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Abstract

This paper presents the first purely numerical (i.e., non-algebraic) subdivision algorithm for
the isotopic approximation of a simple arrangement of curves. The arrangement is “simple” in
the sense that any three curves have no common intersection, any two curves intersect transver-
sally, and each curve is non-singular. A curve is given as the zero set of an analytic function
f : R2 → R2, and effective interval forms of f, ∂f∂x ,

∂f
∂y are available. Our solution generalizes the

isotopic curve approximation algorithms of Plantinga-Vegter (2004) and Lin-Yap (2009).
We use certified numerical primitives based on interval methods. Such algorithms have

many favorable properties: they are practical, easy to implement, suffer no implementation
gaps, integrate topological with geometric computation, and have adaptive as well as local
complexity.

A version of this paper without the appendices appeared in [9].



1 Introduction

We address problems in computing approximations to curves and surfaces. Most algebraic algo-
rithms for curve approximation begin by computing a combinatorial object K first. To compute K,
we typically use algebraic projection (i.e., resultant computation), followed by root isolation and
lifting. But most applications will also require the geometric realization G. Thus we will need a
separate (numerical) algorithm to compute G. This aspect is typically not considered by algebraic
algorithms.

In this paper, we describe a new approach for computing curve arrangements based on purely
numerical (i.e., non-algebraic) primitives. Our approach will integrate the computation of the com-
binatorial (K) and geometric (G) parts. This leads to simpler implementation. Our numerical
primitives are designed to work directly with arbitrary precision dyadic (BigFloat) numbers, avoid-
ing any “implementation gap” that may mar abstract algorithms. Furthermore, machine arithmetic
can be used as long as no over-/underflow occurs, and thus they can serve as efficient filters [3].

We now explain our specific problem, and illustrate the preceding notions of K and G. By a
simple curve arrangement we mean a collection of non-singular curves such that no three of
them intersect, and any two of them intersect transversally. The simple arrangement of three or
more curves can, in some sense, be reduced to the case of two curves (see the Final Remarks).
Let F : R2 → R2, where F (x, y) = (f(x, y), g(x, y)) is a pair of analytic functions. It generically
defines two planar curves S = f−1(0) ⊆ R2 and T = g−1(0). We call F = 0 a simple system
of equations if {S, T} is a simple curve arrangement. Throughout this paper, F = (f, g) will be
fixed unless otherwise indicated. Figure 1 illustrates such an arrangement for the curves defined
by f(x, y) = y − x2 and g(x, y) = x2 + y2 − 1. The concept of hyperplane arrangement is highly
classical in computational geometry [5]. Recent interest focuses on nonlinear arrangements [2].

(a) (S, T ) arrangement

y = x2

x2 + y2 = 1

(b) (S, T )-decomposition K∗

x2 + y2 = 1

y = x2

(c) cell complex K

2-cell
1-cell (v)

1-cell (h)

0-cell

Key:

Figure 1: Arrangement of two curves, y = x2 and x2 + y2 = 1

Our basic problem is the following: suppose we are given an ε > 0 and a region B0 ⊆ R2,
called the region-of-interest or ROI, which is usually in the shape of an axes-aligned box. We
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want to compute an ε-approximation to the arrangement of the pair (S, T ) of curves restricted to
B0. This will be a planar straightline graph G = (V,E) where V is a finite set of points in B0

and E is a set of polygonal paths in B0. Each path e ∈ V connects a pair of points in V , and no
path intersects another path or any point in V (except at endpoints). Moreover, E is partitioned
into two sets E = ES ∪ ET such that ∪ET (resp., ∪ES) is an approximation of T (resp., S).
The correctness of this graph G has two aspects: (A) topological correctness, and (B) geometric
correctness. Geometric correctness (B) is easy to formulate: it requires that the set ∪ES ⊆ B0 is
ε-close to S in the sense of Hausdorff distance: dH(S,∪ES) ≤ ε. Similarly, the ∪ET is ε-close to T .
If we specify ε =∞, then we are basically unconcerned about geometric closeness.

Topological correctness (A) is harder to capture. One definition is based on the notion of “cell
decomposition”. A (cell) decomposition of B0 is a partition K∗ of B0 into a collection of sets
called cells, each c∗ ∈ K∗ homeomorphic to a closed i-dimensional ball (i ∈ {0, 1, 2}); we call c∗ an
i-cell and its dimension is dim(c∗) = i. If b∗ is an i-cell and c∗ an (i + 1)-cell, we say b∗ bounds
c∗ if b∗ is contained in the boundary ∂c∗ of c∗. Call K∗ an (S, T )-decomposition of B0 if the set
(S ∪T )∩B0 is a union of some subset of 0- and 1-cells of K∗. A (S, T )-decomposition is illustrated
in Figure 1(b).

A cell complex K is an (abstract) set such that each c ∈ K has a specified dim(c) ∈ {0, 1, 2}
together with a binary relation B ⊆ K ×K such that (b, c) ∈ B implies dim(b) + 1 = dim(c). We
say that the decomposition K∗ is a realization of K, or K is an abstraction of K∗, if there is a
1-1 correspondence between the cells c∗ of K∗ with the elements c ∈ K such that dim(c∗) = dim(c),
and moreover the relation (b, c) ∈ B iff b∗ bounds c∗ in K∗. Figure 1(c) shows the abstraction K
of the decomposition in Figure 1(b).

Our algorithmic goal is to compute a planar straightline graph (PSLG for short [19]) G = (V,E)
which approximates (S, T ) in a box B0. Such a graph G naturally determines a decomposition
K∗(G) of B0 as follows: the set of 0-cells is V , the set of 1-cells is E and the set of 2-cells is simply
the connected components of B0 \ (V ∪ (

⋃
E)). Finally, we say G is topologically correct if there

exists an (S, T )-decomposition K∗ such that K∗ and K∗(G) are realizations of the same abstract
cell complex.

¶1. Towards Numerical Computational Geometry. The overall agenda in this line of
research is to explore new modalities for designing geometric algorithms. We are interested in
exploiting weaker numerical primitives that are only complete in a certain limiting sense. Unlike
traditional exact algorithms, our algorithms must strongly interact with these weaker primitives,
and exploit adaptivity. The key challenge is to achieve the kind of exactness and guarantees that
is typically missing in numerical algorithms. See [26] for a discussion of “numerical computational
geometry”.

In the algebraic approach, one must compute the abstract complex K before the approximate
embedded graph G. Indeed, most algebraic algorithms do not fully address the computation of
G. In contrast to such a “decoupled” approach, our algorithm provides an integrated approach
whereby we can commence to compute G (incrementally) even before we know K in its entirety.
Ultimately, we would be able to determine K exactly — this can be done using zero bounds as in
[25, 4]. The advantage here is that our integrated approach can cut off this computation at any
desired resolution, without fully resolving all aspects of the topology. This is useful in applications
like visualization.

Unlike exact algebraic primitives, our use of analytic (numerical) primitives means that our
approach is applicable to the much larger class of analytic curves. Numerical algorithms are rel-
atively easy to implement and have adaptive as well as “local” complexity. Adaptive means that
the worst case complexity does not characterize the complexity for most inputs, and local means
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the computational effort is restricted to ROI.
One disadvantage of our current method is that it places some strong restrictions on the class

of curve arrangements: the curves must be non-singular with pairwise transversal intersections in
the ROI. In practice, these restrictions can be ameliorated in different ways. The complete removal
of such restrictions is a topic of great research interest.

The algorithms in this paper fall under the popular literature on Marching-cube type algorithms
[16]. There are many heuristic algorithms here which are widely used. The input for these algo-
rithms can vary considerably. E.g., Varadhan et al. [24, 23] discuss input functions F : R3 → R
that might be a discretized function, or a CSG model or some polygonal model – each assumption
has its own exactness challenge.

2 Our Approach: Isotopic Curves Arrangement

All current exact algorithms for curve arrangements are based on algebraic projection, i.e., they
need some resultant computation. The disadvantage of projection is the large number of cells:
even in relatively simple examples, the graph can be large as seen as Figure 1(c). For many
applications, the 2-cells may be omitted, but the graph remains large. There are several known
techniques to reduce this (double-exponential in dimension) explosion in the number of cells. In this
paper, we avoid cell decomposition, but base our topological correctness on the concept of isotopy.
Our algorithm uses the well-known subdivision paradigm, and produces a subdivision of the input
domain into boxes. Figure ?? illustrates the form of output from our subdivision algorithm using
our previous example of y = x2 and x2 + y2 = 1.1 The number of subdivision boxes tend to be
even more numerous than cells in the decomposition approach. But these numbers are not directly
comparable to number of cells for three reasons: (1) Subdivision boxes are very cheap to generate.
(2) Most of these boxes can be instantly discarded as inessential for the final output (we keep them
for visualization purposes). (3) Unlike cells, our subdivision boxes play a double role: they are used
for (A) topological determination as well as (B) in determining geometric accuracy.

The approach of this paper has previously been successfully applied to the isotopic approxima-
tion of a single non-singular curve or surface by Plantinga and Vegter [18, 17] and Lin and Yap
[11, 10]. The current paper is a non-trivial extension of these previous works.

We now define the notion of isotopy for arrangements. For our problem on arrangements, we
need to extend the standard definitions of isotopy. Suppose S, T ⊆ R2 are two closed sets and
ε > 0. First recall that S and T are (ambient) isotopic if there exists a continuous mapping

γ : [0, 1]× R2 → R2 (1)

such that for each t ∈ [0, 1], the function γt : R2 → R2 (with γt(x, y) = γ(t, x, y)) is a homeo-
morphism, γ0 is the identity map, and γ1(S) = T . If, in addition, dH(S, T ) ≤ ε (where dH is the
Hausdorff distance on closed sets) we say that they are ε-isotopic. We will write

S
ε' T (via γ)

in this case. Note that we may omit mention of ε, in which case it is assumed that ε =∞.

1The figure is not produced by the algorithm of this paper because the implementation is currently underway.
Instead, it is produced by the Cxy Algorithm for approximating a non-singular curve [11], using the input curve
fg = 0. Thus the intersection points are singularities which the Cxy algorithm cannot resolve, but this does not
prevent its computation to some cut-off bound. Also, the Cxy algorithm does not know which part of the arrangement
is the f -curve and which is the g-curve.
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We now generalize this to arrangement of sets. Let S = (S1, . . . , Sm) and T = (T1, . . . , Tm) be
two sequences of m closed sets. For each non-empty subset J ⊆ {1, 2, . . . ,m}, let SJ denote the
intersection ∩i∈JSi. Similarly for T J . We say that S and T are isotopic if there exists a continuous
mapping γ as in (1) such that for each non-empty subset J ⊆ {1, 2, . . . ,m}, we have

SJ
ε' T J (via γ).

We also call γ an isotopy from S to T . For simple curve arrangements, the critical problem to
solve is the case m = 2. We assume the two curves S1, S2 are restricted to a region or box B. Our
basic problem is to compute a pair of curves (T1, T2) such that

(T1, T2)
ε' (S1 ∩B,S2 ∩B). (2)

The approximations (T1, T2) produced by our algorithms will be piecewise linear curves. See [1] for
a general discussion of isotopy of the case m = 1.

2.1 Normalization relative to a Subdivision Tree

In Appendix A, we provide the necessary definitions; these are consistent with the terminology in
the related work [11]. For now, we rely on common terms that are mostly self-explanatory.

¶2. Box Complexes and Subdivision Trees. Our fundamental data structure is a sub-
division tree T rooted in some box B0. In 2-D, T is the well-known quad-tree and B0 is a
rectangle. Each internal node of T has four congruent children. The boxes of a subdivision tree
are non-degenerate (i.e., 2-dimensional). They need not be squares, but for the correctness of our
algorithm, their aspect ratios must be ≤ 2. For any region R ⊆ R2, we define a subdivision of
R to be a set S = {R1, . . . , Rn} of subregions such that R = ∪ni=1Ri and the interiors of Ri’s are
pairwise disjoint. If each Ri is a box, we call S a box subdivision. The box subdivision is a
box complex if for any two adjacent boxes B,B′ ∈ S, their intersection ∂(B) ∩ ∂(B′) is side of
either B or B′. Clearly, the set S of leaf boxes of T forms a box complex of B0. But in this paper,
we need to consider a more general subdivision of B0 that is obtained as the leaf boxes of a finite
number of subdivision trees. A segment of a box complex S is the side of a box of S that does not
properly contain the side of an adjacent box. Therefore every side of a box of S is a finite union
of segments. We say the box complex S is balanced if every side is either a segment or the union
of two segments. A segment is called bichromatic w.r.t. a curve S if S has different signs on the
endpoints of the segment; otherwise call it monochromatic.

Although (S, T ) is simple, we need to consider degeneracies induced by a subdivision S: we
say (S, T ) is S-regular if S ∪T does not intersect any corner of a box in S. This can be effectively
achieved by an infinitesimal perturbation of S and T using a trick in [18]: when we evaluate the
sign of f at a box corner, we simply regard a 0 sign to be +1.

¶3. Normalization. Consider an isotopy of the arrangement (S, T ) into another arrangement
(S′, T ′). Let us write (S, T )t for the arrangement at time t ∈ [0, 1] during this transformation. Thus
(S, T )0 = (S, T ) and (S, T )1 = (S′, T ′). The isotopy is said to S-regular provided, for all t ∈ [0, 1],
(S, T )t is S-regular. We say that (S, T ) is S-normalized if:
(N0) (S, T ) is S-regular.
(N1) Each subdivision box B of S contains at most one point of S ∩ T .
(N2) Let X ∈ {S, T}. Then X intersects each segment of S at most once

Call (S′, T ′) a S-normalization of (S, T ) if there exists a S-regular isotopy from (S, T ) to
(S′, T ′) such that (S′, T ′) is S-normalized. Our algorithm will construct an S-normalization (S′, T ′)
of (S, T ).
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¶4. Box Predicates. We will use a variety of box predicates. These predicates will determine
the subdivision process. Typically, we will keep subdividing boxes until some Boolean combination
of some box predicates hold.

Let h : R2 → R be any real function. Recall (Appendix A) that we assume an interval formu-
lation of h denoted h : R2 → R where R denotes the set of closed intervals and R2 can be
viewed as the set of boxes. We introduce a pair of box predicates denoted Ch0 and Ch1 , defined as

Ch0 (B) ≡ 0 6∈ h(B),
Ch1 (B) ≡ 0 6∈ ( hx(B))2 + ( hy(B))2.

}
(3)

Note that Ch1 as taken from Plantinga-Vegter, where the interval operation I2 is defined as {xy :
x, y ∈ I} and not {x2 : x ∈ I}. An alternative to Ch1 would be the weaker Chxy predicate from
Lin-Yap [11], but the corresponding algorithm would would be more involved. So for now, we focus
on the Ch1 predicate. We classify boxes using these predicates:
• Box B is h-excluded if it satisfies Ch0 (B).
• Box B is h-included if it fails Ch0 (B) but satisfies Ch1 (B).
• Box B is resolved if it satisfies the predicate

(Cf0 ∨ Cf1 ) ∧ (Cg0 ∨ Cg1 ). (4)

• Box B is excluded if it satisfies Cf0 ∧ Cg0 . Note that excluded boxes are resolved.
• Box B is a candidate if it is resolved but not excluded.
• Candidate boxes can be further classified into three subtypes: f-candidates are those that

are f -included but g-excluded, g-candidates is similarly defined, and fg-candidates are
those that are f - and g-included.

¶5. Root Boxes. We define a root box to be any box B where B∩S∩T has exactly one point.
We next consider two predicates that will allow us to detect root boxes. One is the Jacobian
condition,

JC(B) ≡ 0 /∈ det( JF (B))

where JF (B) is the Jacobian of F = (f, g) evaluated on B. If JC(B) holds, then B has at most
one root of f = g = 0, The other is the Moore-Kioustelidis condition MK(B) [14] which can be
viewed as a preconditioned form of the famous Miranda Test [8]; for other existence tests based on
interval arithmetic see [6]. If MK(B) holds, then B has at least one root of f = g = 0. We provide
the details for this predicate in Appendix B; see (9). Therefore, when JC(B) and MK(B) holds,
we know that B is a root box. The use of Miranda’s test combined with the Jacobian condition
has been used earlier to isolate the common roots [12]. What is new in this paper is its application
to the simple curve arrangement problem.

2.2 Graph Representation

Our algorithm will produce a graph G = (V,E) where vertices v ∈ V are points in R2 and edges
are line segments connecting pairs of vertices. Moreover, each edge E will be labeled as an S-edge
or a T -edge. The union of these edges will provide a polygonal ε-approximation of (S, T ). We now
give an overview of the issues and solution.

First, we describe how the vertices of V are introduced.

(V0) We introduce a vertex in the center of a root box B.
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(V1) We evaluate f, g at the endpoints of segments of B. If h ∈ {f, g} is bichromatic on a
segment of B, then we must introduce an h-vertex somewhere in the segment. In a balanced
subdivision, an S-normalized pair (S′, T ′) of curves has at most two h-vertices on an edge of
a box B.

(V2) Introducing vertices on the edges of a box B is straightforward if B is an f -candidate or a
g-candidate. When B is a fg-candidate, we may have an edge e containing both a f -vertex
and a g-vertex. In the next section we will show how to find the relative order of these two
vertices.

Next we discuss how to introduce the edges E, which are line segments completely contained
in a box.

• If B is a root box, we just connect the vertex at its midpoint cen(B) to each of the vertices
on the edges of B. There will be exactly two f -vertices and two g-vertices.
• If B is a f -candidate or g-candidate, then the connection is trivial in the regular case. In

the balanced case, the rules from the previous work of Plantinga-Vegter [18] assures us of the
correct connection.
• If B is a fg-candidate, but not a root box, we know that the f -segment and g-segment will

not intersect. Some fg-candidates need global information to resolve them: when there are
two edges where each edge contains both an f - and a g-vertex. Their relative order must be
determined globally from root boxes or from boxes where their relative order is known. We
will show how to propagate this information in §3.

2.3 Curve Arrangement in Root Boxes

Suppose (S′, T ′) is the normalization of (S, T ) relative to the box B, i.e., (S′, T ′) is an isotopic
transformation of (S, T ) which respects the four corners of B. We now determine the isotopy type
of (S′, T ′) in a root box B. The possible combinatorial types fall under one of the 8 patterns as
shown in Figure 2. We put them in three groups (I, II, III) for our analysis.

(IIIc)

(Ib) (Ic) (IIb)	 	

⊕⊕	

	

⊕

	

f = 0 :

g = 0 :

KEY:

(Ia)

(IIIa) (IIIb)

(IIa)

Figure 2: Local intersection patterns of the normalized curves (S′, T ′)

Following the standard Marching Cube technique, we evaluate the sign of the functions f, g at
the four corners of B. If f has different signs at the endpoints of an edge e of B, then we must
introduce an f-vertex somewhere in the interior of e. Our normalization assumptions imply that
there are either zero or two f -vertices on the boundary of B. We treat g similarly. Our aim is to
connect the two f -vertices, the two g-vertices, and a point in the center of the box which represents
the common root with line segments such that the graph G obtained is an isotopic approximation
of (S′∩B0, T

′∩B0). There is a subtlety: the method exploits “local non-isotopy” [18, 11], meaning
that we do not guarantee that S∩B is isotopic to the segment introduced to connect two f -vertices.
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However, the graph G will be locally isotopic to the normalized curves (S′, T ′), i.e., G∩B is isotopic
to (S′ ∩B, T ′ ∩B) in each subdivision box B.

The issue before us is the relative placements of an f -vertex and g-vertex in case they both
occur in e; e.g., the patterns in group II in Figure 2. The main result of this section is the following.

Theorem 1. Let B be a root box that satisfies MK(B). Then the signs of f and g at each of the
four corners of B determine the combinatorial type of the normalized curves S′, T ′ in B. Moreover,
these combinatorial types fall under one of the five types in Groups II and III in Figure 2.

The main idea of the proof is that if MK(B) holds for a box B then there exists an edge e of
B such that either f(e) > cg(e), or g(e) > cf(e), for some c > 0. Given such an e, we can find the
relative order of the f -vertex and g-vertex on e. See Appendix C for details of the proof.

2.4 Geometry of Extended Root Boxes

By an aligned box we mean one that can be obtained as a node of a subdivision tree rooted at the
region-of-interest (ROI) B0; otherwise, it is said to be non-aligned. For instance, in Figure 3(a),
let the box with corners p, q, r, s be B0. Then the figure shows the four children of B0, which are
aligned, as well as the non-aligned box (1/2)B0 whose corners are p′, q′, r′, s′. Note that (1/2)B0

can be obtained as the union of aligned boxes. We are interested in non-aligned boxes that can be
obtained as a finite union of aligned boxes. In the simplest case of non-alignment, a box B is said
to be half-aligned if it is equal to the union of congruent aligned boxes of size w(B)/2. Thus if B
is aligned then both (1/2)B and 2B are half-aligned.

B′

B
2B

6B

8B

(b) Standard Subdivision of 8B

ps

r q

q′

p′s′

r′

(a) Half-aligned (1/2)B = (p′q′r′s′)

Figure 3: (a) B = (pqrs) is aligned, (b) 2B is a root box.

In most subdivision algorithms, it is enough to work with aligned boxes. But to treat root
boxes, we see an essential need to work with non-aligned boxes. The reason is that if we apply the
Moore-Kioustelidis predicate to aligned boxes, non-termination may occur when a root of F lies
on the boundary of an aligned boxes. But such roots can be detected in the interior of non-aligned
boxes. This issue is often ignored in the literature, but it needs to be properly treated in exact
algorithms. Some discussions may be found in Stahl [22] and Kamath [7]; in the univariate case, a
solution is suggested by Rote [20] for splines.

Therefore, given an aligned box B, we provide a procedure to detect if 2B is a root box. We
consider the nested sequence of boxes B ⊂ 2B ⊂ 6B ⊂ 8B as illustrated in figure 3(b). Our goal is
to detect 2B as a root box, but because of alignment issues, we must also treat the larger box 8B
which is called the extended root box corresponding to B.

We construct the following standard subdivision of 8B, denoted Std(B), into sub-boxes:
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• Subdivide 6B into 9 boxes, each congruent to 2B (indeed, 2B is one of these 9 boxes).
• The annular region 8B \ 6B is partitioned into 28 boxes, each congruent to B. These are

called the ring boxes.
See Figure 3(b) for illustration. Note that Std(B) is balanced. None of the subdivision boxes are
aligned, but the ring boxes are half-aligned.

¶6. Conforming Subdivisions. Let Π be a subdivision of a region R. A box B′ ∈ Π is a
boundary box of the subdivision if ∂B′ intersects ∂R. In the following definitions, we fix a region
R0 ⊆ B0 and fix a box B such that 8B ⊆ R0. Also let k ≥ 1 be an integer.

A subdivision Π0 for R0\8B is called externally k-conforming for B if it has three properties:
Π0 is balanced, the union Π0 ∪ {8B} is a box complex, and for each box B′ ∈ Π0, if B′ is adjacent
to 8B then w(B′) = w(B)/2k. A subdivision Π1 of 8B is called internally k-conforming for B if
Π1 is balanced, and for every boundary box B′ of Π1, w(B′) = w(B)/2k−1. Note for instance that
if Π1 is the standard subdivision of 8B, then it is internally 1-conforming for B. Below we show
how to achieve subdivisions of 8B that is internally k-conforming for B for k ≥ 2. The following
is immediate: If Π0 is externally k-conforming for B, and Π1 is internally k-conforming for B,
then their union Π0 ∪ Π1 is a balanced subdivision of R0. Note that if k > 1 then getting a
balanced subdivision of Π0 ∪ Π1 may cause the edges of a root box 2B to split into two segments
(but not more); see Figure 4. This can be handled by a case analysis similar to Theorem 1 based
on Lemma 7. An alternative approach is to replace 8B by 10B which would have an extra ring of
boxes congruent to B. In this case, we can handle any k > 1 by subdividing this outermost ring,
but without affecting the standard subdivision of 8B. This gives a simple and effective solution.

¶7. Strong Root Isolation. Suppose 2B is a root box. We say 2B is strongly isolated if the
following conditions hold
• (P1) The following four predicates hold: Cf1 (8B), Cg1 (8B), JC(6B),MK(2B).
• (P2) F = (f, g) has no roots in the annulus 8B \ 2B.

The predicates in (P1) ensures that 2B is a root box. It is not hard to see that if 2B contains a
root of F and is sufficiently small, then properties (P1) and (P2) will hold. The reason for MK(2B)
(not just MK(B) is to ensure that we test the Moore-Kioustelidis predicate on overlapping boxes,
so that roots on the boundary of an aligned box B will appear in the interior of 2B. The reason
for JC(6B) instead of JC(2B) is that there can be two boxes 2B and 2B′ such that both of them
satisfy MK-test and they overlap. The test JC(6B) ensures that if there are two such boxes then
they correspond to the same root, and so discard one of them.

¶8. Root Refinement: Let B be an aligned box from the subdivision queue such that 2B is a
root box. We give a subroutine to refine such a root box 2B. It it important that in our refinement
method all the sub-boxes remain dyadic boxes, assuming the input boxes are dyadic. The idea is
to cover 2B with a covering of aligned boxes, which must be of size w(B)/2, and check whether
MK-test holds for the doubling of any of these 16 boxes. If not, then subdivide these boxes and
continue recursively with the fg-candidates. See Appendix A for more details.

3 Algorithm for Curve Arrangement

Our overall algorithm begins with the (trivial) subdivision tree T rooted at the ROI B0 but with
no other nodes. The algorithm amounts to repeatedly expansion of the candidate leafs in T until a
variety of global properties hold. We given an overview of the algorithm in a sequence of 9 stages;
see Appendix C.
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¶9. Stage I: Resolution Subdivision The high level description of this stage is easy: keep
expanding any leaf B of T that is not resolved (see (4)). Recall that resolved boxes are either
excluded or candidates. As each box is resolved, it is placed in one of the following four queues: Q0

for excluded boxes, Qf for f -candidates, Qg for g-candidates, and Qfg for fg-candidates Besides
these four global queues, we also use these additional queues: QJC, QMK, QRoot corresponding
roughly to boxes that satisfies the JC and MK predicates, or are found to be root boxes. The boxes
in all the queues are always aligned boxes.

¶10. Stage II: Jacobian Stage. Remove a box B from Qfg and do the following: If JC(6B)
holds then put B into QJC, otherwise, subdivide B and distribute the children into Q0, Qf , Qg, Qfg.

¶11. Stage III: MK Stage. For every box B ∈ QJC we subdivide it until either we find a
sub-box B′ such that MK(2B′) holds, or we have identified all sub-boxes as one of Q0, Qf , Qg, Qfg.

¶12. Stage IV: Strong Root Isolation Stage We assume that QMK is a priority queue, where
boxes are popped starting from the largest size. For each such box B check whether 8B is disjoint
from 8B′, for all its neighbors B′; if not then replace B with RefineRoot(B). We now have obtained
a queue QRoot containing root boxes for all the roots in ROI. The next step is to externally conform
Std(B) with the rest of the subdivision tree T .

¶13. Stage V: Pruning T In this stage we will turn OFF some leaf boxes in On(T ) depending
on how they interact with the extended root boxes 8B. The aim is to “blackout” the 8B regions from
ROI, and ensure that the boxes abutting it are all aligned boxes. Let B′ be the great-grandparent
of B in T . Then we get the list of leaf boxes that cover the interior of B′ and another list of
boxes that are its neighbors. For each box Btmp in these lists, we turn it OFF if it is contained in
8B; if it overlaps 8B then we subdivided it and proceed with its children. Let T ′ be the resulting
subdivision tree.

¶14. Stage VI: Balancing and Externally Conforming Recall the standard balancing
procedure for a subdivision T of a region B0 from the appendix. We will construct a balanced
and externally conformal subdivision of B0 \∪i8Bi, where 8Bi’s are pairwise disjoint extended root
boxes. For each box 8Bi, we add a conceptual box to T ′, with depth either one more than its
smallest neighbor, or if all the neighbors of 8B are larger than w(B) then one more than the depth
of B in T . Call the standard balancing procedure on the modified T ′. By Lemma 3, we will get
the desired subdivision; after balancing the boxes bordering 8B will all be of the same size, namely
w(B)/2k, for some k ≥ 1.

¶15. Stage VII: Internally Conforming Extended Root Boxes Consider any extended
root box 8B and its standard subdivision Std(B). Given a k > 1 from the previous stage, we
want to balance the interior and the exterior of Std(B). Note that since k > 1 the boxes on the
exterior are always smaller than all the boxes in Std(B). To get a balanced conformal subdivision
of Std(B), we initialize a priority queue Q with all the boxes on the exterior of 8B (all of them are
of the same size) and the 37 boxes in Std(B). Then we initiate the standard balancing procedure
on Q. See Figure 4(c) for an illustration of this procedure; the box B′ has width w(B)/8. We do
this balancing step for each of the extended root boxes 8B. The union of these subdivisions with
the balanced subdivision of B0 \ ∪i8Bi gives us a balanced subdivision of B0, our ROI.

¶16. Stage VIII: PV-Construction For each box in Qf , connect its two f -vertices with a
line segment; do the same for boxes in Qg. For each box in QRoot place a vertex at its center and
connect the two f -vertices and the two g-vertices with this vertex according to the cases shown in
Groups II and III. of Figure 2. At the end of this stage, the only queue that remains unprocessed
is Qfg. The next stage resolves these boxes.
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¶17. Stage IX: Resolving Ambiguous fg-candidates We call an fg-candidate box ambigu-
ous if they have the same set of bichromatic segments; otherwise, call the box unambiguous. By
definition, boxes where f and g do not share a bichromatic segment are unambiguous. However,
some ambiguous boxes can be made unambiguous locally. From Theorem 1 we know that ambigu-
ous root boxes can be made unambiguous. Also, boxes where the two shared bichromatic segments
are on adjacent edges can be made unambiguous by repeated subdivisions of the edges until we
reach a segment in one of the edges that is bichromatic for one curve and monochromatic for the
other; this will happen along one of the edges since both Cf1 and Cg1 hold. A similar approach
works to resolve ambiguous boxes that share an edge with B0 and a common bichromatic segment
is on this edge, because by assumption boundary of B0 does not contain a root of f, g. From these
unambiguous boxes, we propagate the ordering of the f -vertex and g-vertex on the shared edge to
their ambiguous neighbors.

B′

B
2B

6B

8B

Figure 4: An internally conformal subdivision of Std(B).

¶18. Correctness of Algorithm We must prove that our graph G = (V,E) is isotopic to the
arrangement (S, T ) in box B0. Suppose there are k roots, |S ∩ T | = k. Our correctness requires
that none of these roots lie in ∂B0. Our algorithm produces the following data: we have “well
isolated” the roots in this sense: we have found k aligned boxes, B1, . . . , Bk such that 2Bi is a
root box, 8Bi ⊆ B0, and the interiors of the 8Bi’s are pairwise disjoint. Next, we have constructed
subdivisions,

S0,S1, . . . ,Sk
where Si is a subdivision of 8Bi (i = 1, . . . , k) and S0 is a subdivision of B0 \ ∪ki=18Bi. Moreover,
the union of all these subdivisions, denoted S∗, constitutes a balanced box complex of B0.

Theorem 2. The PSLG G computed by the algorithm is a S∗-normalization of the curves (S, T ).

We sketch the arguments here: let (S′, T ′) be a S∗-normalization of (S, T ). The graph G will
be obtained as the union of GB for all B ∈ S∗, where each GB is a PSLG contained in box B. We
know from Theorem 1 how to construct a PSLG GB ⊆ B that is isotopic to (S′, T ′) in each root
box B. We know from Plantinga-Vegter how to construct PSLG GSB that are isotopic to S′ in each
non-root box B. Similarly we have GTB. But we need to form their ”union”, which is the PSLG
GB that is isotopic to (S′, T ′) in B. For this purpose, we need to know the relative ordering of the

10



f -vertex and g-vertex on each segment of B that is bichromatic for both curves. This information
is resolved by Stage IX of our construction.

4 Final Remarks

We have presented a complete numerical algorithm for the isotopic arrangement of two simple
curves. The underlying paradigm is Domain Subdivision, coupled with box predicates and effective
forms of the Miranda Test. Moreover, we crucially exploit the previous isotopic approximation
algorithms of Plantinga-Vegter [18] for a single curve.

The algorithm is very implementable: despite the many stages, each stage involves iteration
using well-known data structures. A full implementation and comparisons with other methods is
planned; we have currently implemented the root isolation part.

The extension of this work to the simple arrangement of multiple curves is of great interest.
Many of the techniques we have developed for 2 curves will obviously extend. One possible way to
use our work for multiple curves is as follows: first compute the root boxes 2Bi of all the pairwise
intersections, and make them “well isolated” in the sense that 8Bi boxes are pairwise disjoint, as
before. Then we compute a balanced, conforming subdivision S0 of complement of the union of
these 8B boxes. Moreover, we need to resolve ambiguities, i.e., relative ordering of curves on a
common segment. Some of this can be resolved by propagation, but there will be need for recursive
subdivision in general. In the full paper, we will provide such a description.

A general open problem is to prove polynomial complexity bounds for such subdivision algo-
rithms. As a first step, we would like to prove that the root isolation part is polynomial-time. This
would be a generalization of our recent work on continuous amortization for real and complex roots
[21].
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Appendices

Appendix A Basic Concepts

We fix the terminology for well-known concepts in boxes, interval arithmetic and subdivision trees.
We define these concepts in d-dimensions. Of course, the algorithms in this paper work in d = 2.

¶19. Boxes. Let R denote the set of closed intervals. We may identify R with degenerate
intervals [a, a] ∈ R. Also Rd is the d-fold Cartesian product of R. Elements of Rd are called d-
boxes. The width of B is (w(I1), . . . , w(Id)) where the width of an interval I = [a, b] is w(I) = b−a.
the same (resp., differ by at most 1). If B,B′ are two boxes in Rd, we say they are k-neighbors
if B ∩ B′ has dimension k. So k ∈ {−1, 0, 1, d − 1}, where the empty set has dimension −1. We
say B and B′ are adjacent if they are (d− 1)-neighbors. Each box has 2d sides (sometimes called
edges) and 2d corners. The boundary of a box B is denoted ∂B.

¶20. Box Functions. Interval arithmetic [13] is central to our computational toolkit. If f :
Rd → R is a real function, then we call a function of the form f : Rd → R an inclusion
function for f if for all B ∈ Rd, f(B) contains f(B) = {f(p) : p ∈ B}. Call f a box function
for f if it is an inclusion function for f and for all {Bi ∈ Rd : i ∈ N}, if Bi converges monotonically
to a point p ∈ R then f(Bi) converges monotonically to f(p). Note that box functions are easy
to construct for polynomials and common real functions.

¶21. Subdivision Trees. Our fundamental data structure is a quad-tree or subdivision tree
T : the nodes of T are boxes in Rd, and each internal node B has 2d children which are congruent
sub-boxes, with pairwise disjoint interiors, and whose union is B. In order to use T to represent
regions of complex geometry, we assume that each leaf of T is (arbitrarily) either turned ON or
turned OFF. The union of all the ON-leaves is denoted R(T ), called the region-of-interest (ROI).
Let On(T ) denote the set of ON-leaves of T . We call On(T ) a subdivision of R(T ). In general,
a subdivision of a set X ⊆ Rd is a collection C of sets in Rd such that ∪C = X and the relative
interior of the sets in C are pairwise disjoint. One of the basic operations on subdivision trees is
to take an ON-leaf B of T and to “expand it”, i.e., to split B into 2d congruent sub-boxes and
attach them as children of B. Thus B becomes an internal node and its children become leaves of
the expanded T . By definition, the children of B remain ON-leaves. Thus the ROI is not affected
by expansion.

A segment of T is a line segment of the form B∩B′ where B,B′ are adjacent boxes in T . Note
that a segment is always an edge of some box, but some box edges are not segments. In general,
an edge is subdivided into a finite number of segments.

The boxes of a subdivision tree are assumed to be non-degenerate, i.e., they are d-dimensional.
In our algorithms, certain ON-leaves are called “candidates box”. Unless otherwise noted, we could
assume every ON-leaf is a candidate box. We then say T is balanced if, for any two candidate
boxes, if they are adjacent then their depths differ by at most one.

Traversing neighbors in a subdivision of ROI: Given a subdivision tree T partitioning
the ROI, a crucial sub-procedure required by the algorithm is the ability to get the neighbors of a
leaf-box in T . One way to achieve this is to associate two pointers with every edge of a leaf box
of T , namely the pointers that point to the extreme neighbors along the edge (there may be only
one such neighbor, in which the two pointers point to the same box). Thus we associate 8 pointers
with every leaf-box. We will often say the “eight neighbors” of a box to refer to the boxes pointed
by these eight pointers, where we count the boxes with multiplicity. We can list all the neighbors
of a leaf-box B in T using these eight pointers.
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Standard Balancing Procedure:

Let Qtmp be a priority queue of all the leaves in T ;
the deeper the level the higher the priority.
While Qtmp is non-empty do

B ← Qtmp.pop().
For each neighbor Btmp of B do

If Btmp is not balanced w.r.t. B subdivide
Btmp and add its children to Qtmp.

There can be at most two neighbors of B that need to be subdivided, because B shares two edges
with its siblings and so the boxes neighboring B along those edges are balanced w.r.t. B; the
unbalanced boxes can occur on the remaining two edges. Moreover, for any neighbor Btmp that is
subdivided only one of its children neighbors B. Balancing also has the following nice property,
which intuitively says that the boxes produced in the ensuing subdivision cannot all be very small.

Lemma 3. Suppose we are balancing a box B, and let B′ be its violating larger neighbor. Let e be
the edge of B′ shared with B and e′ be the opposite edge. Then the subdivision of B′ caused by B
while balancing will split the edge e′ only once.

In the subdivision tree of B′, the two children that share e′ are in a different subdivision tree
compared to the child of B′ that is adjacent to B and shares e; see Figure 5. Balancing produces a
subdivision tree of B′ that has only one path, with leaves hanging from it, that ends in a box whose
size is double the size of B. The number of leaves in this tree are 3 · (logw(B′)− logw(B)− 1).

B

e e′

B′

Figure 5: A subdivision caused balancing.
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Appendix B The Moore-Kioustelidis Test for Roots

Although our paper is focused on arrangement of curves, we shall temporarily consider a more
general setting of a continuous function F : Rn → Rn in n-space. Let the coordinate functions of
F be denoted (f1, . . . , fn). If B =

∏n
i=1 Ii ⊆ Rn is a box, we write B+

i and B−i for the pair of
faces of B whose outward normal are (respectively) the positive and negative ith semi-axis. Thus,
if Ii = [ai, bi] then B−i = I1 × · · · × Ii−1 × ai × Ii+1 × · · · × In, and B+

i is similar, but with bi in
place of ai. The center of a box B, cen(B), is defined as the vector ((a1 + b1)/2, , . . . , (an + bn)/2).
For a positive real number λ, define the scaled box

λB :={λ(x− cen(B) + cen(B))|x ∈ B}.

For X ∈ R, define the magnitude of X, mag(X) := maxx∈X |x|.
Miranda’s theorem [8] gives us a sufficient condition for the existence of roots of F in the interior

of box B:

Proposition 4 (Simplified Miranda). Let F = (f1, . . . , fn) : Rn → Rn be a continuous function,
and B a box. A sufficient condition that F has a root in the interior of B is that

fi(B
+
i ) > 0, fi(B

−
i ) < 0 (5)

holds for each i = 1, . . . , n.

Remark: we have stated Miranda’s theorem in the simplest possible form. For instance, our
simple form could be generalized by replacing (5) with the following condition: fi takes a definite
sign s+i ∈ {−1,+1} on B+

i , takes a definite sign s−i on B−i , and s+i s
−
i = −1. But the simplified

form implies this more general form since we can replace the system F = (f1, . . . , fn) by

F̃ = (s+1 f1, . . . , s
+
n fn),

since the systems F and F̃ have exactly the same set of roots. The usual statement of Miranda’s
theorem is even general, where (5) is replaced by: there exists a permutation π of the indices
{1, . . . , n} with this property: for each i, fi has definite signs s+i and s−i on B+

π(i) and B−π(i) (re-

spectively), where s+i s
−
i = −1. We shall see that there is no need to find such a permutation, if

we transform F appropriately. Moore and Kioustelidis [15] give the following effective form of the
Miranda test:

Proposition 5 (Effective Miranda’s Test). Let F :=(f1, . . . , fn) : Rn → Rn be a continuous func-
tion with appropriate box functions. Write fi,j := ∂fi/∂xj. For any box B with width w(B) =
(w1, . . . , wn), if for all i = 1, . . . , n

fi(cen(B+
i )) · fi(cen(B−i )) < 0, (6)

|fi(cen(B+
i ))| >

n∑
j=1,j 6=i

mag( fi,j(B
+
i ))wj , and (7)

|fi(cen(B−i ))| >
n∑

j=1,j 6=i
mag( fi,j(B

−
i ))wj , (8)

then F has a zero in the interior of B.
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Proof. Using the mean-value interval extension of f , we know that

fi(B
+
i ) ⊆ fi(cen(B+

i )) + ∇fi(B+
i ) · (B+

i − cen(B+
i ));

note the dot-product on the RHS is the inner-product of interval vectors. But

∇fi(B+
i ) · (B+

i − cen(B+
i ))

=

n∑
j=1

fi,j(B
+
i )([xj , xj ]− (xj + xj)/2).

Since xi = xi, the ith entry in the summation vanishes on the RHS and hence we obtain

∇fi(B+
i ) · (B+

i − cen(B+
i ))

=

n∑
j=1,j 6=i

fi,j(B
+
i )([xj , xj ]− (xj + xj)/2)

=
n∑

j=1,j 6=i
fi,j(B

+
i )

(xj − xj)
2

[−1, 1]

=

n∑
j=1,j 6=i

mag( fi,j(B
+
i ))

(xj − xj)
2

[−1, 1]

=

 n∑
j=1,j 6=i

mag( fi,j(B
+
i ))

(xj − xj)
2

 [−1, 1]

=

 n∑
j=1,j 6=i

mag( fi,j(B
+
i ))(wj/2)

 [−1, 1].

Thus

w( ∇fi(B+
i ) · (B+

i − cen(B+
i ))) =

n∑
j=1,j 6=i

mag( fi,j(B
+
i ))wj .

Therefore, (7) implies that 0 6∈ fi(B+
i ). Similarly, (8) implies that 0 6∈ fi(B−i ). By (6), fi takes

opposite signs on the faces B+
i and B−i , and so Miranda’s theorem implies B contains a root in its

interior.

Miranda’s test is not a “complete” method for detecting roots in the following sense: there are
systems F = 0 whose roots cannot be detected by Miranda’s test, even in the general form that
allows permutation π. For instance, let F = (f, g) where f = x + y and g = x − y. Then no
rectangle B ⊆ R2 containing the root (0, 0) will pass the generalized Miranda test.

The solution is a “preconditioning” trick. Consider a transformation of F to G :=Y F , where Y
is a suitable non-singular matrix in the box B. Note that G and F have the same sets of roots. To
perform the Miranda Test on a box B, we choose Y to be the inverse of any non-singular Jacobian
JF (m) where m ∈ B. More precisely,

MK-test for a system F on a box
B is the effective Miranda-test ap-
plied to the system JF (m)−1F , where
m := cen(B), and the Jacobian is non-
singular.

(9)
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This idea was first mentioned by Kioustelidis and its completeness was shown by Moore-
Kioustelidis [15]. We reproduce their result, but to do that we need some notation and the Mean
Value Theorem in higher dimensions.

Given x, y ∈ R, the notation x ± y denotes a number of the form x + θy, where θ is such that
0 ≤ |θ| ≤ 1; thus “±” hides the θ implicit in the definition. We further extend this notation to
matrices in the following sense: for two matrices A,B, the matrix A ± B :=[aij ± bij ]; also, for a
scalar λ, the matrix A ± λ :=[aij ± λ]. We now recall the Mean Value Theorem for F : Rn → Rn:
Given two points x,y ∈ Rn, there exists a matrix K with non-negative entries such that

F (x)− F (y) = (JF (y)±K‖x− y‖) · (x− y). (10)

To see this claim, we apply the mean value theorem twice in each of the components of F to obtain

fi(x)− fi(y)

= (fi,1(y)±Ki,1‖x− y‖, · · · , fi,n(y)±Ki,n‖x− y‖) · (x− y)

= ∇fi(y) · (x− y)± (Ki,1, . . . ,Ki,n) · (x− y)‖x− y‖
for i = 1, . . . , n.

Lemma 6. Let F be a zero-dimensional system of polynomials. For all sufficiently small open boxes
B containing a single root α of F the modified system G := JF (m(X))−1F , if well defined, satisfies
the conditions in Miranda’s theorem, namely for i = 1, . . . , n, gi(B

+
i ) ≥ 0 and gi(B

−
i ) ≤ 0.

Proof. Let x be a point on the boundary of the box B. From the definition of G and from the
mean value theorem (10) we know that

G(x) = JF (m)−1(F (α) + (JF (m)±K‖x− α‖) · (x− α))

= JF (m)−1(JF (m) +K‖x− α‖) · (x− α))

= (1± ‖JF (m)−1K‖∞‖x− α‖) · (x− α).

The ith component in the vector

(1± ‖JF (m)−1K‖∞‖x− α‖) · (x− α) (11)

is the polynomial gi(B), so we obtain

|gi(x)− (xi − αi)| ≤ ‖x− α‖‖JF (m)−1K‖∞
n∑
j=1

|xj − αj |. (12)

The term on the RHS

‖x− α‖‖JF (m)−1K‖∞
n∑
j=1

|xj − αj |

≤ ‖ŵ(B)‖21 ‖JF (m)−1K‖∞,
because ‖x−α‖ ≤ ‖ŵ(B)‖2 ≤ ‖ŵ(B)‖1 and

∑n
j=1 |xj −αj | ≤ ‖ŵ(B)‖1. Suppose the box B is such

that
2‖ŵ(B)‖21 ‖JF (m)−1K‖∞ < min

i=1,...,n
‖α−B±i ‖

then we claim that for all i = 1, . . . , n, gi(B
+
i ) ≥ 0 and gi(B

−
i ) ≤ 0. This is because for all x ∈ B+

i ,
|xi−αi| = |xi−αi| = ‖α−B+

i ‖, since the projection of α on B−i is (α1, . . . , αi−1, xi, αi+1, . . . , αn);
similar argument applies for x ∈ B−i . Thus the term on the RHS in (12) is smaller than |xi−αi|/2,
which implies that gi(B

+
i ) ≥ 0 (we can similarly show that gi(B

−
i ) ≤ 0), and therefore the system

G(x) has the same sign pattern as x− α on the boundary of the box B.
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This “orthogonalization” around the zero by the pre-conditioning step helps us avoid finding
the permutation matrix in the general Miranda’s test. Note, however, that if the root is on the
boundary of the box then the above proof breaks down.
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Appendix C Proofs and Details

Proof of Theorem 1: We will need the following lemma for the proof.

Lemma 7. If a box B satisfies MK(B) and an f -vertex and a g-vertex share an edge e of B then
we can determine the relative order of the normalized curves (S′, T ′) along e.

Proof. Since the MK(B) test passed along e, we know that there are real numbers a, b such that
either a ·f(e) > b · g(e) or a ·f(e) < b · g(e). To see this, recall that MK(B) test replaces the system
F = (f, g)T by the system F̂ = J · F , where J is the inverse of the Jacobian of F evaluated at

cen(B), and performs the Miranda test, Proposition 5, for F̂ . If J =

[
a −b
c d

]
and F̂ = (f̂ , ĝ)T

then f̂ = a ·f−b ·g. The Miranda test on F̂ asserts that there is an edge e for which either f̂(e) > 0
or f̂(e) < 0. The first inequality is equivalent to a · f(e) > b · g(e), and the second inequality is
equivalent to a · f(e) < b · g(e). In the rest of the proof we assume that a · f(e) > b · g(e); the
analysis in the other case is same.

Neither a nor b can vanish, since that would imply that either f or g has a constant sign on
e, which is a contradiction as both f and g have a vertex on e. Let e(t) be a parametrization of
e with endpoints e(0) and e(1). Let Tf ⊆ (0, 1) be such that f(e(t)) = 0 for all t ∈ Tf , and let tf
be the smallest element in Tf ; similarly define Tg and tg. Since both f and g change sign across
e, we know that the cardinality of Tf and Tg is odd. Any normalization (S′, T ′) of (S, T ) relative
to B will remove all but one element from both Tf and Tg, while maintaining the relative order of
the remaining element. That order is the same as the order of tf and tg along e. Thus we want to
determine whether tf < tg or tg < tf . Suppose ab > 0. Then f(e) > c · g(e) for some c > 0. There
are two cases to consider:
• f(e(0)) > 0: then f(e(tg)) > cg(e(tg)) = 0, which implies that f is positive at e([0, tg]) and
so tf > tg;
• f(e(0)) < 0: this similarly implies tf < tg.

If ab < 0 then g(e) > c · f(e), for some c > 0, and the claim follows from similar arguments.

¶22. Group I Patterns. Notice that using the sign of f, g at the corners of B, we can never
detect these patterns. For instance, for Figure 2(Ia), we will not detect the presence of the curve
S′ because f has the same sign on every corner of the box. So we first show that they cannot arise.

Lemma 8. Suppose box B satisfies MK(B). Then the patterns in Group I of Figure 2 cannot occur.

Proof. Let e be an edge ofB and suppose S′∪T ′ intersect e in three consecutive points e(t1), e(t2), e(t3)
(t1 < t2 < t3) where e(t) is a parametrization of e. The “pattern” of these intersections is the triple
(p1, p2, p3) where pi ∈ {f, g}. For instance, if e is the top edge of the box in Figure 2(Ia), then
the pattern is either (f, g, f) or (g, f, g). Our claim is equivalent to showing that the intersection
pattern of any three consecutive intersections of S′ ∪ T ′ on any edge e of B cannot be (f, g, f) or
(g, f, g).

From Lemma 7 we know that f(e) > c · g(e), for some c ∈ R 6=0; let us assume c > 0. Consider
the (f, g, f) pattern (the other pattern is similar). Consider the sign of g at the point e(t1− ε) and
e(t3 + ε) for sufficiently small ε > 0. Then g must have different signs at these points — this is
because as we move from e(t1 − ε) to e(t3 + ε), the function g changes sign exactly once, at e(t2).
Likewise, we see that f must have the same sign at e(t1 − ε) and e(t3 − ε), because as we move
from e(t1 − ε) to e(t3 + ε), the function f changes sign exactly twice, at e(t1) and e(t3). Thus
f(e(t1 − ε)) > g(e(t1 − ε)) iff f(e(t1 − ε)) < g(e(t1 − ε)). This is a contradiction.
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¶23. Group II Patterns. Suppose f, g have sign agreement on B. We can determine from
these signs the two edges that contains f - and g-vertices. Suppose e is such an edge. So there is
an f -vertex and a g-vertex on e, and from Lemma 7 we know their relative ordering.

¶24. Group III Patterns. Let us say that f, g have sign agreement on B if there is a sign
s ∈ {+1,−1} such that sign(f(c)g(c)) = s for each corner c of B. Observe that Group II patterns
arise precisely because f, g have sign agreement; likewise Group III patterns arise precisely because
f, g do not have sign agreement. We claim that the patterns in Group III can be determined by
signs of f and g at the corners of B. First of all, by evaluating the signs of f and g on the corners
of B, we can determine whether or not f, g have sign agreement of B. If not then we can determine
whether the pattern is (IIIa), (IIIb) or (IIIc). If (IIIa), the pattern is completely determined. If
(IIIb), there is an edge e containing both an f - and a g-vertex, and we need to know their relative
order on e. This is determined by the positions of the other f -vertex and other g-vertex: this is
because the order of the four f - and g-vertices on the boundary of B must be alternating: f, g, f, g.
A similar remark applies in case (IIIc).

To summarize the proof of Theorem 1: Lemma 8 implies that Group I patterns cannot occur;
for Group II patterns we can determine the relative order from Lemma 7 and for Group III patterns
the ordering is immediate.

¶25. The RefineRoot Procedure:

RefineRoot(B)
/ Assume that JC(6B) holds.
/ Thus no neighbor of 2B can be an MK-box.

Input: an aligned box B with 2B as the root box.
Output: an aligned box B∗ ⊂ 2B with 2B∗ as the root box.
Algorithm .

Remove B from QMK.
Subdivide the neighbors of B until the size of the
neighborhood of B is w(B)/2.
Add the children of the neighbors to the appropriate
queues Q0, Qf , Qg, Qfg.
Initialize Qtmp with the neighbors of B and its children.
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If MK(2Btmp) holds then

Empty Qtmp into Qfg.
Return Btmp and add it to QMK .

Else Subdivide Btmp and add its children to
Q0, Qf , Qg and Qtmp if they satisfy
respective predicates..

Correctness: The subdivision of B and its neighborhood of size w(B)/2 covers 2B, the root box
corresponding to B. Let B′ be any of these 16 boxes. Since JC(6B) holds, if MK(2B′) holds for a
box B′ then the root in 2B′ is exactly the root in 2B.

We now give the details of various stages mentioned in §3.

¶26. Details of Stage III:
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While QJC is non-empty
B ← QJC.pop().
Qtmp ← {B}
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If MK(2Btmp) holds.

Push Btmp into QMK. Empty Qtmp into Qfg.
Else subdivide Btmp and distribute the children
into Q0, Qf , Qg, Qtmp

(after testing for the corresponding predicates).
For each box B ∈ QMK do

If there is another box B′ ∈ QMK such that
2B ∩ 2B′ 6= ∅ then remove B′ from QMK.

Note that we only search for a root in fg-candidate boxes. This is justified by Lemma 6 and
the observation that eventually the root will be contained in the interior of the doubling of an
fg-candidate box. At the end, QJC is empty and QMK contains a set of root boxes. Moreover, the
last loop ensures no two boxes B,B′ ∈ QMK correspond to the same root, i.e., 2B ∩ 2B′ = ∅. The
boxes in Qfg do not contain any root.

¶27. Details of Stage V: For each box B in QRoot do the following steps.

Initialize Qtmp with all the neighbors of B in T .
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If Btmp ⊂ 8B then turn it OFF and
add its neighbors to Qtmp.
If the interior of Btmp intersects the interior of 8B then
subdivide it and add its children to Qtmp.

/ NOTE: Whenever we subdivide a box Btmp

/ we remove it from one of the queues Qf , Qg, or Qfg
/ and add its children to the appropriate queue.

Since 8B is half-aligned, there is a refinement of T such that every box in this refinement is
either contained in 8B or does not intersect its interior. Thus the procedure described above will
terminate. Let T ′ be the refinement of T with blacked-out regions corresponding to extended root
boxes.

¶28. Details of Stage VI:
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For each B ∈ QRoot do
Let m be the largest depth amongst all the
neighbors Btmp of 8B in T ′.
Let ` be the depth of B in the subdivision tree T .
/ Thus w(Btmp) = w(B)2`−m

If m > ` then k ← m; else k ← `+ 1.
Add a conceptual leaf box to T ′ that represents 8B.
Set the depth of this box to k + 1 and initialize
its 8 pointers to the 8 neighbors of 8B in T ′.

Let T ′′ be the resulting subdivision tree.
Let Q be the priority queue of all the leaves in T ′′;
the deeper the level the higher the priority.
Initiate the standard balancing procedure
on Q with one difference: whenever we pop a conceptual
box 8B we check the depth of its neighbors and if
necessary reset the depth of 8B to one more than
the depth of its deepest neighbor.
/ NOTE: Whenever we subdivide a box Btmp we
/ remove it from one of the queues Qf , Qg, or Qfg
/ and add its children to the appropriate queue.

We claim that at the end of this procedure the tree T ′ is balanced, and all the neighbors of
extended root boxes 8Bi in T ′ are of the same size, namely w(Bi)/2

k, for some k ≥ 1. The
balancing of B0 \ ∪i(8Bi) follows from the proof of correctness for standard balancing procedure.
The conformity follows because a conceptual box is always deeper in T ′′ than its neighbors, so
it will never be subdivided, and its neighbors will always be twice its size. The modification to
the standard balancing is required, because a smallest neighbor Btmp of 8B in T ′ could have been
subdivided by a box that is adjacent to Btmp along the edge that is not abutting 8B or any of the
neighbors of 8B. However, this can only happen once because of the balancing property, Lemma 3.

¶29. Details of Stage IX:
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Initialize Qtmp with all the root boxes.
/ Qtmp will contain unambiguous boxes.

For each box B ∈ Qfg do
If there is pair of f -vertex and g-vertex that do not share
a segment of B then

Connect the two f -vertices with an edge;
connect the two g-vertices with an edge;
ensure that the two edges do not intersect.
Add B to Qtmp and remove it from Qfg.

/ In the remaining boxes, the two pairs of
/ (f, g)-vertices share the same segments.

If the two pairs of (f, g)-vertices are on edges e, e′

that share a vertex then
/ Call such a box a Transition Box
/ These boxes definitely appear in a covering
/ of nested fg-loops; they can appear otherwise.

Subdivide both e and e′ until we reach
a subset e′′ in one of the edges such that
only one of the curves f or g changes sign on e′′;
say e′′ ⊂ e and f changes sign on it.
Check which side of e \ e′′ does g change sign;
order the f -vertex and g-vertex
along e accordingly; connect the f -vertices
and g-vertices respecting this order;
add B to Qtmp and remove it from Qfg.

If B shares an edge e with B0 then
Subdivide e until we reach a subset e′′ ⊂ e
such that only one of the curves f , g changes
sign on e′′. Check which side of e \ e′′ contains
the other curve. Order the vertices accordingly
and connect the f -vertices and g-vertices.
Add B to Qtmp and remove it from Qfg.

/ The boxes in Qtmp are all unambiguous boxes.
While Qtmp is non-empty do
B ← Qtmp.pop()
For each ambiguous fg-candidate Btmp of B do

Order the f -vertices and g-vertices on the
shared segment between Btmp and B according
to their ordering in B; connect the pair of f -vertices
and g-vertices in Btmp respecting this ordering.
Add Btmp to Qtmp and remove it from Qfg.
/ Thus all the fg-neighbors are unambiguous.

In practice, we should first resolve boxes that can be traced to root boxes. Then we should resolve
transition boxes and propagate their ordering. Finally, in the remaining ambiguous boxes, we
should resolve the boundary boxes and propagate their ordering. At the end of this stage Qfg will
be empty, since any ambiguous box can be traced to one of the four boxes: root box, transition
box, or a boundary box.
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