pi [|K|+ (c1λ− 1)|x̄i − xi| − c2K · sign(w̃i − wi)]
≤ pi [|K| − c1λS − c2K · sign(w̃i − wi)] , as λc1 ≤ 1

2 .

Case 3: w̃i ≥ xi ≥ x̄i or x̄i ≥ xi ≥ w̃i. d S
d t =

(
xi−x̄i

t−τi
+ K

)
· sign(x̄i − w̃i).

dφi

d t
= pi

[(
−

(
xi − x̄i

t− τi
+ K

)
+ c1λ(xi − w̃i) + c1λ(t− τi)K

)
sign(w̃i − x̄i)− c2K · sign(w̃i − wi)

]

≤ pi [−|x̄i − xi| − c1λ|xi − w̃i| −K(1− c1λ(t− τi))sign(w̃i − x̄i)− c2K · sign(w̃i − wi)]
≤ pi [−c1λ|x̄i − xi| − c1λ|xi − w̃i|+ |K| − c2K · sign(w̃i − wi)]
= pi [|K| − c1λS − c2K · sign(w̃i − wi)] .

The following lemma provides an upper bound on the change to the potential func-
tion when there is a price update. Subsequently, this lemma will be used to show that
at a price update, the potential function stays the same or decreases under suitable
conditions. Recall that sj denotes the spending on good j.

LEMMA A.1. Suppose pi is updated. Let Sinc :=
∑

j 6=i, ∆sj>0 |∆sj | and Sdec :=∑
j 6=i, ∆sj<0 |∆sj |.

(1) If sign(xi − w̃i) is not flipped and xi moves towards w̃i, the change to φ is at most

−w̃i|∆pi|+ sign(∆pi) ·∆si + Sinc + Sdec + c1λpi|x̄i − w̃i|(t− τi) + c2δwi|∆pi|.
(2) If sign(xi− w̃i) is not flipped and xi moves away from w̃i, or if sign(xi− w̃i) is flipped,

the change to φ is at most

−pi|x̄i− w̃i|+ w̃i|∆pi|−sign(∆pi) ·∆si +Sinc +Sdec +c1λpi|x̄i− w̃i|(t−τi)+c2δwi|∆pi|.
PROOF. Let p′i, x′i and s′i = p′ix

′
i denote the price of good Gi, the demand for good Gi

and the spending on good Gi after the price update respectively. We separate the proof
into three cases.
Case 1: sign(xi − w̃i) is not flipped and xi moves towards w̃i.

As xi moves towards w̃i, following the update, sign(∆pi) = sign(x̄i − w̃i) = sign(xi −
w̃i) = sign(x′i − w̃i).

Consider the term pi · span{x̄i, xi, w̃i}. Before the update to pi, it equals

pi · span{x̄i, xi, w̃i} ≥ pi|xi − w̃i| = (si − piw̃i) · sign(∆pi).
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After the update,

pi · span{x̄i, xi, w̃i} = (pi + ∆pi)|x′i − w̃i| = (s′i − piw̃i − w̃i∆pi) · sign(∆pi).

Hence, the change to the term following the update is at most

(s′i − si − w̃i∆pi) · sign(∆pi) = sign(∆pi) ·∆si − w̃i|∆pi|.
For the terms −pic1λ(t− τi)|x̄i − w̃i|+ c2pi|w̃i −wi|, an update on pi resets τi to t and

|w̃i − wi| ≤ δwi. Hence the change to these two terms is at most c1λpi|x̄i − w̃i|(t− τi) +
c2δwi|∆pi|.

For any other good j, the terms −pjc1λ(t− τj)|x̄j − w̃j |+ c2pj |w̃j −wj | do not change,
and the term pj · span{x̄j , xj , w̃j} changes, but by at most ∆sj . In the worst case, the
change of this term, summing over all j, is at most Sinc + Sdec.

Case 2: sign(xi − w̃i) is not flipped and xi moves away from w̃i.
As xi moves away from w̃i, following the update, sign(∆pi) = sign(x̄i−w̃i) 6= sign(xi−

w̃i) = sign(x′i − w̃i).
Consider the term pi · span{x̄i, xi, w̃i}. Before the update to pi, it equals

pi|xi − x̄i| = pi|xi − w̃i|+ pi|w̃i − x̄i| = (si − piw̃i) · (−sign(∆pi)) + pi|x̄i − w̃i|.
After the update,

(pi + ∆pi)|x′i − w̃i| = (s′i − piw̃i − w̃i∆pi) · (−sign(∆pi)).

Hence the change to the term following the update is at most

−sign(∆pi)∆si + w̃i|∆pi| − pi|w̃i − x̄i|.
As in Case 1, there are further changes, but bounded above by Sinc +Sdec +c1λpi|x̄i−

w̃i|(t− τi) + c2δwi|∆pi|.
Case 3: sign(xi − w̃i) is flipped.

As sign(xi − w̃i) is flipped, xi moves toward w̃i initially, hence sign(∆pi) = sign(x̄i −
w̃i) = sign(xi − w̃i) 6= sign(x′i − w̃i).

Let x̃i = argmaxx∈{xi,x̄i}|x − w̃i|. Consider the term pi · span{x̄i, xi, w̃i}. Before the
update to pi, it equals

pi|x̃i − w̃i| = (pix̃i − piw̃i) · sign(∆pi).

After the update, it equals

(pi + ∆pi)|x′i − w̃i| = (s′i − piw̃i − w̃i∆pi) · (−sign(∆pi)).

Hence the change to the term following the update is at most

w̃i|∆pi|−(∆si+si−piw̃i+pix̃i−piw̃i)·sign(∆pi) = w̃i|∆pi|−sign(∆pi)∆si−pi|xi−w̃i|−pi|x̃i−w̃i|.
As −pi|xi− w̃i| ≤ 0 and −pi|x̃i− w̃i| ≤ −pi|x̄i− w̃i|, we obtain the same upper bound on
the term pi · span{x̄i, xi, w̃i} as in Case 2. The rest of the argument is the same as in
Case 2.

B. MARKETS WITH COMPLEMENTARY GOODS
The following lemma states several inequalities we will use. They can be proved by
simple arithmetic/calculus.

LEMMA B.1.

(a) If 0 ≤ ε ≤ 1 and 0 ≤ x ≤ 1, then (1 + ε)x − 1 ≤ εx.
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(b) If 0 ≤ ε ≤ 1 and 0 ≤ x ≤ 1, then 1− (1− ε)x ≤
(
1 + ε

2(1−ε)

)
εx.

(c) If E ≥ 1, ε ≥ 0 and r := max
{

Eε
2 , ε

}
< 1, then (1− ε)1−E − 1 ≤ E−1

1−r ε.
(d) If E ≥ 1 and 0 ≤ ε ≤ 1, then 1− (1 + ε)1−E ≤ (E − 1)ε.
(e) If x ≥ 1 and ε ≥ 0, then (1− ε)−x ≤ 1 + x

1−εxε.

LEMMA 4.7. Let β = 2α − γ and suppose that β > 0 and the following conditions
hold:

(1) f ≤ (1− 2δ)−1/β ≤ (2− δ)1/γ since the last price update to pi;
(2) ᾱ + c1 + c2δ ≤ 1− δ;
(3) (1 + δ + c1 + c2δ)λ ≤ 1,

where ᾱ := 2(1−α)(1−2δ)−γ/β
(
1 + αλ(1+δ)

2(1−λ(1+δ))

)
. Then, when a price pi is updated using

rule (2), the value of φ stays the same or decreases.

PROOF. The first condition is used with Lemma 4.2(b) to ensure that x̄i ≤ (2− δ)wi,
which implies z̄i

wi
≤ 1. Then, by price update rule (2), |∆pi| = λpi|x̄i − w̃i|/wi.

Step 1: This step shows that the amount of spending transferred due to a price change
is bounded by ᾱwi|∆pi|.

By the first condition and Lemma 4.2(b), xi ≤ (1− 2δ)−γ/βwi. Hence by definition of
ᾱ, 2(1− α)

(
1 + λ(1+δ)

2(1−λ(1+δ))

)
xi ≤ ᾱwi.

Case 1(a): Price pi is increased to tpi, where t > 1, i.e. ∆pi = (t− 1)pi.
By Lemma 4.2(c), the spending increase on Gi due to this price increase is at most

(tpi)
(

xi

tα

)− xipi = (t1−α − 1)xipi.

By Lemma B.1(a), t1−α − 1 ≤ (1 − α)(t − 1). Hence 2(t1−α − 1)pixi, which is twice
the upper bound on the spending drawn from other goods due to the price increase,
satisfies

2(t1−α−1)pixi ≤ 2(1−α)(1−2δ)−γ/β(t−1)piwi ≤ ᾱwi

(
1 +

λ(1 + δ)
2(1− λ(1 + δ))

)−1

|∆pi| ≤ ᾱwi|∆pi|.

Case 1(b): Price pi is reduced to tpi, where t < 1.
By Lemma 4.2(d), the spending decrease on Gi due to this price decrease is at most

xipi − (tpi)
(

xi

tα

)
= (1− t1−α)xipi.

By price update rule (2), 1 > t ≥ 1 − λ(1 + δ). By Lemma B.1(b), (1 − t1−α) ≤(
1 + λ(1+δ)

2(1−λ(1+δ))

)
(1 − α)(1 − t). Hence 2(1 − t1−α)pixi, which is twice the upper bound

on the spending lost to other goods due to the price reduction, satisfies

2(1− t1−α)pixi ≤ 2
(

1 +
λ(1 + δ)

2(1− λ(1 + δ))

)
(1− α)(1− t)pi(1− 2δ)−γ/βwi ≤ ᾱwi|∆pi|.

Step 2: Apply Lemma A.1 with the result of Step 1 to show that the potential function
φ stays the same or decreases after a price update.

We assume ∆pi > 0. The proof is symmetric for ∆pi < 0. As the goods are pairwise
complements, when ∆pi > 0, Sinc = 0 and ∆si = Sdec.
Case 2(a): sign(xi − w̃i) is not flipped and xi moves towards w̃i.

By Lemma A.1, the change to φ is at most−w̃i|∆pi|+2|∆si|+c1λpi|x̄i−w̃i|+c2δwi|∆pi|.
Case 1(a) gives 2|∆si| ≤ ᾱwi|∆pi|. Noting that w̃i/wi ≥ 1 − δ, this change is at most
(ᾱ + c1 + c2δ − (1 − δ))λpi|x̄i − w̃i|. The second condition in this lemma implies this
change is zero or negative.
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Case 2(b): sign(xi − w̃i) is not flipped and xi moves away from w̃i, or sign(xi − w̃i) is
flipped.

By Lemma A.1, the change to φ is at most −pi|x̄i − w̃i| + w̃i|∆pi| +
c1λpi|x̄i − w̃i| + c2δwi|∆pi|. Noting that w̃i/wi ≤ 1 + δ, this change is at most
((1 + δ + c1 + c2δ)λ− 1) pi|x̄i − w̃i|. The third condition in this lemma implies this
change is zero or negative.

C. BOUNDS ON THE WAREHOUSE SIZES
LEMMA 4.9. In Phase 1, the total net change to vi is bounded by O(wi

λ d(fI) +
wi

λβ d(2) log β
δ ).

PROOF. In one day, vi shrinks by at most (d(f) − 1)wi; it can grow by at most wi.
Since f shrinks by a 1−Θ(λ) factor every O(1) days while f ≥ 21/β , during this part of
Phase 1, vi can shrink by at most O(

∑
i≥0 d(fI[1−Θ(λ)]i)wi) = O(wi

λ d(fI)), the equality
following because d(f) grows at least linearly. In this part of Phase 1, v(i) grows by at
most wi log fI = O(wid(fI)).

The remainder of Phase 1 yields a further possible change of d(2) to vi per day, for a
total of O( wi

λβ d(2) log 1
δ/β ) = O( wi

λβ d(2) log β
δ ).

LEMMA 4.10. Let a1, a2, k > 0. Suppose that vi ≤ v∗i − a1wi and that κa1 ≥ 4λ2. Let
τ be the time of a price update of pi to pi,1. Suppose that henceforth pi ≤ ef̄pi,1 for some
f̄ ≥ 0. If k ≥ 2

κa1
(f̄ +a2), then by time τ +(k+1) the warehouse stock will have increased

to more than v∗i − a1wi, or by at least a2wi, whichever is the lesser increase.

LEMMA C.1. Let a1, a2, k > 0. Suppose that vi ≥ v∗i + a1wi. Let τ be the time of
a price update of pi to pi,1. Suppose that henceforth pi ≥ e−f̄pi,1 for some f̄ ≥ 0. If
k ≥ 1

κa1
(f̄ + a2), then by time τ + (k + 1) the warehouse stock will have decreased to less

than v∗i + a1wi, or by at least a2wi, whichever is the lesser decrease.

PROOF. Suppose that vi ≥ v∗i + a1wi throughout (or the result holds trivially).
Then each price change by a multiplicative (1 + µ∆t) is associated with a target

excess demand z̄i = x̄i − wi − κ(vi − v∗i ), where zi = µwi. Furthermore, the decrease
to the warehouse stock since the previous price update is exactly (xi − wi)∆t = [µwi +
κ(vi − v∗i )]∆t ≥ (µ + κa1)wi∆t.

Note that 1 + x ≤ ex for |x| ≤ 1. Thus 1 + µ∆t ≤ eµ∆t.
Suppose that over the next k days there are l − 1 price changes; let the next l price

changes be by 1 + µ1∆t1, 1 + µ2∆t2, · · · , 1 + µl∆tl. Note that the total price change
satisfies e−f̄ ≤ Π1≤i≤l(1 + µi∆ti) ≤ e

∑
1≤i≤l µi∆ti . Thus

∑
1≤i≤l µi∆ti ≥ −f̄ .

We conclude that when the l-th price change occurs, the warehouse stock will have
decreased by at least

∑
1≤i≤l(µi + κa1)wi∆ti ≥ (−f̄ + kκa1)wi. If k ≥ 1

κa1
(f̄ + a2), then

the warehouse stock decreases by at least a2wi.

THEOREM 3.3. Suppose that the ratios χi/wi are all equal. Suppose that the prices
are always fI-bounded. Also suppose that each price is updated at least once a day.
Suppose further that at the start of Phase 1 the warehouses are all safe. Finally, suppose
that for all i:

(1) χi ≥ 512
β wi and χi ≥ 8v(fI)wi.

(2) δ = κχi

2wi
.

(3) λ2 ≤ κχi

32wi
.
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Then the warehouse stocks never go outside their outer buffers (i.e. they never overflow
or run out of stock); furthermore, after D(fI) + 32

β + 2
κ days every warehouse will be safe

thereafter.

PROOF. We will consider warehouse i. We will say that vi lies in a particular zone
to specify how full or empty the warehouse is.

After D(fI) days, Phase 2 has been reached. By the first condition, in this period of
time the warehouse stock can change by at most v(fI)wi ≤ χi/8, so vi can have moved
out by at most one zone; thus it lies in the middle buffer or a more central zone.

We show that henceforth the tendency is to improve, i.e. move toward the central
zone, but there can be fluctuations of up to one zone width. The result is that every
warehouse remains within its outer zone, and after a suitable time they will all be in
either their inner or central zone.

In Phase 2, the prices are (1− 2δ)−1/β bounded, we can conclude that they are in the
range [1− 2δ/β, 1 + 4δ/β] if 2δ/β ≤ 1

2 and δ ≤ 1
4 . Further, this is contained in the range

[e−4δ/β , e4δ/β ]. Hence pi can change by at most a factor of e±8δ/β .
First we show that vi can move outward by at most one zone width. By Lemma

C.1 (taking a1 such that a1wi is the width of one zone, i.e. a1 = 1
8χi/wi, a2 = 0

and f̄ = 8δ/β), after 8δ/(βκa1) days the value of vi will have returned to value vi(t)
or remained below this value. During this period of time, the stock can increase by
at most 8δwi/(βκa1). Note that by κχ/2 = δwi, a1 = 1

8χi/wi and the first condition,
8δwi/(βκa1) = 32wi/β ≤ 1

16χi, which is half the width of a zone. This guarantees that
the stock will never be overflow.

By Lemma 4.10 (taking a1 = 1
8χi/wi, a2 = 1

4χi/wi and f̄ = 8δ/β), vi reaches the
upper central zone after (8δ/β +a2)/(κa1) = 32

β + 2
κ days. Applying the argument in the

last paragraph anew shows that henceforth vi remains within the upper inner buffer.
We apply the same argument to the low zones using Lemma 4.10 (here we need to

use the third condition). The same results are achieved, but they take up to twice as
long, and the possible increase in stock is twice as large as the possible decrease in the
previous case, but still only one zone’s worth.

D. UNWINDING THE CONDITIONS IN THE COMPLEMENTARY CASE
Lemma 4.6, Theorem 4.7 and Theorem 3.3 require several constraints on the param-
eters κ, δ, λ, c1, c2. We unwind these conditions to show how these parameters depend
on the market parameters α, γ and β. We list the conditions below:

(1) 4κ(1 + c2) ≤ λc1 ≤ 1/2;
(2) (1− 2δ)−1/β ≤ (2− δ)1/γ ;
(3) ᾱ + c1 + c2δ ≤ 1− δ where ᾱ = 2(1− α)(1− 2δ)−γ/β

(
1 + λ(1+δ)

2(1−λ(1+δ))

)
;

(4) (1 + δ + c1 + c2δ)λ ≤ 1;
(5) χi ≥ 512

β wi and χi ≥ 8v(fI)wi;
(6) δ = κχi

2wi
;

(7) λ2 ≤ κχi

32wi
.

Recall that without loss of generality we may assume χi/wi are the same for all i.
Let r = χi

wi
. When r ≥ max

{
512
β , 8v(fI)

}
, Condition (5) is satisfied.

We first impose that

δ ≤ min
{

β

2γ
,
1
4

}
, λ ≤ 3

7
, c1 = δ, c2 = 2. (8)
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Condition (4) is then satisfied. Condition (1) becomes
24
r
≤ λ. (9)

By Lemma B.1(e), (1− 2δ)−γ/β ≤ 1 + 4γ
β δ as 2γ/β ≤ 1/2 and γ/β ≥ 1. Thus Condition

(2) is satisfied when 1 + 4γ
β δ ≤ 2− δ, which is equivalent to

δ ≤ β

4γ + β
. (10)

Condition (3) is satisfied when (8+4γ/β)δ+7λ/6 ≤ ln 1
2(1−α) : this implies (8+4γ/β)δ+

1+δ
2(1−λ(1+δ))λ ≤ ln 1

2(1−α) and hence 2(1 − α) exp
(
4δγ/β + 1+δ

2(1−λ(1+δ))

)
≤ exp(−8β). This

further implies ᾱ = 2(1− α)(1− 2δ)−γ/β
(
1 + 1+δ

2(1−λ(1+δ))

)
≤ 1− 4δ.

When we further impose that

(8 + 4γ/β)δ ≤ 1
2

ln
1

2(1− α)
, (11)

Condition (3) can be satisfied when

λ ≤ 3
7

ln
1

2(1− α)
. (12)

Using the bounds on δ in (8), (10) and (11), and substituting into Condition (6), yields

κ ≤ 2
r
·min

{
β

2(γ + β)
,
1
4
,

β

4γ + β
,

1
2(8 + 4γ/β)

ln
1

2(1− α)

}

=
2
r
·min

{
β

4γ + β
,

1
2(8 + 4γ/β)

ln
1

2(1− α)

}
.

Using the bounds on λ in (8), (9) and (12), together with Condition (7), yields

24
r
≤ λ ≤ min

{
3
7
,
3
7

ln
1

2(1− α)
,

√
κr

32

}
.

Note that r = χi/wi needs to be sufficiently large to ensure that there is a choice of λ
which satisfies both the upper and lower bounds.

The market is defined by the parameters α, γ, β. Then κ, λ, r are chosen to satisfy
the conditions. The price update rule uses κ, λ, while the warehouse sizes are lower
bounded by rwi. The parameters c1, c2 are needed only for the analysis.

E. MARKETS WITH MIXTURES OF SUBSTITUTES AND COMPLEMENTS
E.1. Phase 1 and One-Time Markets
As with the case of markets of complementary goods, it suffices to analyze the one-time
markets in Phase 1.

LEMMA E.1. When the market is f -bounded,

(1) if pi = rp∗i /f where 1 ≤ r ≤ f2, then xi ≥ wif
βr−E ;

(2) if pi = fp∗i /q where 1 ≤ q ≤ f2, then xi ≤ wif
−βqE .

PROOF. We prove the first part; the second part is symmetric. Let (p′−i, rp
∗
i /f) be the

f -bounded prices maximizing xi when pi = rp∗i /f . First consider adjusting the prices
from p∗ to (p′−i, p

∗
i /f) by smooth proportionate multiplicative changes (or equivalently,
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proportionate linear changes to the terms log pj for all j). From the definition of β in
Definition 2.3, it is easy to show that the resulting demand for xi is at least wif

β .
Now increase pi by a factor of r. As by assumption E is the upper bound on the price
elasticity, the increase in the value of pi reduces xi by at most r−E , yielding the bound
xi ≥ wif

βr−E .

LEMMA E.2. Suppose that β > 0. Further, suppose that the prices are updated
independently using price update rule (1), and that0 < λ ≤ 1

2E−1 . Let p denote the
current price vector and p′ denote the price vector after one day.

(1) If f(p)β ≥ 2, then f(p′) ≤ (
1− λ

2

)
f(p).

(2) If f(p)β ≤ 2, then f(p′) ≤ f(p)1−λβ/(2 ln 2).

PROOF. Suppose that pi = r
p∗i

f(p) , where 1 ≤ r ≤ f(p)2. By Lemma E.1, xi ≥
wif(p)βr−E and hence xi−wi

wi
≥ f(p)βr−E − 1. When pi is updated using price update

rule (1), the new price p′i satisfies

p′i ≥ r
p∗i

f(p)
[
1 + λ ·min

{
1, f(p)βr−E − 1

}]
.

Let h3(r) := r
[
1 + λ ·min

{
1, (f(p)βr−E − 1)

}]
. When f(p)βr−E ≥ 2, dh3(r)

dr = 1 + λ > 0;
When f(p)βr−E ≤ 2,

d

dr
h3(r) = 1− λ

(
1 + (E − 1)f(p)βr−E

) ≥ 1− λ(2E − 1) ≥ 0.

Thus

p′i ≥
p∗i

f(p)
[
1 + λ ·min

{
1, f(p)β − 1

}]
.

Similarly, suppose pj satisfies pj = 1
q f(p)p∗j , where 1 ≤ q ≤ f(p)2. By Lemma E.1,

xj ≤ wjf(p)−βqE and hence xj−wj

wj
≤ f(p)−βqE − 1. When pj is updated using price

update rule (1), the new price p′j satisfies

p′j ≤
1
q
f(p)p∗j

(
1 + λ ·min

{
1, f(p)−βqE − 1

})
.

Let h4(q) := 1
q

[
1 + λ ·min

{
1, f(p)−βqE − 1

}]
. When f(p)−βqE ≥ 2, d

dq h4(q) = − 1
q2 (1 +

λ) < 0. When f(p)−βqE ≤ 2,
d

dq
h4(q) =

1
q2

[−1 + λ
(
1 + (E − 1)f(p)−βqE

)] ≤ 1
q2

(−1 + λ(2E − 1)) ≤ 0.

Thus

p′j ≤ f(p)p∗j
[
1 + λ ·min

{
1, f(p)−β − 1

}]
= f(p)p∗j

[
1 + λ(f(p)−β − 1)

]
.

The remainder of the proof is exactly same as the the final part of the proof of Lemma
4.4.

E.2. Ongoing Markets
LEMMA E.3. Suppose Assumption 1 holds, λE ≤ 1 and λ ≤ 1

2 , then |∆Ss| ≤ (α′ +
2(E − 1))xi|∆pi|.

PROOF. There are two cases.
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Case 1. The price of Gi is reduced from pi to p′i = tpi, where t < 1.
Then x′i ≤ t−Exi and hence ∆si ≤ (t1−E − 1)pixi. Then

|∆Ss| = |∆Sc|+ ∆si ≤ α′xi|∆pi|+ (t1−E − 1)pixi ≤ α′xi|∆pi|+ 2(E − 1)(1− t)pixi.

The last inequality holds by applying Lemma B.1(c) with max
{

Eλ
2 , λ

} ≤ 1/2 and t ≥
1− λ. Noting that (1− t)pi = |∆pi|, completes the proof.
Case 2. The price of Gi is raised from pi to p′i = tpi, where t > 1.

Then x′i ≥ t−Exi and hence ∆si ≥ (t1−E − 1)pixi. Then

|∆Ss| = |∆Sc| −∆si ≤ α′xi|∆pi|+ (1− t1−E)pixi ≤ α′xi|∆pi|+ (E − 1)(t− 1)pixi.

The last inequality holds by applying Lemma B.1(d). Noting that (t − 1)pi = |∆pi|,
completes the proof.

The following lemma proves convergence in the market with mixtures of substitutes
and complements while incorporating warehouses.

LEMMA 5.1. Suppose Assumption 1 holds and β, as defined in Definition 2.3, satis-
fies β > 0. Suppose that the following conditions hold:

(1) f ≤ (1− 2δ)−1/β ≤ (2− δ)1/(2E−β) since the last price update to pi;
(2) 2α′(1− 2δ)−(2E−β)/β + c1 + c2δ ≤ 1− δ;
(3)

(
2α′′(1− 2δ)−(2E−β)/β + 1 + δ + c1 + c2δ

)
λ ≤ 1,

where α′′ := α′ + 2(E − 1). Then, when a price pi is updated using rule (2), the value of
φ stays the same or decreases.

PROOF. The first condition is used with Lemma E.1 to ensure that xi, x̄i ≤ (1 −
2δ)−(2E−β)/βwi ≤ (2 − δ)wi, and hence that z̄i

wi
≤ 1. By price update rule (2), |∆pi| =

λpi|x̄i − w̃i|/wi.
We assume ∆pi > 0. The proof is symmetric for ∆pi < 0. Recall that when ∆pi > 0,

|∆Ss| = |∆Sc| −∆si.

Case 1: sign(xi − w̃i) is not flipped and xi moves towards w̃i.
By Lemma A.1, the change to φ is at most −w̃i|∆pi|+∆si + |∆Sc|+ |∆Ss|+ c1λpi|x̄i−

w̃i|+c2δwi|∆pi|, which is equal to −w̃i|∆pi|+2|∆Sc|+c1λpi|x̄i− w̃i|+c2δwi|∆pi|. Noting
w̃i/wi ≥ 1 − δ and xi ≤ (1 − 2δ)−(2E−β)/βwi, and applying Assumption 1, implies that
this change is at most

(
2α′(1− 2δ)−(2E−β)/β + c1 + c2δ − (1− δ)

)
wi|∆pi|.

Case 2: sign(xi − w̃i) is not flipped and xi moves away from w̃i, or sign(xi − w̃i) is
flipped.

By Lemma A.1, the change to φ is at most −pi|x̄i − w̃i| + w̃i|∆pi| − ∆si +
|∆Sc| + |∆Ss| + c1λpi|x̄i − w̃i| + c2δwi|∆pi|, which is equal to −pi|x̄i − w̃i| + w̃i|∆pi| +
2|∆Ss| + c1λpi|x̄i − w̃i| + c2δwi|∆pi|. Noting that w̃i/wi ≤ 1 + δ and xi ≤ (1 −
2δ)−(2E−β)/βwi, and applying Assumption 1, implies that this change is at most(
(2α′′(1− 2δ)−(2E−β)/β + 1 + δ + c1 + c2δ)λ− 1

)
pi|x̄i − w̃i|.

F. UNWINDING THE CONDITIONS IN THE MIXTURE CASE
Lemma 4.6, Lemma 5.1 and Theorem 3.3 require several constraints on the parame-
ters κ, δ, λ, c1, c2. We unwind these conditions to show how these parameters depend on
the market parameters β and α′. We list the conditions below:

(1) 4κ(1 + c2) ≤ λc1 ≤ 1/2;
(2) (1− 2δ)−1/β ≤ (2− δ)1/(2E−β);
(3) 2α′(1− 2δ)−(2E−β)/β + c1 + c2δ ≤ 1− δ;
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(4)
(
2α′′(1− 2δ)−(2E−β)/β + 1 + δ + c1 + c2δ

)
λ ≤ 1;

(5) χi ≥ 512
β wi and χi ≥ 8v(fI)wi;

(6) δ = κχi

2wi
;

(7) λ2 ≤ κχi

32wi
.

We first impose the conditions

δ ≤ min
{

β

4(2E − β)
,
1
4

}
, λ ≤ 1, c1 = δ, c2 = 2. (13)

As in Section D, let r = χi

wi
. When r ≥ max

{
512
β , 8v(fI)

}
and

λ ≥ 24
r

, (14)

Conditions (5) and (1) are satisfied.
By Lemma B.1(e), (1 − 2δ)−(2E−β)/β ≤ 1 + 4(2E−β)

β δ as 2(2E−β)δ
β ≤ 1/2 and

2E−β
β ≥ 1. Thus Condition (2) and (3) are satisfied when 1 + 4(2E−β)

β δ ≤ 2 − δ and

2α′
(
1 + 4(2E−β)

β δ
)

+ 4δ ≤ 1 respectively, which are equivalent to

δ ≤ β

β + 4(2E − β)
, δ ≤ (1− 2α′)β

8α′(2E − β) + 4β
. (15)

Condition (4) is satisfied when
(
2α′′

(
1 + 4(2E−β)

β δ
)

+ 1 + 4δ
)

λ ≤ 1. The bounds on δ

in (13) gives 4(2E−β)
β δ ≤ 1 and 4δ ≤ 1, hence Condition (4) is satisfied when

λ ≤ 1
4α′′ + 2

=
1

8E + 4α′ − 6
. (16)

Using the bounds on δ in (13) and (15), and substituting into Condition (6), yields

κ ≤ 2
r
·min

{
β

4(2E − β)
,
1
4
,

β

β + 4(2E − β)
,

(1− 2α′)β
8α′(2E − β) + 4β

}

=
2
r
·min

{
β

β + 4(2E − β)
,

(1− 2α′)β
8α′(2E − β) + 4β

}
.

Using the bounds on λ in (13), (14) and (16), together with Condition (7), yields

24
r
≤ λ ≤ min

{
1,

1
8E + 4α′ − 6

,

√
κr

32

}
= min

{
1

8E + 4α′ − 6
,

√
κr

32

}
.

The market is defined by the parameters E, β and α′. Then κ, λ, r are chosen to
satisfy the conditions. The price update rule uses κ, λ, while the warehouse sizes are
lower bounded by rwi. The parameters c1, c2 are needed only for the analysis.

F.1. Example Scenario: N -Level Nested CES Type Utilities
We focus on one particular good i. Let A1, A2, · · · , AN be the square nodes along the
path from good i to the root of the utility tree, and let ρ1, ρ2, · · · , ρN be the associated
ρ values. Let σk = 1

1−ρk
for 1 ≤ k ≤ N . Let Sk denote the set of goods which are in

the subtree rooted at Ak. Let hk denote the total spending on all goods in Sk and let
ANC(j) denote the least common ancestor of goods i and j.
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Keller derived the following formulae:

∂xi/∂pj

xi/pj
=

sj

hN
(σN − 1) +

N−1∑

q=ANC(j)

sj

hq
(σq − σq+1)

∂xi/∂pi

xi/pi
= −σ1 +

si

hN
(σN − 1) +

N−1∑
q=1

si

hq
(σq − σq+1).

We now compute the Adverse Market Elasticity of good i. When the price of good i is
reduced by a factor of (1− δ) (think of δ as being very small), raise the prices of all the
complements of good i by a factor of 1/(1−δ) and reduce the prices of all the substitutes
of good i by a factor of (1− δ). By the above formulae, x′i ≥ xit

βi , where

βi = −∂xi/∂pi

xi/pi
−

∑

j 6=i

∣∣∣∣
∂xi/∂pj

xi/pj

∣∣∣∣

= σ1 − si

hN
(σN − 1)−

N−1∑
q=1

si

hq
(σq − σq+1)−

∑

j

∣∣∣∣∣∣
sj

hN
(σN − 1) +

N−1∑

q=ANC(j)

sj

hq
(σq − σq+1)

∣∣∣∣∣∣

≥ σ1 − si

hN
|σN − 1| −

N−1∑
q=1

si

hq
|σq − σq+1| −

∑

j


 sj

hN
|σN − 1|+

N−1∑

q=ANC(j)

sj

hq
|σq − σq+1|




= σ1 − |σN − 1|

 ∑

j∈SN

sj

hN


−

N−1∑
q=1


|σq − σq+1|

∑

j∈Sq

sj

hq




= σ1 − |σN − 1| −
N−1∑
q=1

|σq − σq+1|.

Note that we do not require any two goods to always be substitutes or always comple-
ments.

The lower bound on βi is tight when hN

hN1
, hN−1

hN−2
, · · · , h2

h1
, h1

si
are all very large. Set β,

as defined in Definition 2.3, to mini βi.
Also note that

∂xi/∂pi

xi/pi
=

si

hN

[
−1−

N∑
q=1

σq

(
hN

hq−1
− hN

hq

)]

≥ max
{

1, max
1≤k≤N

σk

} (
− si

hN
−

N∑
q=1

(
si

hq−1
− si

hq

))

= −max
{

1, max
1≤k≤N

σk

}
.

Let Ei = max {1, max1≤k≤N σk} and set E = maxi Ei.
Keller also derived that

∂sj

∂pi
= xi


 sj

hN
(σN − 1) +

N−1∑

q=ANC(j)

sj

hq
(σq − σq+1)


 .
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This yields

∑

j 6=i

|∆sj | ≤ (1− λ)−Exi|∆pi|
∑

j 6=i


 sj

hN
|σN − 1|+

N−1∑

q=ANC(j)

sj

hq
|σq − σq+1|




≤ xi|∆pi|(1− λ)−E

(
|σN − 1|+

N−1∑
q=1

|σq − σq+1|
)

.

Let α′i = (1 − λ)−E
(
|σN − 1|+ ∑N−1

q=1 |σq − σq+1|
)

. Assumption 1 is satisfied with α′ =
maxi α′i. Hence the bounds from Theorems 3.4 and 3.3 apply.
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