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ABSTRACT
We give the first complete subdivision algorithm for the
intersection of two Bezier curves F, G, possibly with tan-
gential intersections. Our approach to robust subdivision
algorithms is based on geometric separation bounds, and
using a criterion for detecting non-crossing intersection of
curves. Our algorithm is adaptive, being based only on ex-
act bigfloat computations. In particular, we avoid manipu-
lation of algebraic numbers and resultant computations. It
is designed to be competitive with current algorithms on
“nice” inputs. All standard algorithms assume F, G to be
relatively prime — our algorithm needs a generalization of
this.
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I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—geometric algorithms, curves; G.1.5
[Numerical Analysis]: Roots of Nonlinear Equations—
methods for polynomials; D.m [Software]: Miscellaneous—
robust geometric computation
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1. INTRODUCTION
The intersection and analysis of algebraic curves and sur-

faces is a fundamental problem in many areas of geometric
modeling [16]. Most practical algorithms are based on free-
form curves and surfaces [8, 6]. In this paper, we consider
one class of free-form curves, Bezier curves. All current al-
gorithms for intersecting Bezier curves are inexact, leading
to well-known nonrobustness issues. Let us look at a funda-
mental reason for this.

A Bezier curve F is a finite curve segment, represented
by a sequence P (F ) = (p0, . . . , pm) of control points [8, 6].
Let CH(F ) denote the convex hull of P (F ), viewed as a
closed region. A pair (F, G) of Bezier curves is called a
candidate pair if CH(F ) ∩ CH(G) is non-empty. Standard
algorithms for intersecting Bezier curves are based on two
ideas. First, using the property that a Bezier curve F is con-
tained in CH(F ), the algorithm can discard non-candidate
pairs. Second, the principal algorithmic operation is subdi-
vision, which divides a curve F into two subcurves F0, F1

using De Casteljau’s algorithm. The generic intersection al-
gorithm maintains a queue Q of candidate pairs. As long
as Q is non-empty, it extracts a candidate pair (F, G) from
Q. If the diameter1 of F ∪ G is less than ε, it outputs this
pair; otherwise it subdivides the curve with the larger diam-
eter, say F , into subcurves F0, F1, and appends (F0, G) and
(F1, G) to Q.

This algorithm depends on a constant ε > 0: pairs (F, G)
with diameter less than ε are treated as intersecting. For
display purposes, such constants are justifiable. But for
topological analysis of curve arrangements, we want out-
put pairs (F, G) that represent unique intersections. But
the generic algorithm might output a pair (F, G) that has
no intersection, or has multiple intersections.

Let p be an intersection point of F and G. Under the
standard assumption that F, G have no common component,
then p is an isolated point of F∩G. The intersection at p can
be tangential or transversal, depending on whether the tan-
gents of F and G at p are coincident or not. Alternatively,
we can classify p as a crossing or non-crossing intersection,
depending on whether the curves cross each other at p or
not; this amounts to whether the intersection multiplicity
at p is odd or even. Non-crossing intersections must be tan-

1The diameter diam(X) of a closed set X ⊆ R
2 is the dis-

tance between a farthest pair of points in X.



gential, and transversal intersections must be crossing. Thus
we have 3 possibilities, as illustrated in Figure 1.

(a) Tansversal (crossing) (b) Tangential, crossing
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Figure 1: Intersections: (a) Transversal (b) Tangen-
tial, crossing (c) Tangential, noncrossing

Can the use of ε be avoided? It seems plausible that if F
and G have only crossing intersections, then we can design
an intersection algorithm based on subdivision that does not
use any ε-cutoff. This is not obvious, but it is implied by
the intersection algorithm of this paper. In any case, the
key issue is how to detect non-crossing intersections. Re-
cently, Wolpert [23, 22] addressed this issue for nonsingu-
lar algebraic curves. The class of curves she addresses and
the ones addressed in this paper are not directly compa-
rable – although Bezier curves are rather special algebraic
curves, they may be singular (see Figure 5). She introduced
the technique of generalized Jacobi curves to detect non-
crossing intersection of non-singular curves. She also uses
subdivision of space to avoid the manipulation of algebraic
numbers (unlike the traditional approach based on cylin-
drical decomposition). But her approach still uses strong
algebraic tools such as resultants and root isolation. Such
algebraic techniques are2 expensive and reduce the effective-
ness of adaptivity in other parts of the algorithm. A more
recent paper of Seidel and Wolpert [20] addresses comput-
ing the topological arrangement of plane algebraic curves;
again, a combination of subdivision and algebraic methods
are used. In contrast, the only algebraic information we use
are algebraic zero bounds. Otherwise, we perform purely nu-
merical computations using bigfloat numbers and primitive
geometric operations such as computing convex hulls and in-
tersecting curves with a line. It is not obvious a priori that
we can achieve our exact curve intersection goals using only
such operations. For instance, a purely adaptive/numerical
version in the Wolpert-Seidel setting is not known.

Current subdivistion algorithms deploy a variety of cri-
teria for detecting intersection points. These are typically
partial criteria: either a rejection criterion that affirms non-
intersection or an acceptance criterion that affirms an inter-
section. A complete criterion is one that is both an accep-
tance and rejection criterion. The generic algorithm above
uses only the convex hull criterion. Since this is a rejection

2Nicola Wolpert and Raimund Seidel (personal communi-
cation, and talk at Dagstuhl Workshop 2005) observed that
their implementation does not necessarily run faster for easy
examples. This is attributable to the non-adaptive aspects
of their algorithm.

criterion, the generic algorithm could never affirm intersec-
tions. Sederberg and Meyers [19] gave an acceptance crite-
rion based on hodographs which affirms the presence of a
transversal intersection. However there is no known accep-
tance criterion for non-crossing intersections; we will provide
one in Section 3. In general, partial criteria is the geometric
analogue of the concept of numerical filters [5]. Partial crite-
ria can be very useful as a heuristic for quick reject/accept.
But ultimately, a correct algorithm must use some complete
criteria or some other global guarantee of completeness.

Overview of Our Approach. 1. The fundamental mo-
tivation of this work is to design an exact subdivision algo-
rithm for Bezier intersection. Subdivisioning implies adap-
tivity. In contrast to approaches that combines algebraic
methods with numerical ones [22, 23, 20], ours is “fully adap-
tive”.

2. The main analytical tool we introduce is geometric
separation bounds. They answer such questions as: What
is the closest distance between two curve segments, if they
do not intersect? or What is the closest distance between
a point q and a curve, if q is not on the curve? These
bounds, expressed as functions of the degrees and heights
of the underlying polynomials and algebraic numbers, are
denoted by various ∆’s in this paper. See Sections 2 and 7.

3. The ∆-bounds provide stopping criteria for our nu-
merical and subdivision procedures. The bounds are easily
computed at the start of the algorithm. The logic of the
algorithm is oblivious to the values of these ∆’s. Thus, if
improved ∆-bounds are available in the future, they can
be directly incorporated without changing the algorithmic
logic.

4. Adaptivity means that these ∆-bounds are invoked
only in the worst case scenario. For “nice inputs”, an itera-
tion may terminate long before the bound of that iteration is
reached. Such early terminations rely on semi-criteria (i.e.,
filters) for determining intersection or non-intersection. For
simplicity, we describe our algorithm using only the convex
hull filter (Section 1). Although filters are not empha-
sized in this paper, they influence the basic design of our
algorithms. We expect most filters to be easily incorporated
into our algorithm with minor changes.

5. Section 3 provides the first complete criterion for de-
tecting non-crossing intersection (NIC) of elementary Bezier
Curves. By an “elementary curve” we mean the graph of a
convex or concave function.

6. Our algorithm uses various numerical and geometric
approximations as subroutines. Two key subroutines are
for intersecting an elementary Bezier curve with a line (Sec-
tion 4) and for evaluating signs of the “alpha function” (Sec-
tion 5).

7. The ∆-bounds require careful application (it is not
just a matter of substituting some ∆ bound for ε in the
generic intersection algorithm). Likewise, the application of
the non-crossing intersection criterion (NIC) requires prepa-
ration: in Section 6, we describe a coupling process to create
the necessary preconditions for applying NIC.

8. What about non-elementary Bezier curves? A general
Bezier curve has critical points; elementary curves have no
critical points. There are general methods to break up an
algebraic curve at critical points (e.g., [2, 14]). These involve
algebraic, non-adaptive methods which we wish to avoid.
Instead, Section 7 shows how subdivisioning with separation



bounds can detect and isolate such critical points. Section 8
presents the overall intersection algorithm.

9. All our numerical computations are ultimately reduced
to ring operations (+,−,×) on (binary) bigfloats, i.e., ratio-
nal numbers of the form n2m where n, m ∈ Z. These oper-
ations are3 carried out exactly. For reasons of efficiency, we
do not manipulate algebraic or even general rational num-
bers. We also do not manipulate polynomials or perform
subresultant calculations, such as is found in the current
exact intersection algorithms.

10. To emphasize the role of bigfloats in our represen-
tations, it is useful to introduce the following terminology.
First, define the “standard parametrizations” of points, lines
and Bezier curves as follows: a point p is given by its co-
ordinates p = (x, y), a line ℓ is given by the coefficients of
its equation ℓ : aX + bY + c, and a Bezier curve is given
by its control points (which are in turn given by coordi-
nates). When such standard parameters x, y, a, b, c, etc, are
bigfloats, we called them direct objects; otherwise they are
indirect objects. For instance, intersecting a “direct line”
ℓ with a “direct Bezier curve” F yields a point p∗ whose
coordinates are generally algebraic numbers. So p∗ is an
indirect object. We must then provide alternate means of
representing (and approximating) indirect objects by direct
objects. We use “expressions” over direct objects. For in-
stance, if p∗ is the unique intersection of ℓ and F , we may
use the expression “Point[ℓ, F ]” to represent p∗. Thus, ℓ, F
are direct objects that serve as non-standard parameters for
p∗. This representation can be refined as follows: subdivide
F into the pair of subcurves (F0, F1) using De Casteljau’s
algorithm as in the generic algorithm. Check whether ℓ in-
tersects F0 (Section 4); if so, the refined representation is
Point[ℓ, F0], otherwise it is Point[ℓ, F1]. This process can
be repeated as often as we wish, giving better and better
approximation of p∗.

Computations with approximations of indirect objects are
necessarily iterative, with stopping criteria given by appro-
priate ∆-bounds. To illustrate, suppose we wish to test
whether p∗ = Point[ℓ, F ] lies on a standard Bezier curve G.
Assume we could compute a bound ∆ > 0 such that if p∗

does not lie on G, then its distance from G is at least ∆ (Sec-
tion 2). Then we refine Point[ℓ, F ] as indicated above, until
diam(F ) < ∆/2. Next, we repeatedly subdivide G into sub-
curves Gj (j = 0, 1, . . .) using De Casteljau’s algorithm. We
discard Gj if CH(Gj) ∩ CH(F ) is empty; we also stop the
subdivision on Gj when diam(Gj) < ∆/2. Finally, we con-
clude that p lies on G iff the convex hulls CH(F ), CH(Gj)
intersect for some j. The correctness of this procedure is
not hard to see.

11. An appendix contains all the omitted proofs. Our full
paper is available from
http://cs.nyu.edu/cs/faculty/yap/papers/.

Related Work. The computational literature on alge-
braic curves and surfaces is very large and diverse. We may
roughly divide the computational approaches into two dis-
tinct viewpoints: (A) The Algebraic Viewpoint treats curves
and surfaces as systems of algebraic equations to be solved,
usually using symbolic or algebraic techniques. Such “al-
gebraic algorithms” are exact and are (or can be made)
complete. (B) The Geometric Viewpoint prefers curves and

3There is another view of bigfloats that do not require exact
ring operations, only approximations to any desired error
bound.

surfaces in parametric form, usually solved using numeri-
cal techniques such as homotopy or subdivision. Such “ge-
ometric algorithms” are often incomplete but widely used
in practice. The Algebraic Viewpoint has made impressive
advances in the last 20 years [3]. Nevertheless, many alge-
braic algorithms are not considered practical. The curves
and surfaces in applications are usually bounded subsets
(“patches”) of an algebraic set. The geometric algorithms
directly manipulate such patches; the algebraic algorithms
treat complete algebraic sets, often assumed to be irreducible.
This fact reduces the applicability of algebraic algorithms.
To specify patches of an algebraic set, one could use semi-
algebraic formulas (i.e., introduce inequalities). But it is
not easy, say, to specify a particular branch of a curve in the
neighborhood of a self-intersection using this method.

The computation and topological analysis of real plane
curves is a well studied problem [1, 18], but the worst case
complexity is prohibitive; the best current theoretical bound
is O(n16 log5 n) time for a curve F (X,Y ) = 0 of degree
≤ n with 2-norm ≤ n [11]. Such algorithms are not consid-
ered practical [9]. When algebraic algorithms are combined
with numerical techniques, more practical algorithms can
be achieved [13, 12]. Recently, computational geometers
have begun to address curves and surfaces [4, 10, 21]. These
papers provide efficient and complete algebraic algorithms
for low degree surfaces and curves. More generally, their
goal is to make algorithms under the algebraic viewpoint
more efficient (by careful considerations of the primitives)
and complete (by explicit treatment of degeneracies); both
these issues tend to be glossed over by more theoretical pa-
pers. In contrast, our goal is to make algorithms under the
geometric viewpoint completely robust while preserving their
adaptive efficiency. More generally, our ostensible goal is to
do exact algebraic computation without algebraic manipu-
lations. We only do numerical approximations, but achieve
exactness by exploiting algebraic zero bounds.

The work most directly comparable to ours is Wolpert and
Seidel’s [23, 22, 20], mentioned above. Recently, Plantinga
and Vegter [17] gave a topologically-correct algorithm for
isotopic approximation of implicit nonsingular surfaces. Their
subdivision-based approach is geometric and fully adaptive;
however it is currently unknown whether it can be extended
to handle singularities. Subdivision methods for solving
multivariate polynomial systems have recently been consid-
ered by Gershon and Kim [7] and Mourrain and Pavone [15].

2. GEOMETRIC SEPARATION BOUNDS
FOR ALGEBRAIC CURVES

Our key mathematical tool is the idea of separation bounds.
Suppose A(x, y),B(x, y) ∈ Z[x, y]. Let ‖A‖k denote the

k-norm of the vector of the coefficients of A (we use k = 1, 2
and k = ∞). If p ∈ R

n is a point in Euclidean space, its
k-norm has a similar notation, ‖p‖k. We omit the subscript
k when referring to the 2-norm, i.e., Euclidean distance.
Consider the curves F and G defined by the equations A = 0
and B = 0, respectively. A pair (p, q) where p ∈ F and q ∈ G
such that the line through p, q is normal to p at F and to
q at G is called an (F, G)-antipodal pair. In particular, if F
and G intersect tangentially at p, then (p, p) is an (F, G)-
antipodal pair. In the following, we assume there are only
finitely many pairs of (F, G)-antipodal pairs. This implies
that A, B are relatively prime (i.e., they have no common



component). The following results depend on a multivariate
root bound of Yap [24] (Theorem 11.45).

Our first result is a lower bound on the distance between
distinct points in an antipodal pair.

Theorem 1. Let F and G be defined by the equations A = 0
and B = 0, respectively. Assume F, G has finitely many
antipodal pairs. Let m = deg(A), n = deg(B) and ‖A‖2 =
a, ‖B‖2 = b. If (p, q) is a (F, G)-antipodal pair and p 6= q
then
‖p − q‖ ≥ ∆1(m, n, a, b) :=(2

3
2 NK)−D 2−12m2n2

where

K = max{
√

13, 4ma, 4nb}, N =
“3 + 2m + 2n

5

”

,

D = m
2
n

2
(3 +

4

m
+

4

n
).

We next give separation bounds between distinct intersec-
tion points:

Theorem 2. Let the curves A = 0 and B = 0 be relatively
prime. If p, q are distinct points in their intersection then

‖p − q‖ ≥ ∆2(m, n, a, b) :=(2
3
2 NK)−D 2−12m2n2

where

K = max{
√

13, m, n}, N =
“3 + 2m + 2n

5

”

,

D = m
2
n

2(3 +
4

m
+

4

n
).

How close can a point p can get to an algebraic curve,
without actually being on it? By (L, ℓ)-bit floating point
numbers (floats, for short) we mean numbers of the form
x = m2k−L where m,k ∈ Z with |m| < 2L and 0 ≤ k ≤ ℓ.
Note that −L ≤ lg |x| < ℓ (where lg is log2). We simply say
“L-bit floats” for (L, L)-bit floats.

Theorem 3. Let q = (u, v) be a point whose coordinates are
(L, ℓ)-bit floats, ℓ ≥ 2, and A(u, v) 6= 0. If the curve A = 0
does not contain a circle centered at q, and p is a point on
the curve A = 0 then
‖p − q‖ ≥ ∆3(m, a, L, ℓ) :=(2

3
2 NK)−D 2−8m2

where

K = 2L+ℓ+1 max{2L
, ma}, N =

“3 + 2m

3

”

,

D = m
2(3 +

4

m
).

The requirement that A = 0 does not contain a circle
centered at q does not affect our application to Bezier curves,
because circular arcs are non-Bezier.

The above bounds hold for general algebraic curves. To
apply this to a Bezier curve F , we bound its 2-norm bound
in terms of its control polygon, (p0, . . . , pm).

Theorem 4. Let F be a Bezier curve of degree m, with
control points which are L-bit floating point numbers. Then
F satisfies an an integer polynomial equation A(x, y) = 0 of
degree m where

‖A‖2 ≤ (16L9m)m

The ∆-Separation Property. For any ∆ > 0, we say
F, G have the ∆-separation property if for all p 6= q, if (p, q) is
an antipodal pair of (F, G), or if p, q ∈ F ∩G, then ‖p−q‖ >
∆. The above theorems give us an explicit bound for ∆. It
is important to note that this ∆ depends only on the initial
input curves F, G; subsequent subdivisions of F, G do not
change ∆.

3. ELEMENTARY CURVES
This section introduces the notion of elementary curves.

The main result is a complete criterion for non-crossing in-
tersection of elementary curves.

Let f be a bounded, continuously differentiable real func-
tion defined on the interval [c, d] with c < d. Its graph
is the parametrized curve F = {F (t) : t ∈ [c, d]} where
F (t) = (t, f(t)) ∈ R

2. Let G[c, d] denote the set of all such
graphs. Call F (t) the graph parametrization of F , in con-
trast to the Bezier parametrization to be introduced later.
Write “F = F [c, d]” to indicate that the domain of (graph or
Bezier) parametrization is [c, d]. If F = F [c, d], the line seg-
ment connecting F (c) and F (d) is called the base segment of
F . Call F an elementary curve if it is the graph of a convex
or concave function f . If F lies above (resp., below) its base
segment, we call it A-elementary (resp., B-elementary).

Let nF (t) denote the normal line through F (t), and let
θF (t) ∈ [0, π) be the angle that nF (t) makes with the posi-
tive x-axis. Call nF (c) and nF (d) the end normals of F =
F [c, d]. Divide the normal line nF (t) into two half-normals:
an upper part aF (t) and a lower part bF (t) with F (t) as the
common end point of the half-lines. For an A-elementary F ,
define its upper swept region U(F ) to be bounded by aF (c)
and aF (d) and F . See Figure 2. When we extend aF (c) and
aF (d) until they meet, we obtain a cone C(F ) that contains
U(F ). The important property is that U(F ) is “stratified”
by the upper half-normals aF (t) (t ∈ [c, d])

F

aF (0)
aF (1)

U(F )

C(F ) \ A(F )

Figure 2: Upper swept region U(F )

Elementary Couples. Fix an A-elementary curve F ;
for simplicity, assume F ∈ G[0, 1]. Suppose G ∈ G[c, d] is
another elementary curve. We call (F, G) an elementary
couple if (i) G(c) ∈ aF (0) and G(d) ∈ aF (1), and (ii) The
entire curve G lies inside the cone C(F ). See Figure 3. Note
that G can be an A- or B-elementary; accordingly, we call
(F, G) an AA- or an AB-couple.

G

F

aF (0)

aF (1)

F

aF (0)

aF (1)

G

(a) (b)

Figure 3: Elementary Couple (F, G): (a) AB-couple,
(b) AA-couple

Lemma 5. Let (F, G) ∈ G[0, 1]×G[c, d] be an elementary cou-
ple. If G ⊆ U(F ) then there is a unique continuous function
s : [0, 1] → [c, d] such that for all t ∈ [0, t], G(s(t)) lies on
the upper half-normal aF (t).



Corollary 6. With (F, G) as in the previous lemma, if
G ⊆ U(F ) then the angular function

α : [0, 1] → (−π, π) (1)

given by α(t) = θF (t) − θG(s(t)) is well-defined and contin-
uous.

To indicate the dependence on F, G, we may write α =
αF,G and s = sF,G for these functions. Our main result for
testing non-crossing intersection follows:

Theorem 7 (Non-crossing Intersection Criterion (NIC)).
Let (F, G) be an elementary couple, G ⊆ U(F ) and α given
by (1). Suppose F, G have the ∆-separation property and the
diameter of F ∪ G is less than ∆.
(i) If α(0)α(1) ≤ 0 then F and G intersect tangentially, in
a unique point.
(ii) If α(0)α(1) > 0 then F and G are disjoint.

In the following three sections, we show how to apply
applying the NIC in an intersection algorithm.

4. INTERSECTION WITH A LINE
The special case of intersecting a Bezier curve F with a

straight line ℓ is treated in standard textbooks [8]. We now
give a complete algorithm for the case where F is elementary.

When F is represented by its control polygon P (F ) =
(p0, . . . , pm), then it has the Bezier parametrization F (t) =
Pm

i=0 piB
i
m(t) and Bi

m(t) =
`

m
i

´

ti(1 − t)m−i. Although the
default curve is F = F [0, 1], we may also specify an arbitrary
interval I = [c, d] to define the curve F [I ] = F [c, d]. Use the
notation “I → (I0, I1)” if an interval I is split into two
subintervals I0, I1 (assume bisection of I unless otherwise
noted). Similarly, we write “F → (F0, F1)” to mean that
F = F [I ] is subdivided into F0 = F [I0], F1 = F [I1] where
I → (I0, I1).

The output of our line intersection algorithm is a set of
pairs (ℓ, Fi) where each Fi (i ≥ 0) is a subcurve of the orig-
inal curve F and ℓ∩ Fi has a unique intersection. The rela-
tively straightforward algorithm is omitted in this extended
abstract. We note that, in this special case, we can detect
tangential intersection using geometric separation bounds
alone, without invoking NIC. This line intersection algo-
rithm is used in several subroutines in the general algorithm.

Application to Beneath-Beyond Test: this is a form of
“ray-shooting” that is used in the Coupling Process below.
For points q 6= v, let Ray(q, v) denote the ray originating
at q and passing through v. On input (F, q, v), where F
is elementary, this test produces one of three outputs: ON
if q ∈ F ; BEYOND if Ray(q, v) intersects F but q 6∈ F ;
BENEATH otherwise. We first compute the intersection of
F with the line through q, v. If there is no intersection,
we return BENEATH. Else, we repeatedly subdivide F →
(F0, F1) and replace F by Fi if CH(Fi) contains q (i =
0, 1). We terminate when q 6∈ CH(F0) ∪ CH(F1), or if
diam(F ) < ∆3/2 (Theorem 3). On termination, if q lies
outside CH(F0)∪CH(F1), we can easily determine whether
to return BENEATH or BEYOND; otherwise we return ON
since diam(F ) < ∆3/2.

5. ADAPTIVE SIGN OF ALPHA ANGLE
The NIC criterion (Theorem 7) requires sign of the angles

α(0) and α(1). We develop an adaptive procedure for this

sign determination. Let F be an elementary curve with the
Bezier parametrization F (t) = (Fx(t), Fx(t)), and ℓ be a line
with parametrization L(t) = (ct + d, et + f) for constants
c, d, e, f . We may assume e > 0. Let ℓ intersect F at the
point F (t∗) for some t∗. We want to determine the sign of
the angle

α(t∗) = θF (t∗) − θℓ

where θℓ ∈ (0, π) is slope angle of ℓ. We show that the sign
of α(t) is equal to the sign of

S(t) := cF ′

x(t) + eF ′

y(t). (2)

From (2), we can develop a lower bound for S(t∗): if the
control polygon of F has m+1 points with coordinates that
are L-bit floats, and suppose c, d, e, f are L-bit floats, then
S(t∗) 6= 0 implies

|S(t∗)| ≥ (6m128L9m)−m.

We can now adaptively compute the sign of S(t∗) by ap-
proximating t∗ and estimating the error. See the full paper
for details.

6. COUPLING PROCESS
In this section, assume that F, G are elementary Bezier

curves satisfying the ∆-separation property, and such that
F ∪G has diameter less than ∆. This implies that |F ∩G| ≤
1. Our goal is to determine whether they intersect. If they
intersect tangentially, we must ultimately reducing them to
NIC, at least implicitly. This procedure is called the coupling
process.

By way of motivation, note that to apply the NIC, we
must subdivide F, G until we “see” an elementary couple
(F ′, G′) where F ′ ⊆ F, G′ ⊆ G. This seems difficult to
achieve in general. Instead, we propose to extend NIC to
work with “half-couples”. Let F = F [0, 1] be A-elementary
and G lies above G, i.e., within the vertical strip S(F ) bounded
by the vertical lines through F (0) and F (1), G lies above
F . Suppose we found a half-normal aF (t) that intersects G
uniquely. If G0 is the restriction of G to U(F [0, t]), then
we call (F [0, t], G0) a half-couple; we can similarly define
another half-couple (F [t, 1], G1). Note that G0, G1 are indi-
rect Bezier curves. It turns out that we can adapte the NIC
(Theorem 7) to half-couples.

In outline, the coupling process has three steps: 1. We
detect if F and G have crossing intersection. This is eas-
ily reduced to at most four beneath-beyond tests. If there
is intersection, we are done. So assume otherwise. Up to
symmetry, we may assume that F = F [0, 1] is A-elementary
and G is above F . 2. Use binary search to find a t ∈ [0, 1]
such that aF (t) intersects G. It is not hard to fix the slight
complication in case aF (t) intersects G in two points. In
any case, we have reduced the search to two half-couples.
3. Apply the half-couple NIC below. The three cases for the
half-couples are seen in Figure 4.

Lemma 8 (Half-Couple NIC). Suppose (F [0, 1], G[c, d]) is a
half-couple in that aF (0) passes through G(c) and aF (1) does
not intersect G. Moreover, the end point G(d) lies in U(F ),
hence above F . Let bG(d) denote the lower half-normal at
G(d). Define θG(d) to be the angle that the upward normal
at G(d) makes with the positive x-axis (as before). We have
three possibilities:
(i) bG(d) intersects aF (0).



G
G

(ii)

F

aF (1)

G(c)

bG(d)

(i)

aF (0)

G(c)

F

aF (1)

bG(d)

aF (0)

F

aF (1)

G(c)

bG(d)

(iii)+1

aF (0)

G

aF (t)

F (t)

G(d)

+

F

aF (1)

G(c)

bG(d)

(iii)
−1

aF (0)
aF (t)

G

F (t)

G(d)

−

Figure 4: Half-couples: (i) bG(d) intersects aF (a), (ii)
bG(d) intersects aF (b), (iii) bG(d) intersects F at F (t).

(ii) bG(d) intersects aF (1).
(iii)s bG(d) intersects F at F (t), t ∈ [0, 1]. In this case, let
s = sign(θF (t) − θG(d)) ∈ {0,±1}.
Choose t0 such that aF (t0) intersects G(d). Then we have

αF,G(t0)

8

<

:

> 0 in cases (i) or (iii)+1,
< 0 in cases (ii) or (iii)−1,
= 0 in case (iii)0

7. CRITICAL POINTS
We now address the issue of non-elementary Bezier curves.

A Bezier curve F [0, 1] can be subdivided into finitely many
elementary subcurves. The points F (t) at which such sub-
divisions occur are the “critical points”. Figure 5(i) shows
a cubic Bezier with a critical point.

q0(1, 0)

s(x,−x)

q1(y, y)

q2(0, 1)

(ii)

p1(1, 0)

p2(1/2,−1/2)

p0(0, 0)

p3(1/2, 1/2)

(i)

Figure 5: Singular cubic Bezier curve: (i) control
polygon, (ii) hodograph

Let Fx(t), Fy(t) be the coordinate functions of F = F [0, 1],
i.e., F (t) = (Fx(t), Fy(t)), and let F ′ = (F ′

x, F ′

y) denote
derivatives with respect to t. Call t ∈ (0, 1) a critical value,
and F (t) a critical point, if one of the following conditions
hold (cf. Kim and Lee [14]):

• (i) F (t) is stationary, i.e., F ′

x(t) = F ′

y(t) = 0;

• (ii) F (t) is x-extreme, i.e., F ′

x(t) = 0, F ′

x(t−)F ′

x(t+) <
0 and F ′

y(t) 6= 0;

• (iii) F (t) is an inflexion point, i.e., HF (t) = 0 and
HF (t+)HF (t−) < 0, where

HF (t) := F ′

x(t)F ′′

y (t) − F ′

y(t)F ′′

x (t).

Lemma 9. If F has no critical points in its relative interior
then F is elementary. Conversely, if F is elementary, then it
has no x-extreme or inflexion points in its relative interior.

Critical values are algebraic numbers. Hence we do not
propose to subdivide Bezier curves into elementary parts by
subdividing at critical points. Instead, we will subdivide
a Bezier curve at bigfloat values so that the resulting sub-
curves are either elementary or contain at most one critical
point. Call a curve containing exactly one critical point an
elementary critical curve. Now, we appeal to additional sep-
aration bounds which are summarized by a single number
∆∗ > 0 to be explained.

In the rest of this section, assume that the control poly-
gons of F and G are P (F ) = (p0, . . . , pm) and P (G) =
(q0, . . . , qn). Moreover, the coordinates of the pi’s and qj ’s
are L-bit bigfloats. First, we bound the degree and norms
of critical points:

Lemma 10.
(i) If F (t) = (Fx(t), Fy(t)) is a stationary or x-extreme
point, then Fx(t) and Fy(t) have degrees ≤ m − 1 and 2-
norms at most (4L9mm)m.
(ii) If F (t) is an inflexion point, then F (t) has degree ≤
2m − 3 and 2-norm at most (2m416L81m)m.

This gives us:

Corollary 11. Let p, q be two distinct critical points of F .
If 2 ≤ m ≤ n then either |p.x − q.x| or |p.y − q.y| is larger
than

∆4 :=(16m+2256L812mm5)−m.

Next, we generalize Theorem 3 to the case where q is any
algebraic point:

Theorem 12. Let q = (q.x, q.y) where q.x, q.y are algebraic
numbers with 2-norm ≤ c and degree ≤ d. Let the polyno-
mial A(X,Y ) have 2-norm a and degree m. If the curve
A(X, Y ) = 0 does not contain a circle centered at q then
the distance from q to A = 0 is at least ∆5(m,a, L, c, d) =

(23/2NK)−D2−12m2d2

where

K = max{
√

13, 4ma, c}, N =
“5 + 2m + 2d

5

”

,

D = m
2
d
2(3 +

4

m
+

4

d
).

Let ∆6 = ∆(m,n, L) be the minimum separation between
the curve G and a critical point p of F , assuming p 6∈ G. This
bound comes from plugging Lemma 10 into Theorem 12.
Finally, choose ∆∗ to be the minimum of the bounds ∆1

(Theorem 1), ∆2 (Theorem 2), ∆4 and ∆6. If diam(F ) <
∆∗, we may call F a micro curve.

It is well-known that the derivative with respect to t is
given by

F ′(t) = m

m
X

i=1

(pi − pi−1)Bi−1
m−1(t) = m

m
X

i=1

∇piB
i−1
m−1(t)

where we define ∇pi := pi+1 − pi. Also, let ∇P (F ) denote
(∇p1, . . . ,∇pm). Thus, we see that m∇P (F ) is the control



polygon for the curve F ′(t), known as the hodograph of F .
Hence F contains a stationary point iff F ′(t) passes through
the origin. E.g., Figure 5(ii) shows ∇P (F ) for the cubic
Bezier of Figure 5(i); we may check that the hodograph
passes through the origin in this case.

Theorem 13 (Stationary Points). Let diam(F ) < ∆3(m −
1, ma, 2)/m. Then F contains a stationary point iff the con-
vex hull of ∇P (F ) contains the origin (0, 0).

Theorem 14 (x-Extreme Points). Let diam(F ) < ∆∗. Then
F contains an x-extreme point iff
(∇p1).x(∇pm).x ≤ 0 and (∇p1).y(∇pm).y > 0.

If p, q, r are planar points, let det(p, q, r) be the determi-
nant of the 3 × 3 matrix whose rows are ph, qh, rh, where
ph = (p.x, p.y, 1). Also let det(p, q) denote p.xq.y − p.yq.x.

Theorem 15 (Inflexion Points). Let diam(F ) < ∆∗. Then
F contains an inflexion point iff
det(p0, p1, p2) det(pm−2, pm−1, pm) < 0.

The preceding three theorems give us complete criteria for
checking if a micro curve is an elementary critical curve.

8. INTERSECTION ALGORITHM
We now present the global algorithm for intersecting two

arbitrary Bezier curves. We design the algorithm so that the
generic intersection algorithm (see Introduction) is naturally
embedded as the first phase of our algorithm. Simplicity
rather than practical efficiency is the aim of the following
description.

We have two work queues Q0 and Q1. Each queue is just
a list of candidate pairs. A candidate pair (F, G) is called a
micro pair if the diameter of CH(F ) ∪ CH(G) is less than
∆∗; it is a macro pair otherwise. Call Q0 and Q1 the macro
queue and micro queue, as they contain macro pairs and
micro pairs, respectively. After the obvious initialization of
Q0, Q1, the algorithm operates in two phases:

Macro Phase: This is basically the generic intersection
algorithm of Section 1, operating on Q0. The key difference
is that after splitting a pair (F, G) into (Fi, G) (i = 0, 1), if
(Fi, G) is a candidate pair, we place it into Q0 or Q1, de-
pending on whether it is a macro or micro pair. If we did
nothing else in the macro phase, we would still be correct.
But in practice, we would perform a variety of efficient par-
tial criteria (e.g., a test for transversal intersection). This
phase ends when Q0 is empty.

Micro Phase: We now operate on Q1: for each pair
(F, G) extracted from Q1, we check if F contains a critical
point (Section 7). If so, we can output the pair. Otherwise,
we apply the coupling process (Section 6).

Remarks. The macro phase is “standard” and easy to
implement. The micro phase treats degenerate and unlikely
situations. At the end of the macro phase, the micro queue
is expected to be small or empty for “nice” inputs.

9. OPEN PROBLEMS
This paper opens up the possibility of achieving fully

adaptive algorithms with exactness guarantees for other com-
putational problems involving curves and surfaces. This new
direction is intrinsically tied to the use of geometric separa-
tion bounds. Most obvious problems are open, so we only
list a few questions related to the current paper:

• Our algorithm for intersecting F, G has this Antipodal
Assumption: F, G have finitely many antipodal pairs.
As noted, it generalizes the standard assumption that
F, G are relatively prime. Clearly, if F is an offset
of G, or vice-versa, then the Antipodal Assumption
fails. We conjectured that the converse holds. Sung-
woo Choi4 has proved this conjecture. Choi’s theorem
implies that a ∆-separation property holds even when
the Antipodal Assumption fails. Thus, the Antipodal
Assumption is not essential. Unfortunately, we do not
know how to bound ∆ without the Antipodal Assump-
tion.

• Give a complexity analysis of our algorithm, or some
variant thereof. In general, the complexity of subdivi-
sion algorithms seems little understood.

• Implement an adaptive algorithm such as ours, and
compare to non-robust subdivision algorithms, or to
algebraic algorithms.

• Improve our separation bounds. We have somewhat
improved bounds that exploit the fact that the curves
are Bezier; these have been omitted for brevity. Devel-
oping bounding techniques that exploit the geometry
would be of great interest.

• Provide a simpler algorithm in case there are only
transversal intersections.
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APPENDIX: Proofs
We provide all the missing proofs of the paper. The results
are re-stated for the readers’ convenience.

Theorem 1. Let F and G be defined by the equations A = 0
and B = 0, respectively. Assume F, G has finitely many
antipodal pairs. Let m = deg(A), n = deg(B) and ‖A‖2 =
a, ‖B‖2 = b. If (p, q) is a (F, G)-antipodal pair and p 6= q
then
‖p − q‖ ≥ ∆1(m, n, a, b) :=(2

3
2 NK)−D 2−12m2n2

where

K = max{
√

13, 4ma, 4nb}, N =
“3 + 2m + 2n

5

”

,

D = m
2
n

2
(3 +

4

m
+

4

n
).

Proof. By definition of antipodal pairs, p = (p.x, p.y) and
q = (q.x, q.y) and the distance h = ‖p − q‖ satisfy the fol-
lowing system of five-variate polynomial equations:

A1 : A(p) = 0,

A2 : B(q) = 0,

A3 : h2 − ‖p − q‖2 = 0

A4 :

fi

(
dA

dy
(p), −dA

dx
(p)), (p − q)

fl

= 0,

A5 :

fi

(
dB

dy
(q), −dB

dx
(q)), (p − q)

fl

= 0,

where 〈·, ·〉 denotes inner product. Since A,B has finitely
many antipodal pairs, this system is zero dimensional. To
apply [24, Theorem 11.45], note that ‖A1‖2 = a, ‖A2‖2 = b
and ‖A3‖2 =

√
13. Next, ‖Ay‖2 ≤ ma where Ay = dA/dy.

Since ‖A+B‖2 ≤ ‖A‖2+‖B‖2, we get ‖Ay(p)·(p.x−q.x)‖2 ≤
2ma. Hence

‖A4‖2 = ‖Ay(p) · (p.x − q.x) − Ax(q) · (p.y − q.y)‖2 ≤ 4ma.
(3)

Similarly, ‖A5‖2 ≤ 4nb. Also, d1 = d3 = m, d2 = d4 =
n, d5 = 2. The result follows by plugging into [24, Theorem
11.45]. Q.E.D.

Theorem 2. Let the curves A = 0 and B = 0 be relatively
prime. If p, q are distinct points in the intersection of these
two curves then

‖p − q‖ ≥ ∆2(m, n, a, b) :=(2
3
2 NK)−D 2−12m2n2

where

K = max{
√

13, m, n}, N =
“3 + 2m + 2n

5

”

,

D = m
2
n

2
(3 +

4

m
+

4

n
).

Proof. Now p and q satisfy the following system of equa-
tions:

A1 : A(p) = 0,

A2 : B(q) = 0,

A3 : h2 − ‖p − q‖2 = 0,

A6 : A(q) = 0,

A7 : B(p) = 0.



This system is zero-dimensional because A, B are relatively
prime. The application of [24, Theorem 11.45] is direct in
this case. Q.E.D.

Theorem 3. Let q = (u, v) be a point whose coordinates are
(L, ℓ)-bit floats, ℓ ≥ 2, and A(u, v) 6= 0. If the curve A = 0
does not contain a circle centered at q, and p is a point on
the curve A = 0 then

‖p − q‖ ≥ ∆3(m, a,L, ℓ) :=(2
3
2 NK)−D 2−8m2

where

K = 2L+ℓ+1 max{2L
, ma}, N =

“3 + 2m

3

”

,

D = m
2(3 +

4

m
).

Proof. We may assume p is a closest point on A to q and
h = ‖p − q‖. Thus three variables p.x, p.y, h satisfy the
system,

A1 : A(p) = 0,

A3 : h2 − ‖p − q‖2 = 0,

A4 :

fi

(
dA

dy
(p), −dA

dx
(p)), (p − q)

fl

= 0.

This system is zero-dimensional since the curve A = 0 does
contain a circle about q. We have ‖A1‖ = a, ‖A3‖ ≤
p

1 + 2(22ℓ + 2ℓ+1 + 1) < 21+ℓ (assuming ℓ ≥ 2). For ‖A4‖,
we have ‖Ax(p) ·q.x‖ < 2ℓma but ‖Ax(p)‖ = ‖Ax(p) ·p.x‖ ≤
ma (because p.x is a variable). Hence ‖Ax(p) ·(p.x−q.x)‖ ≤
ma(1+2ℓ). But instead of ‖A3‖ and ‖A4‖, we use the inte-
ger polynomials 22LA3 and 2LA4, with ‖22LA3‖ < 22L+ℓ+1

and ‖2LA4‖ ≤ ma(1 + 2ℓ)2L < ma21+ℓ+L. The result fol-
lows by plugging into [24, Theorem 11.45]. Q.E.D.

Theorem 4. Let F be a Bezier curve of degree m, with
control points which are L-bit floating point numbers. Then
F satisfies an an integer polynomial equation A(x, y) = 0 of
degree m where

‖A‖2 ≤ (16L9m)m

Proof. The curve F = (F1, F2) satisfies the equation
B(x, y) = 0 where B(x, y) = det(M) where M is a suitable
matrix (see the full paper). The numbers in M are are
(L, ℓ)-bit floats, so the matrix 2LM has integer values. Let
A(x, y) = det(2LM) = 22mLB(x, y) is an integer matrix.
The multivariate version of the Graham-Goldstein lemma
[24, Sect. 11.11] says that ‖A‖2 is bounded by the product
of the 2-norms of each row of the matrix 2LM1 where M1

is another matrix (see full paper). We can then bound the
2-norm of each row of 2LM1 by 22L3m, Since there are 2m
rows, the product is (22L3m)2m, as stated in the theorem.

Q.E.D.

Lemma 5. Let (F, G) ∈ G[0, 1] × G[c, d] be an elementary
couple. If G ⊆ U(F ) then there is a unique continuous func-
tion s : [0, 1] → [c, d] such that for all t ∈ [0, t], G(s(t)) lies
on the upper half-normal aF (t).

Proof. Since G lies in the upper swept region U(F ), for
all t ∈ [0, 1], aF (t) intersects G. Our lemma amounts to
saying that aF (t) intersects G exactly once. Clearly aF (t)
intersects G an odd number of times. However, since the

region bounded by G and its base segment is convex, no line
can intersect G more than twice. Hence G is intersected
exactly once by aF (t), say at the point G(s(t)). The conti-
nuity of the function s(t) follows from the continuity of the
parameterization of aF (t) and the continuity of the curve G.

Q.E.D.

Theorem 7 (Non-crossing Intersection Criterion (NIC)).

Let (F, G) be an elementary couple, G ⊆ U(F ) and α given
by (1). Suppose F, G have the ∆-separation property and the
diameter of F ∪ G is less than ∆.
(i) If α(0)α(1) ≤ 0 then F and G intersect tangentially, in
a unique point.
(ii) If α(0)α(1) > 0 then F and G are disjoint.

Proof. If F ∩G contains two distinct points p and q, then
‖p − q‖ ≤ diam(F ∪ G) ≤ ∆. But this contradicts the
∆-separation property. We conclude that F ∩ G is either
empty or contains a unique point. Thus, if F ∩G intersects,
they intersect tangentially. This also shows that G ⊆ U(F ).
Therefore, the functions s : [0, 1] → [c, d] and α in (1) are
well-defined and continuous.
(i) Assume α(0)α(1) ≤ 0. So there exists 0 < t < 1 such
that α(t) = 0. The pair (p, q) = (F (t),G(s(t))) is there-
fore antipodal. If p 6= q, the ∆-separation property implies
‖p−q‖ > ∆. But this contradicts our assumption that F∪G
has diameter ≤ ∆. Thus p = q, i.e., F and G intersect tan-
gentially.
(ii) Suppose, by way of contradiction, that F and G inter-
sect at some (necessarily tangential) point p. Write p =
F (t0) for some t0. Then α(t0) = 0. Since α(0)α(1) > 0,
we may assume α(0) > 0 and α(1) > 0 (the other case,
α(0) < 0 and α(1) < 0, is similar). Since p is a tangential
intersection and F is assumed to be below G, we see that
α(t−0 ) > 0 and α(t+0 ) < 0. Then, by continuity of the func-
tion α(t), there exists t1 ∈ (t0, 1) such that α(t1) = 0. Thus
(F (t1), G(s(t1))) is an antipodal pair. Again, we argue that
F (t1) = G(s(t1)) must be a tangential intersection of F and
G. This contradicts the ∆-separation property. Q.E.D.

Lemma 8 (Half-Couple NIC). Suppose (F [0, 1], G[c, d])
is a half-couple in that aF (0) passes through G(c) but aF (1)
does not intersect G. Moreover, the end point G(d) lies
in U(F ), hence above F . Let bG(d) denote the lower half-
normal at G(d). We define θG(d) to be the angle that the
upward normal at G(d) makes with the positive x-axis (as
usual). We have three possibilities:
(i) bG(d) intersects aF (0).
(ii) bG(d) intersects aF (1).
(iii)s bG(d) intersects F at F (t), t ∈ [0, 1]. In this case, let
s = sign(θF (t) − θG(d)) ∈ {0,±1}.
Choose t0 such that aF (t0) intersects G(d). Then we have

αF,G(t0)

8

<

:

> 0 in cases (i) or (iii)+1,
< 0 in cases (ii) or (iii)−1,
= 0 in case (iii)0

Proof. In case (i), as t increases from t = 0 to t = t0,
the half normal aF (t) intersects bG(d) at a unique point
that moves continuously until the final intersection point at
G(d). The angle formed at the intersection point is θF (t)−
θG(d), and this angle maintains its sign because it is never
0. Since the angle is initially positive, the final angle must



be positive; but the final angle is of αF,G(t). This proves
αF,G(t) > 0. The case (ii) is similar. Cases (iii)+1 and (iii)−1

are (resp.) analogous to (i) and (ii). Finally, in case (iii)0
we clearly have an antipodal pair (G(d), F (t0). Q.E.D.

Lemma 10. Let P (F ) = (p0, . . . , pm) where coordinates of
the pi’s are (L, ℓ)-bit floats.
(i) If F (t) = (Fx(t), Fy(t)) is a stationary or x-extreme
point, then Fx(t) and Fy(t) has degree ≤ m− 1 and 2-norm
at most (4L9mm)m.
(ii) If F (t) is an inflexion point, then F (t) has degree ≤
2m − 3 and 2-norm at most (2m416L81m)m.

Proof. (i) If F (t) = (X, Y ) is stationary or x-extreme, then
X satisfies the equation R(X) = rest(Fx(t) − X, F ′

x(t)). If
Fx(t) =

Pm
i=0 ait

i, then R(X) is the determinant of the
(2m− 1)× (2m− 1) Sylvester matrix M ′, whose first m− 1
rows are formed from the coefficients of Fx(t) − X, and the
last m rows are formed from the coefficients of F ′

x(t).
Similar to the proof of Theorem 4, we derive from M ′

another matrix M2 which is the Sylvester matrix of the fol-
lowing two sequences:

(2L+m
“m

0

”

, 2L+m−1
“m

1

”

, . . . , 2L+1
m, 2L + 1)

and

(m2L+m
“m

0

”

, (m − 1)2L+m−1
“m

1

”

, . . . , 2.2L+2
“m

2

”

, 2L+1
m).

The first m − 1 rows of M2 have 2-norms 2L3m (see full
paper). The last m rows of M2 have 2-norms ≤ m2L3m.
Applying the generalized Hadamard bound, ‖R(X)‖ is ≤
(2L3m)m−1(m2L3m)m, which is 2(2m−1)L32m2

−mmm or <
(4L9mm)m as claimed.
(ii) We proceed as in (i), but the matrix M ′ now has 2m−3
rows of the coefficients of Fx(t) − X, and has m rows of
the coefficients of F ′

x(t)F ′′

y (t) − F ′′

x (t)F ′

y(t). Thus the de-
gree of R(X) = det(M ′) is 2m − 3. We have ‖F ′

x(t)‖ ≤
m2L3m, ‖F ′′

y (t)‖ ≤ m22L3m. Hence ‖F ′

x(t)F ′′

y (t)‖ is ≤
m(m2L3m)(m22L3m) = m44L9m using the fact that ‖AB‖ ≤
m‖A‖·‖B‖ where A, B have degrees ≤ m. Hence ‖F ′

x(t)F ′′

y (t)−
F ′′

x (t)F ′

y(t) ≤ 2m44L9m. Thus we obtain ‖R(X)‖ is ≤
(2L3m)2m−3(2m44L9m)m which is ≤ (2m416L81m)m.

Q.E.D.

Corollary 11. Let p, q be two distinct critical points of F .
If 2 ≤ m ≤ n then either |p.x − q.x| or |p.y − q.y| is larger
than

∆4 :=(16m+2256L812mm5)−m.

Proof. By application of the previous lemma. See full
paper. Q.E.D.

Theorem 12. Let q = (q.x, q.y) where q.x, q.y are algebraic
numbers with 2-norm ≤ c and degree ≤ d. If A = 0 does not
contain a circle centered at q then the distance from q to A

is at least ∆4(m,a, L, c, d) = (23/2NK)−D2−12m2d2

where

K = max{
√

13, 4ma, c}, N =
“5 + 2m + 2d

5

”

,

D = m
2
d
2(3 +

4

m
+

4

d
).

Proof. We may assume p is a closest point on A to q and
h = ‖p − q‖. Thus q, p, h satisfy the system,

A1 : A(p) = 0,

A3 : h2 − ‖p − q‖2 = 0,

A4 :

fi

(
dA

dy
(p), −dA

dx
(p)), (p − q)

fl

= 0,

A9 : P (q.x) = 0,

A10 : Q(q.y) = 0

where P (X),Q(X) are polynomials of degree ≤ d and 2-
norm ≤ c satisfied by q.x and q.y, respectively. This sys-
tem is zero-dimensional since A = 0 does contain a cir-
cle centered at q. We have ‖A1‖2 = a, ‖A3‖2 ≤

√
13,

‖A4‖2 ≤ 4ma, ‖A9‖2 ≤ c, and ‖A10‖2 ≤ c. The result
follows by plugging into [24, Theorem 11.45]. Q.E.D.

Theorem 13. Let diam(F ) < ∆3(m − 1, ma, 2)/m. Then
F contains a stationary point iff the convex hull of ∇P (F )
contains the origin (0, 0).

Proof. If F contains a stationary point, then clearly its
hodograph passes through (0, 0). Hence the convex hull of
m∇P (F ) contains (0, 0). Equivalently, the convex hull of
∇P (F ) contains (0, 0). Conversely, suppose F does not con-
tain a stationary point. Note that F ′ has degree m− 1 and
‖F ′‖2 ≤ m‖F‖2 = ma. By Theorem 3, the distance from
(0, 0) to the curve F ′ is at least ∆3(m−1, ma, 2) since (0, 0)
is a 2-bit float. Thus the distance from (0, 0) to F ′/m is at
least ∆3(m − 1, ma, 2)/m. On the other hand, the diame-
ter of ∇P (F ) is at most the diameter of F , i.e., less than
∆3(m − 1, ma, 2)/m. This means (0, 0) could not be inside
the convex hull of ∇P (F ). Q.E.D.

Theorem 14. Suppose diam(F ) < ∆∗. Then F contains
an x-extreme point iff (∇p1).x(∇pm).x ≤ 0 and
(∇p1).y(∇pm).y > 0.

Proof. If (∇p1).x(∇pm).x ≤ 0 and (∇p1).y(∇pm).y > 0
then clearly F contains an x-extreme point. Conversely,
suppose F (t) is an x-extreme point, then we know that both
F [0, t] and F [t, 1] lies strictly to one side of the vertical line
through Fx(t). Since diam(F ) is small, there are no other
critical points, not even y-extreme points. Thus, the two
subcurves are elementary. Now it is clear that the first and
last edges ∇p1 and ∇pm on the control polygon ∇P (F ) has
the claimed properties. Q.E.D.

Theorem 15. Suppose diam(F ) < ∆∗. Then F contains
an inflexion point iff

det(p0, p1, p2) det(pm−2, pm−1, pm) < 0.

Proof. We make the connection between det(p0, p1, p2) and
inflexion points. Let H(t) = F ′

x(t)F ′′

y (t)−F ′′

x (t)F ′

y(t). Note
that F ′(0) = p1 − p0 and F ′′(0) = p2 − 2p1 + p0. Hence
H(0) = det(p1 − p0, p2 − 2p1 + p0) = det(p1 − p0, p2 −
p1). H(0) = −det(p0 − p1, p2 − p1) = det(p1, p0, p2) =
− det(p0, p1, p2). Similarly, H(1) = −det(pm−2, pm−1, pm).
Therefore, if det(p0, p1, p2) det(pm−2, pm−1, pm) < 0, there
must be some t such that H(t) = 0, and this would be an
inflexion point. Conversely, if F (t) is an inflexion point,
then H(t−)H(t+) < 0. Since diam(F ) is small, there are
no other inflexion points and therefore we conclude that
H(0)H(1) < 0. Q.E.D.


