A.V. Aho, K. Sleiglitz and J.D. Ullmann, Evaluating polynomials at fixed sets of points, SIAM. J. Comput. 4 (1975) 533--539.
A.G. Akritas, On the complexity of algorithms for the translation of polynomials, Computing 24 (1980) 51--60.
B.W. Arden and K.N. Astill, Numerical Algorithms: Origins and Applications (Addison-Wesley, Reading, MA, 1970) 54--80.
K. Atkinson, An Introduction to Numerical Analysis (Wiley, New York, 1978) 39--106.
J.L. Baer and D.P. Bovet, Compilation of arithmetic expressions for parallel computations, in: Proc. IFIP Congress (North-Holland, Amsterdam, 1968) 340--346.
N.S. Bakhvalov, On the stable evaluation of polynomials, U.S.S.R. Comput. Math. and Math. Phys. 11 (6) (1971) 263--271.
E.J. Barbeau, Polynomials (Springer, New York, 1989).
E.G. Belaga, On the computation of values of polynomials in one variable with preliminary treatment of the coefficients, Probl. Cyber. 5 (1961) 7--15.
A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numerical Problems (Elsevier, New York, 1977) 54--76; 132--137; 148--150.
A. Borodin, Computational complexity---theory and practice, in: A. Aho, Ed., Currents in the Theory of Computing (Prentice-Hall, Englewood Cliffs, NJ, 1973) 75--78.
A. Borodin and S. Cook, On the number of additions to compute specific polynomials, in: Proc. 6th Annual ACM Symp. on Theory of Computing (Assoc. Computing Machinery, New York, 1974) 342--347.
A. Borodin and I. Munro, Evaluating polynomials at many points, Inform. Process. Lett. 1 (2) (1971) 66--68.
A. Borodin and R. Moenck, Fast modular transforms, J. Comput. System Sci. 8 (1974) 366--386.
A. Borodin and S. Cook, On the number of additions to compute specific polynomials, SIAM J. Comput. 5 (1976) 146--157.
A. Borodin and I. Munro, Efficient evaluation of polynomial forms, J. Comput. System Sci. 6 (1972) 625--638.
A. Borodin, Computational complexity---a survey, in: Proc. Fourth Annual Princeton Conf. on Information Sciences and Systems, Princeton, NJ (1970) 257--262.
A. Borodin, On the number of arithmetics to compute certain functions --circa May 1973, in: J.F. Traub, Ed., Complexity of Sequential and Parallel Numerical Algorithms (Academic Press, New York, 1973) 149--180; also: SIAM J. Comput. 5 (1956) 146--157.
A. Borodin, Horner's rule is uniquely optimal, in: Z. Kolavi and A. Paz, Eds., Theory of Machines and Computations (Academic Press, New York, 1971) 45--58.
A. Brauer and G. Ehrlich, On the irreducibility of certain polynomials, Bull. Amer. Math. Soc. 52 (1946) 844--856.
R.P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach. 21 (1974) 201--206.
R.P. Brent, The parallel evaluation of arithmetic expressions in logarithmic time, in: J.F. Traub, Ed., Complexity of Sequential and Parallel Numerical Algorithms (Academic Press, New York, 1973) 83--102.
R.P. Brent, D.J. Kuck and K.M. Maruyama, The parallel evaluation of arithmetic expressions without division, IEEE Trans. Comput. 22 (1973) 532--534.
R.P. Brent, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach. 23 (1976) 242--251.
A.M. Bush and D.C. Fielder, Simplified algebra for the bilinear and related transformations, IEEE Trans. Audio Electroacoust. 21 (1973) 127--128.
R. Butel, A Cray-2 versus CM-2 comparison using several polynomial benchmarks, Parallel Comput. 18 (1992) 931--945.
F. Cajori, Horner's method of approximation anticipated by Ruffini, Bull. Amer. Math. Soc. 17 (1911) 409--414.
D. Cantor, On arithmetical algorithms over finite fields, J. Combinatorial Theory A 50 (1989) 285--300.
L. Collatz, Das Horneresche Schema bei komplexen Wurzeln, Z. Angew. Math. Mech. 20 (1940) 235--236.
G.J. Cooper, The evaluation of the coefficients in a Chebyshev series, Comput. J. 10 (1967) 94--100.
A.R. Curtis, Summation of a Chebyshev series when the argument can be written t = cosθ, where θ is known, in: D.J. Evans, Ed., Software for Numerical Mathematics (Academic Press, London, 1974) 136--137.
A.C. Davies, Bilinear transformation of polynomials, IEEE Trans. Circuits and Systems 21 (1974) 792--794.
A.C. Davis, Bilinear transformations of polynomials, IEEE Trans. Circuits and Systems 21 (1974) 792--794.
L. Derwidué, Introduction à l'algèbre supérieure et au calcul numérique algébrique, Masson et Cie, Paris (1957).
W.S. Dorn, Generalizations of Horner's rule for polynomial evaluation, IBM J. Res. Develop. 6 (1962) 239--245.
M.L. Dowling, A fast parallel Horner algorithm, SIAM J. Comput. 19 (1990) 133--142.
C.B. Dunham, Perturbation analysis of Horner's method for nice cases, SIGNUM 24 (2--3) (1989) 8--9.
J. Duprat and J.-M. Muller, Hardwired polynomial evaluation, J. Parallel Distrib. Comput. 5 (1988) 291--309.
I.E. Durand, Solutions Numérique des Équations Algébriques. Tome I: Équations du Type F(x)=0; Racines d'une Polynôme (Masson, Paris, 1960) 279--281.
W. Eberly, Very fast parallel polynomial arithmetic, SIAM J. Comput. 18 (1989) 955--976.
S.H. Eisman, Polynomial evaluation revisited, Comm. ACM 7 (1963) 384--385.
D. Elliott, Error analysis of an algorithm for summing certain finite series, J. Austral. Math. Soc. 8 (1968) 213--221.
D.J. Evans and C. Sutti, Eds., Parallel Computing: Methods, Algorithms and Applications (Adam Hilger, New York, 1990) 8--9.
J. Eve, The evaluation of polynomials, Numer. Math. 6 (1964) 17--21.
W. Everling, Eine Verallgemeinerung des Horner'schen Schemas, Z. Angew. Math. Mech. 37 (1957) 74.
R.T. Farouki, Computing with barycentric polynomials, Math. Intelligencer 13 (4) (1991) 61--69.
M. Feilmeier and G. Segerer, Numerical stability in parallel evaluation of arithmetic expressions, in: M. Feilmeier, Ed., Parallel Computers---Parallel Mathematics (North-Holland, Amsterdam, 1977) 107--112.
M. Feilmeier, Parallel numerical algorithms, in: D.J. Evans, Ed., Parallel Processing Systems (Cambridge Univ. Press, London, 1982) 285--338.
C.M. Fiduccia, Polynomial evaluation via the division algorithm: the fast Fourier transform revisited, in: Proc. 4th Annual Symp. on Theory of Computing (Assoc. Computing Machinery, New York, 1972) 88--93.
C.T. Fike, Methods of evaluating polynomial approximations in function evaluation routines, Comm. ACM 10 (1967) 175--178.
C.T. Fike, Computer Evaluation of Mathematical Functions (Prentice-Hall, Englewood Cliffs, NJ, 1968) Chapters 2, 4.
C.E. Fröberg, Introduction to Numerical Analysis (Addison-Wesley, Reading, MA, 1969).
W.M. Gentleman and S.C. Johnson, Analysis of algorithms, a case study: determinants of matrices with polynomial entries, ACM Trans. Math. Software 2 (1976) 232--239.
S. Ghadarpanah and S. Klasa, Polynomial scaling, SIAM J. Numer. Anal. 27 (1990) 117--135.
J.A. Grant and A.A. Rahman, Determination of the zeros of a linear combination of generalized polynomials, J. Comput. Appl. Math. 42 (1992) 269--278.
J.A. Grant and A. Ghiatis, Determination of the zeros of a linear combination of Chebyshev polynomials, IMA J. Numer. Anal. 3 (1983) 193--206.
E. Grassmann and J. Rokne, The range of values of a circular complex polynomial over a circular complex interval, Computing 23 (1979) 139--169.
W.W. Hage, A modified fast Fourier transform for polynomial evaluation and the Jenkins--Traub algorithm, Numer. Math. 50 (1987) 253--261.
R. Hammer et al, Numerical Toolbox for Verified Computing with Algorithms and Pascal-XSC Programs (Springer, New York, 1993) 57--68; 87--104; 152--172.
E.R. Hansen, Polynomial evaluation with scaling, ACM Trans. Math. Software 16 (1990) 86--93.
J. Heintz and C.P. Schnorr, Testing polynomials which are easy to compute, in: Proc. 12th Annual ACM Symp. on Theory of Computing (1980) 262--280.
J. Heintz and M. Sieveking, Lower bounds for polynomials with algebraic coefficients, Theoret. Comput. Sci. 11 (1980) 321--330.
W. Heitzinger, I. Troch and G. Valentin, Praxis Nichtlinearer Gleichungen (Hanser Verlag, München, 1985).
P. Henrici, Applied and Computational Complex Analysis (Wiley, New York, 1977).
J.E. Hopcroft, Complexity of computer computations, Information Processing 74 (North Holland, Amsterdam, 1974) 620--626.
W.G. Horner, A new method of solving numerical equations of all orders by continuous approximation, Philos. Trans. Roy. Soc. London 109 (1819) 308--335.
W.G. Horner, On algebraic transformation, The Mathematician 1 (1845) 108--112; 136--142; 311--316.
E. Horowitz, A fast method for interpolation using preconditioning, Inform. Process. Lett. 1 (1972) 157--163; 216.
E. Isaacson and H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966) 85--133.
H.-J. Stoss, Lower bounds for the complexity of polynomials, Theoret. Comput. Sci. 64 (1989) 15--23.
H.-J. Stoss, On the representation of rational functions of bounded complexity, Theoret. Comput. Sci. 64 (1989) 1--13.
L.W. Johnson and R.D. Riess, Numerical Analysis (Addison-Wesley, Reading, MA, 1982) 142--201.
E.I. Jury and O.W.C. Chan, Combinatorial rules for some useful transformations, IEEE Trans. Circuit Theory 20 (1973) 476--480.
Z. Kedem, Combining dimensionality and rate of growth arguments for establishing lower bounds on the number of multiplications, in: Proc. 6th Annual ACM Symp. on Theory of Computing (Assoc. Computing Machinery, New York, 1974) 334--341.
W. Keller-Gehrig, Fast algorithms for the charachteristic polynomial, Theoret. Comput. Sci. 36 (2--3) (1985) 309--317.
D. Kirkpatrick, On the additions necessary to compute certain functions, in: Proc. 4th Annual ACM Symp. on Theory of Computing (Assoc. Computing Machinery, New York, 1972) 94--101.
D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol. II (Addison-Wesley, Reading, MA, 1969) 363--443; (2nd ed., 1981) 399--505.
D.E. Knuth, Evaluation of polynomials by computer, Comm. ACM 5 (1962) 595--599.
L.I. Kronsjö, Algorithms: Their Complexity and Efficiency (Wiley, Chichester, 1979) 10--89.
D.J. Kuck and Y. Muraoka, Bounds on the parallel evaluation of arithmetic expressions using associativity and commutativity, in: Annual Princeton Conf. on Information Sciences and Systems, Princeton, NJ (1973) 161--168.
D.J. Kuck, Multioperation machine computational complexity, in: J.F. Traub, Ed., Complexity of Sequential and Parallel Numerical Algorithms (Academic Press, New York, 1973) 17--47.
D.J. Kuck and K. Maruyama, Time bounds on the parallel evaluation of arithmetic expressions, SIAM J. Comput. 4 (1975) 147--162.
U. Kulisch and W.L. Miranker, Eds., A New Approach to Scientific Computation (Academic Press, New York, 1983) 42--45; 99--104; 121--137.
H.T. Kung, A new upper bound on the complexity of derivative evaluations, Inform. Process. Lett. 2 (1973) 146--147.
H.T. Kung, New algorithms and lower bounds for the parallel evaluation of certain rational expressions and recurrences, J. Assoc. Comput. Mach. 23 (1976) 252--261.
H.T. Kung, New algorithms and lower bounds for the parallel evaluation of certain rational expressions and recurrences, J. Assoc. Comput. Mach. 23 (1979) 252--261.
C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1956) 5--48.
R.J. Leach, O.M. Atogi and R.R. Stephen, The actual complexity of parallel evaluation of low degree polynomials, Parallel Comput. 13 (1990) 73--83.
S. Linnaimaa, Combatting the effects of under- and over-flow in determining real roots of polynomials, SIGNUM 16 (2) (1981) 11--15.
S. Linnaimaa, Error linearization as an effective tool for experimental analysis of the numerical stability of algorithms, BIT 23 (1983) 346--359.
J. Lipson, Chinese remainder and interpolation algorithms, in: Proc. 2nd Symp. on Symbolic and Algebraic Computation (1971) 372--391.
R.J. Lipton, Polynomials with 0--1 coefficients that are hard to evaluate, in: Proc. 16th Annual Symp. on Foundations of Computer Science (1975) 6--10.
R.J. Lipton and D.P. Dobkin, Complexity measures and hierarchies for the evaluation of integers, polynomials, and N-linear forms, in: Proc. 7th Annual ACM Symp. on Theory of Computing (1975) 1--5.
R.J. Lipton and L.J. Stockmeyer, Evaluation of polynomials with super-preconditioning, Proc. 8th Ann. ACM Symp. on Theory of Computing (1976) 174--180; also: J. Comput. System Sci. 16 (1978) 124--139.
L.A. Lyusternik, O.A. Chervonenkis and A.R. Yanpolskii, Handbook for Computing Elementary Functions, translation: G.J. Tee (Pergamon Press, Oxford, 1965) 10--16; 21--31; 142--148.
K.H. Müller, Rounding error analysis of Horner's scheme, Computing 30 (1983) 285--303.
D. Makarenko and J. Schaeffer, A VLSI multiprecision matrix multiplier and polynomial evaluator, J. Parallel Distrib. Comput. 4 (1987) 619--628.
K.M. Maruyama, On the parallel evaluation of polynomials, IEEE Trans. Comput. 22 (1973) 2--5.
W.S. McCormick and J.L. Lansford, Efficient parallel rooting of complex polynomials on the unit circle, IEEE Trans. Signal Process. 39 (1991) 2347--2351.
C. Mesztenyi and C. Witzgall, Stable evaluation of polynomials, J. Res. Nat. Bur. Standards 71B (1967) 11--17.
A.P. Mishina and I.V. Proskuryakov, Higher Algebra: Linear Algebra, Polynomials and General Algebra (Pergamon, Oxford, 1965).
R.T. Moenck and A. Borodin, Fast modular transforms via division, in: Proc. Thirteenth IEEE Symp. on Switching and Automata Theory (1972) 90--96.
A. Moitra, Parallel algorithms for some computational problems, in: M.C. Yovits, Ed., Advances in Computers 26 (Academic Press, New York, 1987) 133--134.
J.S. Motzkin, Evaluation of polynomials and evaluation of rational functions, Bull. Amer. Math. Soc. 61 (1955) 163.
D.E. Muller and R.P. Preparata, Restructuring of arithmetic expressions for parallel evaluation, J. Assoc. Comput. Mach. 23 (1976) 534--543.
I. Munro and A. Borodin, Efficient evaluation of polynomial forms, J. Comput. System Sci. 6 (1972) 625--638.
I. Munro and M. Patterson, Optimal algorithms for parallel polynomial evaluation, Proc. IEEE Annual Symp. on Switching and Automata Theory (1971) 132--139; also: J. Comput. System Sci. 7 (1973) 189--198.
J.v.Sz. Nagy, Über einen Satz von Laguerre, J. Reine Angew. Math. 169 (1933) 186--192.
C. Narayanaswami and W. Luken, Approximating xn efficiently, Inform. Process. Lett. 50 (1994) 205--210.
A.C.R. Newbery, Polynomial evaluation schemes, Math. Comp. 29 (1975) 1046--1050.
A.C.R. Newbery, Error analysis for polynomial evaluation, Math. Comp. 28 (1974) 789--793.
I. Newton, in: Horsley, Ed., Collected Works, Vol. I (1779) 268--271.
I. Newton, Analysis per Quantitatem Series (London, 1711) 10.
X. Nie and R. Unbehauen, Efficient evaluation of 1--D and 2--D polynomials at equispaced points, IEEE Trans. Acoust. Speech Signal Process. 37 (1989) 1623--1626.
A.H. Nuttall, Efficient evaluation of polynomials and exponentials of polynomials for equispaced arguments, IEEE Trans. Acoust. Speech Signal Process. 35 (1987) 1486--1487.
University of Bergen, Problem No. 47, BIT 5 (1965) 142.
J. Oliver, A note on the signs of truncated polynomials, BIT 18 (1978) 233--235.
J. Oliver, An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series, J. Inst. Math. Appl. 20 (1977) 379--391.
J. Oliver, On the application of Newbery's transformation to the Reinsch polynomial evaluation scheme, J. Comput. Appl. Math. 6 (1) (1980) 43--52.
J. Oliver, Rounding error propogation in polynomial evaluation schemes, J. Comput. Appl. Math. 5 (2) (1979) 85--97.
F.W.J. Olver, Error bounds for polynomial evaluation and complex arithmetic, IMA J. Numer. Anal. 6 (1986) 373--379.
A.M. Ostrowski, On two problems in abstract algebra connected with Horner's rule, in: Studies Presented to R. Von Mises (Academic Press, New York, 1954) 40--48.
R.E. Overill and S. Wilson, Performance of parallel algorithms for the evaluation of power series, Parallel Comput. 20 (1994) 1205--1213.
L. Pacquet, Precise evaluation of a polynomial at a point given in staggered correction format, J. Comput. Appl. Math. 50 (1994) 433--454.
V. Pan and O. Tiga, A new approach to fast polynomial interpolation and multipoint evaluation, Comput. Math. Appl. 25 (9) (1993) 25--30.
V.Y. Pan, Computation of polynomials by schemes with initial conditioning of coefficients and a programme for automatic determination of the parameters, U.S.S.R. Comput. Math. and Math. Phys. 2 (1963) 137--146.
V.Y. Pan, Some schemes for the computation of values of polynomials with real coefficients, Problems Cybernet. 5 (1961) 17--29.
V.Y. Pan, On computing polynomials of fifth and sixth degree with real coefficients, U.S.S.R. Comput. Math. and Math. Phys. 5 (1965) 159--161.
V.Y. Pan, Method of computing values of polynomials, Russian Math. Surveys 21 (1) (1966) 105--136.
V.Y. Pan, Convolution of vectors over the real field of constants by evaluation-interpolation algorithms, J. Algorithms 1 (1980) 297--300.
V.Y. Pan, The bit-complexity of arithmetic algorithms, J. Algorithms 2 (1981) 144--163.
L. Pasquini and D. Trigiante, Numerical methods for simultaneously approaching roots of polynomials, in: V. Lakshmikantham, Ed., Trends in the Theory and Practice of Non-Linear Analysis, North-Holland Math. Stud. 110 (North-Holland, Amsterdam, 1985) 363--370.
M.S. Paterson and L. Stockmeyer, Bounds on the evaluation time for rational polynomials, in: 12th Annual Symp. on Switching and Automata Theory (IEEE Press, New York, 1971) 140--143.
M.S. Paterson and L. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput. 2 (1973) 60--66.
J. Peltier, Résolutions Numérique des Équations Algébriques (Paris, 1957).
L. Petkovic and M.S. Petkovic, The representation of complex circular functions using Taylor series, Z. Angew. Math. Mech. 61 (1981) 661--662.
E. Pflanz, Zur Berechnung der Wert eines Polynoms mit dem Horner'schen Verfahren, Z. Angew. Math. Mech. 36 (1956) 152.
NATIONAL PHYSICAL LABORATORY, Modern Computing Methods, Her Majesty's Stationary Office, London (1961).
M. Policastro, A simple algorithm to perform the bilinear transformation, Internat. J. Control 30 (1979) 713--715.
F.P. Preparata and D.E. Muller, The time required to evaluate division-free arithmetic expressions, Inform. Process. Lett. 3 (1975) 144--146.
J.D. Pryce, Round-off error analysis with fewer tears, Bull. Inst. Math. Appl. 17 (1981) 40--47.
W. Rönsch, Stability aspects in using parallel algorithms, Parallel Comput. 1 (1984) 75--98.
A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis (McGraw-Hill, New York, 2nd ed., 1987) 354.
H. Ratschek, Centered forms, SIAM J. Numer. Anal. 17 (1980) 656--662.
H. Ratschek and J. Rokne, About the centered form, SIAM J. Numer. Anal. 17 (1980) 333--337.
J. Reif, Logarithmic depth circuits for algebraic functions, SIAM J. Comput. 15 (1986) 231--242.
M. Reimer, Normenschranken für die Horner-Summen, Z. Angew. Math. Mech. 47 (1967) 24--25.
M. Reimer, Bounds for the Horner sums, SIAM J. Numer. Anal. 5 (1968) 461--469.
E.M. Reingold and A.I. Stokes, Simple proofs of lower bounds for polynomial evaluation, in: R.E. Miller and J.W. Thatcher, Eds., Complexity of Computer Computations (Plenum, New York, 1972) 21--29.
J.R. Rice, Numerical Methods, Software and Analysis (McGraw-Hill, New York, 1983) 217--264.
J.J. Risler, Additive complexity and zeros of real polynomials, SIAM J. Comput. 14 (1985) 178--183.
J. Rokne, The circular centered form, Computing 28 (1982) 17--30.
J. Rokne, Bounds on a polynomial, J. Res. Nat. Bur. Standards 74B (1970) 47--54.
J.H. Rowland and J.R. Cowles, Small sample algorithms for the identification of polynomials, J. Assoc. Comput. Mach. 33 (1986) 822--831.
S.C.D. Roy and S. Minocha, A note on efficient evaluation of polynomials..., IEEE Trans. Signal Process. 39 (1991) 2554--2556.
C. Runge and H. König, Vorlesungen über Numerisches Rechnen (Springer, Berlin, 1924) 150--176.
H. Sanden, Practical Mathematical Analysis, translation: H. Levy (Methuen, London, 1923).
J.E. Savage, An algorithm for the computation of linear forms, SIAM J. Comput. 3 (1974) 150--158.
A. Schönhage, An elementary proof of Strassen's degree bound, Theoret. Comput. Sci. 3 (1976) 267--272.
G. Schernberg and J.F. Riordan, Analog calculation of polynomial and trigonometric expansions, Math. Tables Aids Comput. 7 (1953) 61--65.
C.P. Schnorr, Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials, Theoret. Comput. Sci. 7 (1978) 251--261.
C.P. Schnorr and J.P. van der Wiele, On the additive complexity of polynomials, Theoret. Comput. Sci. 10 (1980) 1--18.
M. Shaw and J.F. Traub, On the number of multiplications for the evaluation of a polynomial and some of its derivatives, J. Assoc. Comput. Mach. 21 (1974) 161--167.
M. Shaw and J.F. Traub, On the number of multiplications for the evaluation of a polynomial and all its derivatives, in: 13th Annual Symp. on Switching and Automata Theory (1972) 105--107.
V.I. Smirnov, A Course of Higher Mathematics, Vol. I (Pergamon, Oxford, 1964) 480--505.
J.D. Smith, Determination of polynomials and entire functions, Amer. Math. Monthly 82 (1975) 822--825.
M. Snir and A.B. Barak, A direct approach to the parallel evaluation of rational expressions with a small number of processors, IEEE Trans. Comput. 26 (1977) 933--937.
G.W. Stewart, Error analysis of the algorithm for shifting the zeros of a polynomial by synthetic division, Math. Comp. 25 (1971) 135--139.
E.L. Stiefel, An Introduction to Numerical Mathematics (Academic Press, New York, 1963).
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1980) 270--299.
B.I. Stoyanova, Stability and error estimates for some parallel algorithms for polynomial evaluation, Doklady Bolgarskoi Akkademii Nauk 41 (1988) 25--28.
V. Strassen, Some results in algebraic complexity theory, in: Proc. Internat. Congress Math., Vancouver (1974) 497--501.
V. Strassen, Vermiedung von Divisionen, J. Reine Angew. Math. 264 (1973) 184--202.
V. Strassen, Polynomials with rational coefficients which are hard to compute, SIAM J. Comput. 3 (1974) 128--149.
V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Functionen und von Interpolationskoeffizienten, Numer. Math. 20 (1973) 238--251.
V. Strassen, Computational complexity over finite fields, SIAM J. Comput. 5 (1976) 324--331.
V. Strassen, Evaluation of rational functions, in: R.E. Miller and J.W. Thatcher, Eds., Complexity of Computer Computations (Plenum, New York, 1972) 1--10.
V. Strassen, Einige Resultate über Berechnungs-komplexität, Jahresber. Deutsch. Math.-Verein. 78 (1976) 1--8.
F. Stummel, Rounding error analysis of interval algorithms, Z. Angew. Math. Mech. 64 (1984) 341--354.
F. Stummel, Perturbation theory for evaluation algorithms of arithmetic expressions, Math. Comp. 37 (1981) 435--473.
F. Stummel, Rounding error analysis of elementary numerical algorithms, in: G. Alefeld and R.D. Grigorieff, Eds., Fundamentals of Numerical Computation (Proc. Conf., Berlin, 1979), Computing, Suppl. 2 (1980) 169--195.
B.Y. Ting and Y.K. Luke, Conversion of polynomials between different polynomial bases, IMA J. Numer. Anal. 1 (1981) 229--234.
J. Todd, Motivations for working in numerical analysis, Comm. Pure Appl. Math. 8 (1955) 98--100.
J. Todd, A Survey of Numerical Analysis (McGraw-Hill, New York, 1962) 3--4.
J.F. Traub, Theory of optimal algorithms, in: D.J. Evans, Ed., Software for Numerical Mathematics (Academic Press, New York, 1974) 1--13.
N.K. Tsao, Error analysis of splitting algorithms for polynomials, Numer. Math. 32 409--421.
H.W. Turnbull, Theory of Equations (Oliver and Boyd, Edinburgh, 1939) 72.
L.G. Valiant, Fast parallel computation of polynomials using few processors, SIAM J. Comput. 12 (1983) 641--644.
C. Van Loan, A note on the evaluation of matrix polynomials, IEEE Trans. Automat. Control 24 (1979) 320--321.
J.S. Vandergraft, Introduction to Numerical Computations (Prentice-Hall, Englewood Cliffs, NJ, 1964).
Z. Vavrín, Remarks on complexity of polynomial and special matrix computations, Linear Algebra Appl. 122 (1989) 539--564.
D. Veljan, Computing values of a polynomial with only a few multiplications, Inform. Process. Lett. 49 (1994) 33--37.
A.M. Vetoshkin, A modification of Horner's scheme, U.S.S.R. Comput. Math. and Math. Phys. 21 (5) (1981) 235--236.
W. Volk, An efficient raster evaluation method for univariate polynomials, Computing 40 (1988) 163--173.
W. Volk, An efficient raster evaluation method for univariate Computing 40 (1988) 163--173.
W. Volk, Making the difference interpolation method for splines more stable, J. Comput. Appl. Math. 33 (1990) 53--59.
J. von zur Gathen, Representations and parallel computations for rational functions, SIAM J. Comput. 15 (1986) 432--452.
J. von zur Gathen and V. Strassen, Some polynomials that are hard to compute, Theoret. Comput. Sci. 11 (1980) 331--335.
S. Wilson, Numerical recipes for supercomputers, in: R.G. Evans and S. Wilson, Eds., Supercomputational Science (Plenum, New York, 1990) 81--107.
S. Winograd, On the parallel evaluation of certain arithmetic expressions, J. Assoc. Comput. Mach. 22 (1975) 447--492.
S. Winograd, On the number of multiplications necessary to compute certain functions, Comm. Pure Appl. Math. 23 (1970) 165--179.
S. Winograd, The number of multiplications involved in computing certain functions, in: Proc. IFIP Congress, Booklet A (1968) 276--279.
S. Winograd, On the algebraic complexity of functions, in: Proc. Internat. Congress Math., 3, Nice, 1970 (Gauthier-Villars, Paris, 1971) 283--288.
S. Winograd, On the number of multiplications required to compute certain functions, Proc. Nat. Acad. Sci. U.S.A. 58 (1967) 1840--1842.
H. Wozniakowski, Rounding error analysis for the evaluation of a polynomial and some of its derivatives, SIAM J. Numer. Anal. 11 (4) 780--787.
V.L. Zaguskin, Handbook of Numerical Methods for the Solution of Algebraic and Transcendental Equations (Pergamon, Oxford, 1961).
R. Zurmühl, Praktische Mathematik (Springer, Berlin, 1971).
R. Zurmühl, Zum Graeffe-Verfahren und Horner-Schema bei komplexen Wurzeln, Z. Angew. Math. Mech. 30 (1950) 283--285.