
Near Optimal Tree Size Bounds on a Simple Real Root
Isolation Algorithm

Vikram Sharma
Institute of Mathematical Sciences

Chennai, India 600113
vikram@imsc.res.in

Chee K. Yap
∗

Dept. of Computer Science, New York University
New York, NY 10012
yap@cs.nyu.edu

ABSTRACT
The problem of isolating all real roots of a square-free inte-
ger polynomial f(X) inside any given interval I0 is a fun-
damental problem. EVAL is a simple and practical exact
numerical algorithm for this problem: it recursively bisects
I0, and any sub-interval I ⊆ I0, until a certain numerical
predicate C0(I)∨C1(I) holds on each I. We prove that the
size of the recursion tree is

O(d(L+ r + log d))

where f has degree d, its coefficients have absolute values
< 2L, and I0 contains r roots of f .

In the range L ≥ d, our bound is the sharpest known,
and provably optimal. Our results are closely paralleled by
recent bounds on EVAL by Sagraloff-Yap (ISSAC 2011) and
Burr-Krahmer (2012). In the range L ≤ d, our bound is
incomparable with those of Sagraloff-Yap or Burr-Krahmer.

Similar to the Burr-Krahmer proof, we exploit the tech-
nique of “continuous amortization” from Burr-Krahmer-Yap
(2009), namely to bound the tree size by an integral

∫
I0
G(x)dx

over a suitable “charging function”G(x).
The introduction of the output-size parameter r seems

new. We give an application of this feature to the problem of
ray-shooting (i.e., finding smallest root in a given interval).

Keywords
Continuous amortization, Subdivision algorithm, Integral
analysis, Real Root isolation

1. INTRODUCTION
Given a square-free polynomial f ∈ Z[X], the problem is

to isolate some or all the roots of f . It is a very classic
problem that is treated in many fields, with many varia-
tions and known algorithms. We focus on exact methods

∗This authors’ work is supported by NSF Grants CCF-
0728977 and CCF-0917093.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

for isolating real roots that provide global guarantees of cor-
rectness. Such methods are traditionally based on algebraic
approaches [24, 15, 9, 10, 28]. But there is growing inter-
est in numerical approaches that are exact. We are inter-
ested in numerical methods because they are typically easier
to implement and have adaptive complexity (see [2] for an
extended discussion of this point). Various exact numeri-
cal algorithms have been extensively studied in the interval
analysis community [19, 20].

There is one major gap in the numerical approaches: they
generally lack (non-trivial) complexity analysis. This is be-
cause many numerical algorithms are adaptive and iterative,
and operate by successive approximations in a continuum
(e.g., in R,C,Rn). In particular, the class of subdivision
algorithms uses adaptive iteration to repeatedly subdivide
an initial domain until some terminal condition holds. Ex-
amples include various marching cube type algorithms [17,
22, 29, 16]. But there are few techniques for analyzing adap-
tive iteration. One approach that can account for adap-
tive complexity (e.g., in Linear Programming) is to invoke
probabilistic assumptions. In [4], we introduced a general
framework for analyzing subdivision algorithms. This is a
non-probabilistic approach providing worse-case complexity
bounds, and can be interpreted as a kind of “continuous
amortization”. Note that the concept of amortization is well-
known in discrete algorithms [30, 6].

In this paper, we will use the continuous amortization
framework to analyze a simple real-root isolation algorithm
called EVAL [4, 3]. EVAL is based on well-known numerical
predicates called “centered-forms” in the interval literature
[23]. Assuming that the polynomial f(X) ∈ Z[X] has degree
d and maximum absolute coefficient size < 2L, our main
result is that the recursion tree for EVAL is O(d(L + r +
log d)) where r ≤ d is the number of real roots of f in the
input interval I0. There are three recent complexity analysis
of EVAL:

• Burr, Krahmer and Yap [4] gave the first polynomial
bound of O(d3(L+log d)) using complicated arguments
that invoke several non-trivial algebraic root bound
techniques.

• Sagraloff and Yap [27] showed that EVAL has tree size
O(d(L + log d)(logL + log d)). This proof does not
use continuous amortization, but the technique seems
rather more robust because it applies also to a complex
analogue of EVAL.

• Burr and Krahmer [3] obtained the bound O(d(L +
log d)) but under the additional hypothesis that f ′

is square-free. Their breakthrough comes from real-
izing that the well-known potential function S(z) =∑
α

1
|z−α| (with α ranging over the roots of f) can be

used as a “charging function”.

Our new result is a refinement and variation of the argu-
ments in [3]. In the range L ≥ d, our new result improves
on [27] by removing the logarithmic factor in logL and log d,
and improves on [3] by removing the need for f ′ to be square-
free. In this range, our bound is the best possible in view of
the lower bound from Eigenwillig et al. [10]. An intriguing
question raised by our result is the complexity of EVAL in
the range is log d < L < d where we now have 3 mutually
incompatible complexity bounds.

§1. Some Related Literature.
We focus only on exact subdivision approaches to real

root isolation: the classic method is based on Sturm se-
quences. In recent years, algorithms based on the Descartes
Method [5, 26] have been favored by implementers. The
Continued Fraction Method [1] is another approach that is
empirically the fastest among these methods. A compre-
hensive empirical study of these methods on the Benchmark
problem of isolating all the roots of algebraic polynomials
is given by Hemmer et al [11]. It has been long known
from Davenport (1985) [7] that the tree size from Sturm
methods is O(d(L+ log d)). In Eigenwillig et al (2006) [10],
we proved the same bound for Descartes methods. Similar
sharp bounds for Continued Fraction method is finally ob-
tained in [28]. Furthermore, we showed these bounds to be
optimal for L ≥ log d (see [10]). It was surprising that a
simple numerical approach like EVAL can1 match the worst
case complexity bounds of its more algebraic counterparts.

EVAL in the current form, as an exact root isolation al-
gorithm, was introduced by Yap as the 1-D analogue of al-
gorithms by Vegter-Plantinga [22] for curves and surfaces.
However, the basic form of this algorithm first appeared
in Mitchell’s work on ray-shooting [18]. EVAL should be
viewed as the simplest algorithm of a family that includes
the recently proposed CEVAL for complex root isolation
[27, 13, 14]. Higher dimensional analogues appear in [22,
16]. This makes connections to the large marching-cube
related literature. Subdivision methods similar to EVAL
were proposed by Yakoubsohn and Dedieu [31, 8] and Pan
(modifying Weyl’s Algorithm) [21]. In contrast to EVAL or
CEVAL, these algorithms rely mainly on an exclusion test
(corresponding to C0 in EVAL or CEVAL), but there is no
confirmation test to ensure that a particular output box has
exactly one root. We refer to [3] for further review of related
literature.

§2. The Output Size Parameter r.
The introduction of the parameter r seems new in the

context of root isolation. In computational geometry, such
a parameter is typically called an output-size parameter.
Then we call our complexity bound is output-sensitive.
Note that L and d are global parameters, but r depends on
the “local” argument I0. We can thus view our bound as a
“local bound”. It is immediate that for r ≤ log d, our bound

1 When L ≤ d, some extra qualifications are needed.

is optimal (regardless of whether L ≥ d or not). There is
an important application of root finding that can exploit
the parameter r: in computer graphics, the problem of ray
shooting amounts to computing the smallest real root in the
given interval I0. We show that a simple modification of
EVAL to this problem will achieve optimal tree size bounds
for L ≥ log d.

2. PRELIMINARIES: ON EVAL ALGORITHM
Let us fix some notations. Throughout the paper, let

f(X) ∈ Z[X] denote a square-free polynomial of degree d
whose integer coefficients have absolute value < 2L. So the
main complexity parameters are d ≥ 1 and L ≥ 1.

Given an interval I = [a, b] where a ≤ b, let its midpoint
and width be m(I) :=(a+b)/2 and w(I) := b−a. Let P be a
set {J1, . . . , Jm} where each Ji ⊆ I. We call P a partition
of I if I = ∪mi=1Ji, and each Ji is a finite union of intervals,
and for i 6= j, the interiors of Ji and Jj are disjoint. In
particular, {I} is a partition of I, the trivial partition.
Typically, P is just a set of intervals.

Our algorithms work by refining such trivial partitions.
Suppose J ∈ P is an interval. Then to split J in P means
to replace J = [a, b] by the two sub-intervals [a,m(J)] and
[m(J), b]. These two sub-intervals are called the children
of J . Note that after splitting J in P , the size of P increases
by 1.

We let V = V (f) :={z ∈ C : f(z) = 0} denote the set of
zeros of f . Similarly, V ′ = V (f ′) :={z′ ∈ C : f ′(z) = 0}
where f ′ is the derivative of f . The elements of V and V ′

are also called roots and critical points of f , respectively.
For a general polynomial f , V (f) is a multiset where each
x ∈ V has a multiplicity µV (x) ≥ 1. By extension, if x
does not occur in V , we write µV (x) = 0. If µV (x) = 1 for
all x ∈ V , then we say V is an ordinary set. If U, V are
multisets, we write U ⊆ V if µU (x) ≤ µV (x) for all x. The
square-freeness of f implies V is an ordinary set, but it is
important to remember that V ′ may not be an ordinary set.

An interval J = [a, b] is isolating for f if one of two
conditions hold:
(i) a = b and f(a) = 0,
(ii) a < b and f(a)f(b) < 0 and |V ∩ J | = 1.

We are interested in isolating real roots, and write VR and
V ′R (resp.) for V ∩ R and V ′ ∩ R. To isolate the roots of f
in I0 means to compute a set S of isolating intervals for f ,
such that |S| = |V ∩ I0| and the intervals in S are pairwise
disjoint.

Our EVAL algorithm is based on two interval predicates
C0 and C1 where, for any interval J with width w = w(J)
and midpoint m = m(J),

C0(J) ≡ |f(m)| >
∑
i≥1

|f (i)(m)|
i!

(w
2

)i
C1(J) ≡ |f ′(m)| >

∑
i≥1

|f (i+1)(m)|
i!

(w
2

)i
It is easy to see that if C0(J) holds, then f has no zeros in
J , and if C1(J) holds, then f ′ is monotone in J and hence
has at most one zero in J . If w(J) > 0 and C1(J) holds,
then clearly J is isolating iff f(a)f(b) < 0.

§3. The Subdivision Process of EVAL.

Given an input interval I0, consider the simple iterative
process:

Subdivide(I0):
Initialize two queues, Q← {I0} and P ← ∅.
. Invariant: P ∪Q is a partition of I0
While Q is non-empty

Remove an interval J from Q
If (C0(J) ∨ C1(J)) holds

Push J into P .
Else

Push the children of J into Q.
Return(P)

This“subdivision process”will terminate because f is square-
free. Let P (I0) denote the partition of I0 at the termina-
tion of this process. Our goal is to bound the size, denoted
#P (I0), of this partition. Alternatively, we view this pro-
cess as producing a recursion tree T (I0) rooted at I0, where
each internal node is an interval J whose two children are
obtained by bisecting J . Thus P (I0) is just the set of leaves
of T (I0).

To turn this Subdivision Process into a root isolation algo-
rithm, we just have to take the following additional actions
during the while-loop, to detect and to output isolating in-
tervals:

(1) Whenever we bisect an interval J , we check if the mid-
point m(J) is a root. If so, we output [m(J),m(J)].

(2) For each interval J = [a, b] that is pushed into queue P ,
we check if C1(J) holds and if f(a)f(b) < 0. If so, we
output J .

Outside of the while-loop, we also check if the two end-
points of I0 are roots, and output them accordingly. This
completes the description of EVAL. For more details of EVAL
see [4, 3, 27, 14].

It follows from the nature of binary trees that the size
of P (I0) essentially controls the overall complexity of the
EVAL algorithm. We had said that the main complexity
parameters are d and L, but evidently the input I0 has an
influence on the size of P (I0). To remove this influence,
we assume the first step of EVAL is to replace I0 by I0 ∩
[−2L, 2L], since all real roots of f lie in [−2L, 2L] (e.g., [32]).
We may henceforth assume that I0 is contained in [2−L, 2L].

3. MAIN RESULT AND APPLICATION TO
RAY SHOOTING

Our main result is a bound on the size of the recursion
tree T (I0):

Theorem 1 (Main Result). The subdivision tree T (I0)
of EVAL has size

O(d(L+ r + log d)) (1)

where r is the number of real roots of f in I0.

Most of the paper is devoted to proving this result. But
here we give an application of the new bound.

§4. Finding the smallest root in I0.
Ray-casting is an important primitive for rendering im-

ages in computer graphics. In computational geometry, this
primitive is known as “ray shooting” and is used as a point
sampling primitive in many algorithms (e.g., in computing
an isotopic approximation of a manifold surface). Ray shoot-
ing can be reduced to the problem of computing the first (or
smallest) root of a real function f in a given interval.

Let EVAL1 denote the following simple modification of
EVAL to find the smallest root of f in interval I0. If I0 has
no roots, EVAL1 will return an empty set (or any suitable
indicator). We simply modify the Subdivision Process in §3
so that it always extract the leftmost interval in the queue
Q in the while-loop. As soon as a root is detected, EVAL1
returns this root and terminates. Otherwise, it terminates
when the queue Q is empty, returning the empty set.

Correctness of EVAL1 is clear. We only address the size
of the recursion tree T1(I0) produced by EVAL1.

Theorem 2. The recursion tree size of EV AL1 is O(d(L+
log d)).

We will prove Theorem 2 after the proof of the main result.
Its arguments depend on a sharp bound of O(d(L + log d))
on the height of the recursion tree produced by EVAL1.

Clearly, T1(I0) is a subtree of the recursion tree T (I0)
of EVAL. Therefore, our bound on the height of T1(I0) is
implied by a similar bound on the height of T (I0), a fact
that has independent interest. Note that a height bound on
T (I0) follows simply from the size bound in [27] or our main
theorem, but these are not sharp enough for Theorem 2.

Theorem 3. The height of the recursion tree T (I0) of
EVAL (and hence EVAL1) is O(d(L+ log d)).

The proof can be given here because it is independent of
the main result.

Proof. Let σ(α) denote the distance of α ∈ V to the near-
est root in V \ {α}. Also, σ(f) := min{σ(α) : α ∈ V } be the
root separation bound of f . It is well known (e.g., [32]) that
− log σ(f) = O(d(L+ log d)).

Let interval J be a leaf of T (I0). It suffices to show that

w(J) ≥ 1

4d

(
σ(f)

2d

)
. (2)

This would imply that the depth of J is at most

lg

(
w(I0)

w(J)

)
≤ lg

(
2L

σ(f)/8d2

)
≤ lg(16Ld2)− lg σ(f)

= O(d(L+ log d))

as claimed.
By way of contradiction, assume (2) fails. Let J ′ be the

parent of J in the recursion tree. Note that C0(J ′) and
C1(J ′) must fail. Moreover,

w(J ′) ≤ 1

2d

(
σ(f)

2d

)
. (3)

Suppose m = m(J) is the midpoint of J and α ∈ V is the
closest root to m. From [27, Lemma 1(ii)], the failure of the
predicate C0(J ′) implies that

|m− α| ≤ 2d · w(J ′) ≤ σ(f)

2d
. (4)

Let α′ ∈ V ′ be the closest critical point to m. The analogue
of [27, Lemma 1(ii)] for the failure of C1(J ′) implies that

|m− α′| ≤ 2(d− 1) · w(J ′) <
σ(f)

2d
. (5)

Thus (4) and (5) implies |α−α′| < σ(f)
d
. This contradicts a

bound of Renegar [25] saying that the distance of α to any
critical point is at least σ(α)/d ≥ σ(f)/d. Q.E.D.

4. THE INTEGRAL BOUND
The idea of “continuous amortization” is to introduce a

continuous function G : R → R≥0 with the property that
for any interval I, the subdivision process on I produces
a partition of size at most 1 +

∫
I
G(x)dx . Then we may

call G(x) a “charging function”, in analogy to similar ideas
in discrete amortization. Using this framework, our main
result (1) is achieved in two steps:

(A) First we bound #P (I0) by an integral
∫
I0
G(x)dx where

G(x) is an explicit function.

(B) Second we bound the integral
∫
I0
G(x)dx by O(d(L +

r + log d)), where r is the number of real roots of f in
I0.

What are suitable charging functions? Following [4], a
function

G : R→ R≥0

is called a stopping function (for EVAL) if for every in-
terval I, if there is an x ∈ I such that

w(I)G(x) ≤ 1, (6)

then C0(I) or C1(I) holds. Thus stopping functions can
“predict” that certain interval J must be terminal for EVAL.
The fundamental lemma below shows that stopping func-
tions can serve as charging functions.

Lemma 4 (Integral Bound). If G(x) is a stopping func-
tion, then

#(P (I0)) ≤ max{1, 2
∫
I0

G(x)dx}. (7)

The simple proof may be found in [4] or [3, Thm. 3.1,
p. 160]. Our definition of stopping functions is an incon-
sequential variation of the original one: the inequality (6)
would have been written “w(J) ≤ G(x)” in [4, 3]. So our
stopping functions are just reciprocals of original ones, and
thus the bound in (7) comes from integrating stopping func-
tions, not their reciprocals.

We must next provide an explicit stopping functions in
order to apply the fundamental lemma. First, let us define
the functions

S(x) = Sf (x) :=
∑
α∈V

1

|x− α| (8)

and

S′(x) = Sf ′(x) :=
∑
α′∈V ′

1

|x− α′| (9)

The original paper [4] gave a complicated stopping function
which was not easy to bound. The key insight of [3] is that
a slight modification of S(x) and S′(x) gives rise to stopping
functions.

Lemma 5 (Burr-Krahmer). The functions 3S(x)/2 and
3S′(x)/2 are stopping functions for EVAL.

For completeness, we give a short direct argument of this
Burr and Krahmer result, phrased somewhat more generally.
Consider stopping functions of the form G(x) = K ·S(x) for
some constant K > 0. In Burr-Krahmer, K = 3/2. How
small can K be?

Lemma 6. Let G(x) = K·S(x). If K > 1+ln 2
2 ln 2

> 1.2213475,
then G(x) is a stopping function.

Proof. We must show that for any interval J with width
w = w(J) and midpoint m = m(J), if there exists x ∈ J
such that

K · S(x) · w ≤ 1 (10)

then C0(J) holds. (An analogous argument for S′(x) will
show that C1(J) holds.) From (10) implies S(x) =

∑
α∈V 1/|x−

α| ≤ 1/(Kw), and so for any α ∈ V , we have 1/|x − α| ≤
1/(Kw) or |x−α| ≥ Kw. Since K > 1, we know that α /∈ J
and hence 2|m − α| > |x − α| where m = m(J). It follows
that

|m−α| ≥ |x−α|−|m−α| ≥ |x−α|−w/2 ≥ |x−α|
(

1− 1

2K

)
Thus 1

|m−α| ≤
2K

|x−α|(2K−1)
. So S(m) ≤ S(x) 2K

2K−1
. From

(10) again, this implies

S(m) ≤ S(x)
2K

2K − 1
≤ 2

(2K − 1)w
. (11)

We now use the inequality that |f (i)(m)/f(m)| ≤ S(m)i for
all i ≥ 1 (e.g., [3, 27]). It follows that∑
i≥1

∣∣∣∣f (i)(m)

f(m)

∣∣∣∣ (w/2)i

i!
≤

∑
i≥1

S(m)i
(w/2)i

i!

≤
∑
i≥1

(
2

(2K − 1)w

)i
(w/2)i

i!

=
∑
i≥1

1

(2K − 1)ii!
< e1/(2K−1) − 1.

If we choose K > 1+ln 2
2 ln 2

then 1/(2K − 1) < ln 2 and hence∑
i≥1

∣∣∣∣f (i)(m)

f(m)

∣∣∣∣ (w/2)i

i!
< eln 2 − 1 = 1.

From the definition of C0(J), we see that this last inequality
is equivalent to the truth of the predicate C0(J). Q.E.D.

The constant (1 + ln 2)/(2 ln 2) in the lemma above could
be further reduced by a tighter analysis if desired.

As noted in [4], if G0(x) and G1(x) are stopping functions,
then so is G(x) = min{G0(x), G1(x)}. Henceforth, we fix

G(x) := min{S(x), S′(x)}. (12)

By the previous lemma, K ·G(x) is a stopping function for all
K > 1.23. The minimization in (12) is important because it
ensures that G(x) is finite, i.e., G(x) <∞ for all x ∈ R. To
see this, observe that S(x) is infinite iff x ∈ V ∩R. Similarly,
S′(x) is infinite iff x ∈ V ′ ∩ R. Since V ∩ V ′ is empty, the
finiteness of G(x) follows. Step (A) of our proof now follows
from Lemmas 4 and 5, and is summarized by the following
lemma:

Lemma A.
EVAL produces a partition P (I0) whose size is bounded

by the integral

#P (I0) ≤ max{1, 3
∫
I0

G(x)dx}

where G(x) = min{S(x), S′(x)}.

5. BOUNDING THE INTEGRAL
In this section, we accomplish Step (B) which is to give an

explicit bound on the integral in Lemma A. More precisely,
we will show:

Lemma B.

∫
I0

G(x)dx = O(d(L+ r + log d)) (13)

where r is the number of real roots in I0.

Towards proving Lemma B, we first bound the integral
on G(x) by the sum of two integrals on S(x) and S′(x),
respectively. Suppose {I1, I ′1} is a partition of I0 into two
sets. Clearly, we have the inequality∫

I0

G(x)dx ≤
∫
I1

S(x)dx+

∫
I′1

S′(x)dx. (14)

This inequality is trivial if any of the integrals on the right
hand side is infinite. Finiteness of the integrals on the right
hand side is equivalent to ensuring that I1∩V and I ′I∩V ′ are
both empty sets. We will ensure this and some additional
properties in forming the partition {I1, I ′1}.

Assume I0 ∩ V = {α1, . . . , αr} and

a < α1 < α2 < · · · < αr < b

where I0 = [a, b]. We may also define α0 := a and αr+1 := b.
For each root α ∈ I0, we define the interval Iα as the

intersection of real axis with the disc centered at α and ra-
dius equal to half the distance from α to the nearest critical
point; note that two such intervals do not overlap, since by
Rolle’s theorem we have a critical point between any two
roots in I0. Finally, we define the sets I1 and I ′1:

I ′1 :=
⋃

α∈I0∩V

Iα

and I1 is just the closure of I0 \ I ′1. It is easy to see that
I ′1 ∩ V ′ = ∅, I1 ∩ V = ∅ and thus the right hand side of
(14) is finite.

§5. Bounds on two basic integrals.
We will reduce our integrals to one of the two forms here:

Lemma 7. Let α ∈ C and J = [r, s] ⊆ I0. Assume α /∈ J .
(Re) If α is real, then∫
J

dx

|α− x| = ln

∣∣∣∣α− sα− r

∣∣∣∣δ(J>α) ≤ L+1−ln min{|α−r|, |α−s|}

(15)

where δ(P) ∈ {+1,−1} is the Kronecker symbol: for any
predicate P , δ(P) = +1 if P holds, and δ(P) = −1 other-
wise.
(Im) If α is not real, α = Re(α) + iIm(α), then∫

J

dx

|α− x| = ln

(
(s− Re(α)) + |α− s|
(r − Re(α)) + |α− r|

)
≤ ln 4

∣∣∣∣ (α− s)(α− r)Im(α)2

∣∣∣∣
≤ 2(2 + L− ln |Im(α)|).

(16)

Proof. (Re) From basic calculus we verify that (see [3, p. 162])∫ s

r

dx

|α− x| = ln

∣∣∣∣α− sα− r

∣∣∣∣δ(J>α) .
If J > α then

∫ s
r
dx/|α−x| = ln(s−α)− ln(r−α). If J < α,

we reverse the roles of r and s. But ln max{|α−s|, |α−r|} ≤
1 + L, which gives us the desired upper bound in (15).
(Im) Writing α = Re(α) + iIm(α) = R + iI, we have [3,
p. 162]:∫ s

r

dx

|α− x| = arcsinh

(
s−R
|I|

)
− arcsinh

(
r −R
|I|

)
.

Since arcsinh(x) = ln(x+
√

1 + x2) we conclude that∫ s

r

dx/|α− x| = ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
where |α − s| =

√
(R− s)2 + I2. The numerator ln((s −

R) + |s− α|) ≤ ln(2|α− s|), and the denominator

(r −R) + |α− r| = |I|2

|α− r| − (r −R)
≥ |I|2

2|α− r| .

Thus

ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
≤ ln 4

∣∣∣∣ (α− s)(α− r)I2

∣∣∣∣ .
Since |α− s|, |α− r| ≤ 2L+1, we obtain

ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
≤ 2((2 + L)− ln |I|)

as claimed in (16). Q.E.D.

§6. Bounding the integral over I1.
We bound the first integral on the RHS of (14) as follows:∫

I1

S(x)dx = O(d(L+ log d)). (17)

To show this, we express the integral as a sum over all roots
α in V : ∫

I1

S(x)dx =
∑
α∈V

∫
I1

dx

|x− α| . (18)

The summand corresponding to a particular α can be bounded
using one of the two cases in Lemma 7:
(Re) Suppose α ∈ R. Let Iα = [α−, α+] be the interval
associated with α. Thus (α− α−) = (α+ − α) = |α− α∗|/2

where α∗ is a critical point nearest to α. Writing I0 = [a, b],
we can bound the summand with the help of Lemma 7(Re):∫
I1

dx

|x− α| ≤
∫
I0\Iα

dx

|x− α|

=

∫ α−

a

dx

α− x +

∫ b

α+

dx

x− α
≤ (L+ 1− ln |α− α−|) + (L+ 1− ln |α− α+|)
= 2(L+ 1)− 2 ln |α− α−|

= 2(L+ 1)− 2 ln
|α− α∗|

2
.

Summing over all real roots α ∈ V , yields 2d(L + 1) −
2 ln

∏
α∈V |α−α

∗|/2, which is equal to O(d(L+ log d)) from
Mahler-Davenport [7, 12, 9].
(Im) Suppose α /∈ R. Then Lemma 7(Im) says∫

I1

dx

|x− α| ≤
∫
I0

dx

|x− α| ≤ 2(2 + L− ln |Im(α)|).

Again, summing over all non-real α ∈ V and using the
Mahler-Davenport bound we get that (18) is bounded by
O(d(L+ log d)).

Cases (Re) and (Im) imply the desired bound in (17).

§7. Bounding the integral over I ′1.
It remains to bound the second integral on the RHS of

(14) as follows: ∫
I′1

S′(x)dx = O(dr). (19)

This integral is written as a double summation, summing
over all critical points α′ ∈ V ′, and summing over all α ∈
V ∩ I0: ∫

I′1

S′(x)dx =
∑
α′∈V ′

∫
I′1

1

|x− α′|dx

=
∑
α′∈V ′

∑
α∈V ∩I0

∫
Iα

1

|x− α′|dx.
(20)

Fix a particular root α and critical point α′. Write Iα =
[α−, α+], and let α∗ be a critical point nearest to α; since α
is equidistant from α+ and α−, we express this distance as
|α− α±|. There are again two cases to consider.
(Re’) Suppose α′ is real. Then Lemma 7(Re) yields∫

Iα

1

|x− α′|dx = ln

∣∣∣∣α′ − α+

α′ − α−

∣∣∣∣δ(Iα>α′) . (21)

By the triangular inequality

|α′ −α±| ≥ |α′ −α| − |α−α±| = |α′ −α| − |α− α
∗|

2
. (22)

Since α∗ is a critical point nearest to α it further follows
that

|α′ − α±| ≥ |α′ − α| − |α− α
′|

2
= |α′ − α|/2. (23)

Similarly, we can show |α′ − α±| ≤ 2|α′ − α|. Thus

|α′ − α|
2

≤ |α′ − α±| < 2|α′ − α|. (24)

Note that these inequalities are independent of the fact that
α′ ∈ R. Applying these inequalities to the RHS of (21) we
obtain that the integral on the LHS is at most ln 4.
(Im’) Suppose α′ 6∈ R. Here, we recognize three subcases
(i) Iα < Re(α′), (ii) Iα > Re(α′), and (iii) Re(α′) ∈ Iα. For
the first two subcases, we know from [3] that∫

Iα

dx

|x− α′| ≤ ln 2

∣∣∣∣α′ − α+

α′ − α−

∣∣∣∣δ(Iα>Re(α)) .
Furthermore, the bounds from (24) imply that the integral
above is bounded by ln 8. In the third subcase, Lemma 7(Im)
yields ∫

Iα

dx

|x− α′| ≤ ln 4

∣∣∣∣ (α′ − α+)(α′ − α−)

Im(α′)2

∣∣∣∣ .
Applying the upper bound from (24), we further get∫

Iα

dx

|x− α′| < ln 16
|α′ − α|2

|Im(α′)|2 .

From the triangle inequality it follows that |Im(α′)| ≥ |α′ −
α|−|α−Re(α′)|. Since Re(α′) ∈ Iα, we further have |Im(α′)| ≥
|α′ − α| − |α − α±|, which we know from (22) and (23) is
greater than |α′−α|/2. Thus we have |Im(α′)| ≥ |α′−α|/2.

Therefore the integral
∫
Iα
dx/|x−α′| in subcase (iii), hence

in all subcases, is at most ln 64.
Thus cases (Re’) and (Im’) imply that each integral in

the RHS of (20) is at most ln 64. If r is the number of real
roots in I0 then we have∫

I′1

S′(x)dx < (d− 1)r ln 64.

This proves (19).

§8. Wrapping up the Proofs.
To complete the proof of the Main Theorem (Theorem 1),

we have to wrap up the arguments for Lemma B. This is
accomplished by plugging in the bounds (17) and (19) into
(14).

It remains to prove Theorem 2. Let r = |I0∩V |. If r = 0,
our theorem follows from the main result. Hence assume
r > 0 and EVAL1 returns J = [c, d] ⊆ I0 as the isolating
interval for the smallest root in I0. See Figure 1.

a bc d
I1 I2

J

Figure 1: Subdivision of [a, b] by EVAL1

Let I0 :=[a, b]. We split I0 into I1 :=[a, d] and I2 :=[d, b].
Consider the partition P (I0) of I0 produced by EVAL1. Let
P1 comprise those intervals of P (I0) that are contained in

[a, d], and P2 :=P (I0) \ P1. Clearly, Pi is a partition of Ii
(for i = 1, 2). Theorem 2 is a consequence of the following
claim:

#P1,#P2 = O(d(L+ log d)).

Recall that T1(I0) is the recursion tree of EVAL1 on I0.
We first bound #P1. Consider any interval I ∈ P1. At

the parent of I, both the predicates C0 and C1 failed. Since
G(x) := 3 min{S(x), S′(x)}/2 is a stopping function for EVAL1,
it follows from Lemma A that #P1 = O(max{1,

∫
I1
G(x)dx}).

Then Lemma B implies that #P1 = O(d(L + log d)), since
there is only one root in I1.

To bound #P2, we observe that an interval in P2 is the
right-child of a node in the path (see Figure 1) from I0 to the
leaf J = [c, d] in T1(I0). Thus #P2 is bounded by the depth
of J , which we know from Theorem 3 is O(d(L+ log d)).

6. CONCLUSION
In this paper, we give a new bound on the complexity of

EVAL that is the sharpest in the range L ≥ d. This result,
along with that of Burr-Krahmer [3], has two significance:

• It is contribution to the continuous amortization tech-
nique, one of the few non-probabilistic framework for
analysis of subdivision algorithms. The development
of this and other general techniques for analyzing adap-
tive iterative algorithms in geometry and algebra is an
important but relatively new topic in theoretical com-
puter science.

• Although EVAL has independent interest for root iso-
lation, we view its main significance as a paradigm for
a whole class of algorithms: from its extension to com-
plex roots [27], to its higher dimensional analogues2

for approximating curves and surfaces [27, 22, 16].

The natural open problem is to extend this complexity
analysis to algorithms in higher dimensions. Another issue
concerns the sharpness of our bound. The interesting range
is log d < L < d. Here, we would like to replace the d2 term
in our complexity by d log d. This seems quite challenging
given our current understanding of continuous amortization;
but there seems to be some possibilities using the alternative
approach in [27].

7. REFERENCES
[1] A. G. Akritas and A. Strzeboński. A comparative

study of two real root isolation methods. Nonlinear
Analysis:Modelling and Control, 10(4):297–304, 2005.

[2] D. A. Bini and G. Fiorentino. Design, analysis, and
implementation of a multiprecision , polynomial
rootfinder. Numerical Algorithms, 23:127–173, 2000.

[3] M. Burr and F. Krahmer. SqFreeEVAL: An (almost)
optimal real-root isolation algorithm. J. Symbolic
Computation, 47(2):153–166, 2012.

[4] M. Burr, F. Krahmer, and C. Yap. Continuous
amortization: A non-probabilistic adaptive analysis
technique. Electronic Colloquium on Computational
Complexity (ECCC), TR09(136), December 2009.

2 Historically, our investigation of EVAL came after study-
ing the higher dimensional algorithms of Plantinga-Vegter.

[5] G. E. Collins and A. G. Akritas. Polynomial real root
isolation using Descartes’ rule of signs. In R. D. Jenks,
editor, Proceedings of the 1976 ACM Symposium on
Symbolic and Algebraic Computation, pages 272–275.
ACM Press, 1976.

[6] T. H. Corman, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, Cambridge,
Massachusetts and New York, second edition, 2001.

[7] J. H. Davenport. Computer algebra for cylindrical
algebraic decomposition. Tech. Rep., The Royal Inst.
of Technology, Dept. of Numerical Analysis and
Computing Science, S-100 44, Stockholm, Sweden,
1985. Reprinted as Tech. Report 88-10 , School of
Mathematical Sci., U. of Bath, Claverton Down, Bath
BA2 7AY, England. URL
http://www.bath.ac.uk/˜masjhd/TRITA.pdf.

[8] J.-P. Dedieu and J.-C. Yakoubsohn. Localization of an
algebraic hypersurface by the exclusion algorithm.
Applicable Algbebra in Engineering, Communication
and Computing, 2:239–256, 1992.

[9] Z. Du, V. Sharma, and C. Yap. Amortized bounds for
root isolation via Sturm sequences. In D. Wang and
L. Zhi, editors, Symbolic-Numeric Computation,
Trends in Mathematics, pages 113–130. Birkhäuser
Verlag AG, Basel, 2007. Proc. Int’l Workshop on
Symbolic-Numeric Computation, Xi’an, China, Jul
19–21, 2005.

[10] A. Eigenwillig, V. Sharma, and C. Yap. Almost tight
complexity bounds for the Descartes method. In 31st
Int’l Symp. Symbolic and Alge. Comp. (ISSAC’06),
pages 71–78, 2006. Genova, Italy. Jul 9-12, 2006.

[11] M. Hemmer, E. P.Tsigaridas, Z. Zafeirakopoulos, I. Z.
Emiris, M. I. Karavelas, and B. Mourrain.
Experimental evaluation and cross-benchmarking of
univariate real solvers. In SNC ’09: Proc. 2009 Conf.
on Symbolic-Numeric Computation, pages 45–54, New
York, NY, USA, 2009. ACM.

[12] J. Johnson. Algorithms for polynomial real root
isolation. In B. Caviness and J. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic
Decomposition, Texts and monographs in Symbolic
Computation, pages 269–299. Springer, 1998.

[13] N. Kamath. Subdivision algorithms for complex root
isolation: Empirical comparisons. Master’s thesis,
Oxford University, Oxford Computing Laboratory,
Aug. 2010.

[14] N. Kamath, I. Voiculescu, and C. Yap. Empirical
study of an evaluation-based subdivision algorithm for
complex root isolation. In 4th Intl. Workshop on
Symbolic-Numeric Computation (SNC), pages
155–164, 2011.

[15] T. Lickteig and M.-F. Roy. Sylvester-Habicht
sequences and fast Cauchy index computation. J.
Symbolic Computation, 31:315–341, 2001.

[16] L. Lin and C. Yap. Adaptive isotopic approximation of
nonsingular curves: the parameterizability and
nonlocal isotopy approach. Discrete and Comp.
Geom., 45(4):760–795, 2011.

[17] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. In
M. C. Stone, editor, Computer Graphics (SIGGRAPH

’87 Proceedings), volume 21, pages 163–169, July 1987.

[18] D. P. Mitchell. Robust ray intersection with interval
arithmetic. In Graphics Interface’90, pages 68–74,
1990.

[19] R. E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, NJ, 1966.

[20] A. Neumaier. Interval Methods for Systems of
Equations. Cambridge University Press, Cambridge,
1990.

[21] V. Y. Pan. Solving a polynomial equation: some
history and recent progress. SIAM Review,
39(2):187–220, 1997.

[22] S. Plantinga and G. Vegter. Isotopic approximation of
implicit curves and surfaces. In Proc. Eurographics
Symposium on Geometry Processing, pages 245–254,
New York, 2004. ACM Press.

[23] H. Ratschek and J. Rokne. Computer Methods for the
Range of Functions. Horwood Publishing Limited,
Chichester, West Sussex, UK, 1984.

[24] D. Reischert. Asymptotically fast computation of
subresultants. In ISSAC 97, pages 233–240, 1997.
Maui, Hawaii.

[25] J. Renegar. On the worst-case arithmetic complexity
of approximating zeros of polynomials. Journal of
Complexity, 3:90–113, 1987.

[26] F. Rouillier and P. Zimmermann. Efficient isolation of
[a] polynomial’s real roots. J. Computational and
Applied Mathematics, 162:33–50, 2004.

[27] M. Sagraloff and C. K. Yap. A simple but exact and
efficient algorithm for complex root isolation. In 36th
Int’l Symp. Symbolic and Alge. Comp. (ISSAC’11),
pages 353–360, 2011. June 8-11, San Jose, California.

[28] V. Sharma. Complexity of real root isolation using
continued fractions. Theor. Computer Science,
409(2):292–310, 2008.

[29] J. M. Snyder. Interval analysis for computer graphics.
SIGGRAPH Comput.Graphics, 26(2):121–130, 1992.

[30] R. E. Tarjan. Amortized computational complexity.
SIAM J. on Algebraic and Discrete Methods,
6:306–318, 1985.

[31] J.-C. Yakoubsohn. Numerical analysis of a
bisection-exclusion method to find zeros of univariate
analytic functions. J. of Complexity, 21:652–690, 2005.

[32] C. K. Yap. Fundamental Problems of Algorithmic
Algebra. Oxford University Press, 2000.

	Introduction
	Preliminaries: On EVAL Algorithm
	Main Result and Application to Ray Shooting
	The Integral Bound
	Bounding the Integral
	Conclusion
	References

