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Abstract
We propose to design motion planning algorithms using two ingredients: the sub-

division paradigm coupled withsoft predicates. Such predicates are conservative
and convergent relative to traditional exact predicates (called “hard” in this con-
text). This leads toresolution-exactalgorithms which can be viewed as a strong
form of “resolution complete” algorithms. Resolution-exactness contains inherent
indeterminacies and other subtleties. We describe an algorithmic framework, called
Soft Subdivision Search(SSS) for designing such algorithms. There are many par-
allels between our framework and the well-known Probabilistic Road Maps (PRM)
framework. Both frameworks lead to algorithms that are highly practical, easy to
implement, have adaptive and local complexity. The critical difference is that SSS
avoids the Halting Problem of PRM.

In a previous paper, we have demonstrated the ease of designing soft predicates
for various motion planning problems. In this paper, we generalize and extend some
of these results. We show how exact algorithms can be recovered by an extension
of our framework. The SSS framework provides a theoretically sound basis for new
classes of algorithms in motion planning and beyond. Such algorithms are novel,
even in the exact case.

1.1 Introduction

Motion Planning is a fundamental problem in robotics. One ofits origins is the
“findpath problem” in Artificial Intelligence [6, 5]. In the 1980s, computational ge-
ometers began the algorithmic study of motion planning [31, 13], focusing onexact
planners: assuming the input is exact, such planners return a path if any exists, and
report “No Path” otherwise. Schwartz and Sharir [30] observed that the cell decom-
position approach is a universal approach for motion planning, and in the algebraic
case, is effectively reducible to Collin’s cylindrical algebraic decomposition. We in-
troduced the concept of retraction motion planning in [27, 26]. In the first survey

⋆ This work is supported by NSF Grant CCF-0917093.

1



2 C. Yap

on algorithmic robotics [31], we observed that the retraction approach is also uni-
versal (again, this is effective in the algebraic case). After the work of Canny [7],
the retraction approach became popularly known as the “roadmap approach”. In the
1990’s the roadmap approach takes another turn.

¶1. Theory. Today, exact motion planning continues to be actively investigated
(e.g., [12]). A fairly up-to-date account from the perspective of realalgebraic ge-
ometry may be found in [3]. Some of these algorithms represent major theoretical
advancements. Nevertheless their impact on practical robotics is quite modest: thus
[36] noted that exact implementations have been limited to 3 degrees of freedom,
and for simple robots only. Various sub-algorithms and supporting data structures
needed in exact motion planning have been implemented inCGAL [8]. For exam-
ple, the recent exact algorithm for the Voronoi diagram of lines in space is regarded
as a significant advance [15]; but true goal here is Voronoi diagram of polyhedral
objects. Exactness has tremendous cost in terms of computational complexity: it
implicitly requires algebraic numbers. Direct manipulation of algebraic numbers
is impractical. But for many basic problems, a weaker form under the paradigm
of Exact Geometric Computation (EGC) is sufficient [32]. Nevertheless, the usual
expedient is to replace exact arithmetic by machine arithmetic, leading to the ubiq-
uitous problems of numerical non-robustness [33]. Even ignoring efficiency issues,
there is a fundamental but less well-known barrier:the Turing computability of ex-
act algorithms for most non-algebraic problems is unknown[34]. This barrier exists
in most problems beyond kinematic motion planning. But see [9] for a rare case of
a non-algebraic motion planning problem that is provably computable; this positive
result is possible thanks to deep results in transcendentalnumber theory.

¶2. Practice. Since the mid 1990’s, the method of Probabilistic Road Maps
(PRM) has become dominant among roboticists. Its basic formulation comes from
Kavraki, Švestka, Latombe and Overmars [19]. PRM is not a particular algorithm
but aalgorithmic framework for motion planners. Many variants of this framework
are known: Expansive-Space Tree planner (EST), Rapidly-exploring Random Tree
planner (RRT), Sampling-Based Roadmap of Trees planner (SRT), and many more.
Quoting Choset et al [11, p.201]: “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-dimensional robots. They have
also paved the way for the development of planners for problems beyond basic path
planning.”

In his invited talk at the recent workshop2 on open problems in this field,
J.C. Latombe stated that the major open problem of PRM is thatit does not know
how to terminate when there is no path. In practice, one simply times-out the al-
gorithm, but this leads to problems such as the “Climbers Dilemma” [14, p. 4] de-
scribed in the work of Bretl (2005). We call this theHalting Problem of PRM .
This is a known issue for researchers, and is the extreme formof the so-called “Nar-
row Passage Problem” [11, p. 201]. Latombe’s talk suggested promising approaches

2 IROS 2011 Workshop on Progress and Open Problems in Motion Planning, September 30, 2011,
San Francisco.
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such as Lazy PRM [4]; other lines of attack include explicit detection of the non-
existence of paths [2]. The theoretical basis for PRM algorithms is that they are
probabilistic complete [18]. The Halting Problem is inherent in probabilistic com-
pleteness.

¶3. Common Ground. We seek a common ground that provides stronger guar-
antees than probabilistic completeness, but avoids the inordinate demands of exact-
ness. Fortunately for our subject, exactness is a mismatch for the needs of robotics.
This is clear from the remark that physical devices and sensors have limited accu-
racy. Practitioners are acutely aware of this. Yet it does not absolve us from math-
ematical precision if we wish the theoretical development of robotic algorithms to
thrive. This tension between the needs of practice and of theory has led to their
divergent paths described above. So we turn to the idea of “resolution complete”
algorithms, noting that the 1983 paper of Brooks and Lozano-Perez [6] was already
on this track. It is known that resolution complete algorithms can avoid the Halting
Problem (e.g., [36]). Unfortunately the notion of resolution completeness isseldom
scrutinized, and is capable of many interpretations. In [10] we pointed out some
untenable, or lacking, interpretations. As remedy, we introduced a version called
resolution-exactness, and proved basic properties of such algorithms. Surprisingly,
we show that resolution-exactness has an inherent indeterminacy, even for determin-
istic algorithms using exact predicates. But the indeterminacy is mild in comparison
to that of probabilistic completeness. Unlike the determinacy of exact algorithms,
this indeterminacy seems a perfect match for the requirements of robotics.

There are two ingredients of resolution-exact algorithms.The first is subdivision
of configuration space. We organize the subdivision into asubdivision tree. In 2
and 3 dimensions, such trees are usually called quadtrees and octrees. Tree nodes
correspond to subsets of configuration space with simple shapes such as boxes or
simplices. The notion of grid search is often identified withresolution complete al-
gorithms (e.g., see the Wikipedia entry on Motion Planning). Although grids are
superficially similar to subdivision, we stress that typical grid-based methods are
inadequate for resolution-exactness. The second ingredient is aclassification pred-
icate to decide if a node is free or not. Such predicates could be computed exactly
in the algebraic case; that would be the reflex viewpoint of a computational geome-
ter, but it is not where we want to be. Our key insight is this:in the presence of
subdivision, exact predicates can be replaced by suitable approximations. We came
by this viewpoint through a series of related work on subdivision algorithms (e.g.,
[28, 23, 29]). Such approximations are formalized assoft predicatesin [10]. There
we show through a series of motion planning examples, the relative ease of design-
ing soft predicates, and claimed that they are practical.

Let us address this claim. Since the implementation of our algorithms is cur-
rently underway, our evidence for practicality is indirect: first, our subdivision in-
frastructure is based on well-understood and practical data structures (subdivision
tree, union-find, etc). Next, the soft predicates we designed to go with subdivision
are mostly reduced to estimating distances between two features, where a feature is
a point, line segment or a triangle in space. Moreover, thesepredicates can be easily
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and correctly implemented (see¶12below). Thus there are no implementation gaps
for our algorithms. The argument so far centers onimplementability. But how can
we be sure that these implementations will bepractically efficient? Here, we invoke
the evidence of prior resolution-based work. We mention keypapers such as Zhu
and Latombe (1991) [37], Barhehenn and Hutchinson (1995) [1], and Zhang, Kim
and Manocha (2008) [36]. Of course, since these work preceded our formulation,
we must reinterpret their methods using our new perspective. In fact, it is illuminat-
ing and fruitful to revisit these papers from our current perspective. In short, through
the implementability and practical efficiency of resolution-exact algorithms, we may
have found a common ground for theory and practice.

¶4. Our Goals. The current paper aims to clearly expose the foundations of res-
olution exactness. There are three themes: (1) We first take aleaf from the success of
PRM research: the simplicity and generality of PRM framework ensures that imple-
menters of this framework can get easy access to a whole family of algorithms, just
by modifying one or more components in the framework. This leads us to formulate
an analogous framework for our approach, calledsoft subdivision search(SSS). (2)
Next, we generalize the setting of our previous results [10]: for instance, the basic
setting of a free space embedded in configuration space,Cfree ⊆ Cspace, can be
replaced by an open subsetY of a normed linear spaceX . The boxes used in our
subdivision trees can be replaced by other shapes such as simplices. (3) Finally, we
want to revisit exact algorithms from a subdivision viewpoint: each SSS algorithm
takes an input resolution parameterε > 0, in addition to the normal inputs of path
planning. It is essential thatε is positive. But if we admitε = 0, the resolution-exact
algorithm may become non-halting like PRM. We show how to to fix this problem.
Interestingly, such exact algorithms are novel and seems more implementable than
usual exact algorithms.

All proofs are given in a separate Appendix. Cross references are hyperlinked in
the pdf version of this paper.

¶5. Preliminaries. We establish some notations for standard concepts. To focus
on the key ideas, this paper will assume the simplest formulation of the motion plan-
ning problem: point-to-point kinematic motion planning for any particular robotR0

moving in a physical spaceRk (k = 2, 3) amidst a static obstacleΩ ⊆ R
k. The

configuration spaceCspace = Cspace(R0) will be appropriately embedded inRd

(d ≥ k) (see [21, p.128] for discussions of embedding issues). Thefootprint map
is Fp : Cspace → 2R

k

whereFp(γ) ⊆ R
k is the physical space occupied by robot

R0 in configurationγ. E.g., for a rigid robot,Fp(γ) is a rotated, translated copy
of R0. Then a configurationγ ∈ Cspace is free iff Fp(γ) ∩ Ω = ∅. The set of
free configurationsCfree = Cfree(R0, Ω) is an open subset ofCspace, assuming
Ω is a closed set. But central to our theory is the boundary∂(Cfree) of Cfree. Con-
figurations in∂(Cfree) are said to besemi-free. A motion is a continuous func-
tion µ : [0, 1] → Cspace, and its rangeµ[0, 1] is called thetrace. The motion is
free if its trace is contained inCfree. A path refers to a free motion. So the basic
motion planning problem for robotR0 is this: given startα and goalβ configu-
rations, andΩ (definingCfree), find a path fromα to β if one exists, and report
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“No Path” otherwise. A key tool is theclearance function, Cℓ : Cspace → R≥0

whereCℓ(γ) is the separation of the footprint atγ fromΩ,Cℓ(γ) := sep(Fp(γ), Ω)
wheresep(A,B) = inf {‖a− b‖ : a ∈ A, b ∈ B} is theseparation between two
setsA,B ⊆ R

k. ThusCℓ(γ) > 0 iff γ ∈ Cfree. Theclearanceof a motionµ is the
minimumCℓ(µ(t)) for t ∈ [0, 1].

1.2 Two Frameworks for Motion Planning.

In this paper we use the terminology ofalgorithmic framework to discuss broad
classes of algorithms, and view PRM as such a framework. An algorithm within the
framework is3 just a specific instantiation, using particular data structures, strategies
and subroutines. We will give a formulation of the PRM framework and our SSS
framework, and compare them.

¶6. The PRM Framework. Here is a formulation of PRM, following LaValle
[21, Section 5.4.1]: the goal is to find a path connectingα, β ∈ Cspace. We main-
tain a graphG = (V,E) whereV ⊆ Cfree and edges inE correspond to paths
connecting the vertices of the edge. We may assume thatα, β are inV . We need
two predicates,Free(u) to test if a configurationu is free, andConnect(v, u) to
test if the (straight) motion fromv to u is free. Finally, assume sometermination
criterion that is comprised of two parts: success-criterion (found a path fromα to
β) and a failure-criterion (time-out or other condition).

PRM FRAMEWORK:
While (termination criterion fails):

1. Vertex Selection Method (VSM):
Choose a vertexv in V for expansion.

2. Configuration Generation Method (CGM):
Generate someu ∈ Cspace (perhaps nearv)

3. Local Planning Method (LPM):
If Free(u),

Add u to V
If Connect(v, u), add(v, u) to E.

Return success or failure accordingly.

Step 1 (VSM) is usually controlled by some priority queue representing the search
strategy. Step 2 (CGM) is the probabilistic step. But CGM could also be determin-
istic, e.g., controlled by a dense sampling sequence [20]. LaValle would call this the
“Sampling Framework” to avoid any prior commitment to randomness. But we say
“PRM Framework” for specificity, and in honor of the most well-known formula-
tion of such approaches. In Step 3 (LPM),u is discarded if it is not free; another

3 To be sure, there are degrees of specificity. The most specificinstantiation might be called
“implementation” of some less specific “algorithm”.
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method is to generate a free configurationu′ such that the subpath, fromv to u′, of
the directv to u path is free. As noted in [11, p.198], the practical success of PRM
stems from the fact that the predicateFree(u) is relatively cheap. There is a large
literature on computing this predicate, under the heading of collision detection. In-
deed, theConnect(v, u) predicate is often reduced toFree(u): if a “sufficiently
dense” sampling of configurations fromv to u is free, just assume there is a path
from v to u.

By varying this simple framework, we could capture most of the known varia-
tions mentioned earlier. The original PRM is framed in termsof a road-map stage
followed by a query stage; so the above version is closer to the “BasicPRM” of [18].
But our discussion of the “PRM Framework” is intended to cover such variations.

¶7. What confers power to PRM? The practical advantages of PRM is widely
recognized, and it is natural to assume that randomness is the source of this power.
LaValle et al [20] examine this question and concluded that sampling rather than
randomness is the true source of power. Hsu et al [18] argue for the essential role of
randomness. Independent of this debate, we offer another reason for the success of
PRM: the PRM framework allows one to easily modify the constituent components
(sampling strategy, connection strategy, freeness predicate, etc) to obtain a variety of
algorithms that meet diverse needs. The basic infrastructure is kept relatively stable.
This is possible thanks to thesimplicityandgeneralityof the PRM framework. Just
as important in practice, the framework is also veryforgiving: you could implement
the constituent components approximately or even wrongly,and the software im-
plementation4 may not necessarily fail (crash or loop). These properties are in sharp
contrast to the usual exact algorithms which are far from simple and not too for-
giving of errors [32]. In recognition of this, we would like to propose an analogous
framework for the subdivision approach.

¶8. The SSS Framework. For a fixed robotR0, the motion planning input is
an initial boxB0 ⊆ Cspace, the obstacleΩ ⊆ R

k, the start and goal configurations
α, β ∈ Cspace, and aresolution parameterε > 0. We are interested in “resolution-
restricted” search for a path fromα to β insideB0. As noted in the introduction,
our main data structure is a subdivision tree,T . The root isB0 and each tree node
is a subbox ofB0. The algorithm amounts to a while-loop that “grows”T in each
iteration by expanding some leaf until we find a path or conclude “No Path”. Here
are the supporting subroutines and data structures: assumeapredicateC̃ that classi-
fies each node inT into FREE/STUCK/MIXED, with the property that̃C(B) = FREE

impliesB ⊆ Cfree andC̃(B) = STUCK impliesB ∩ Cfree = ∅. We maintain a
priority queueQ = QT comprising thoseMIXED-leaves whose lengthℓ(B) (defined
below) is at leastε. Let Q.GetNext() return a leafB of highest priority. ThisB
is given to another subroutineExpand(B) which subdividesB into two or more
subboxes. These subboxes become the children ofB (soB is no longer a leaf). For
now, assumeExpand(B) always splitB into 2d congruent subboxes. After splitting,

4 The hardware implementation, however, might have catastrophic consequences. But here, we
rely on the fact that most robot systems are fail-safe.
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C̃ is immediately called to classify these subboxes. Boxes that areFREE need further
processing: assume a union-find data structureD to maintain the connected compo-
nents of theFREE leaves ofT . Say two boxesB,B′ areadjacent if B∩B′ is ad−1
dimensional set. This defines a graph whose vertices are theFREE boxes, and edges
representing their adjacency relation.D maintains the connected components of this
graph. We first insert each newFREE leafB intoD, and callUnion(B,B′) for any
FREE B′ that is adjacent toB. AssumeFind(B) returns the connected component
of B, and write “Box(α)” to denote any leaf ofT that containsα ∈ Cspace.

SSS FRAMEWORK

1. ⊲ Initialization.
While (C̃(Box(α)) 6= FREE)

If Box(α) has length< ε, Return (”No Path”)
ElseExpand(Box(α))

While (C̃(Box(β)) 6= FREE)
... do the same forβ ...

2. ⊲ Main Loop:
While (F ind(Box(α)) 6= F ind(Box(β)))

If Q is empty, Return(“No Path”)
B ← Q.GetNext()
Expand(B)

3. Compute aFREE channelP from Box(α) to Box(β)

Generate and return the “canonical path”P insideP .

Resolution approaches can be wasteful when it is non-adaptive. In SSS, the reso-
lution increases is naturally adaptive (we only expand at mixed cells). The resolution
literature sometimes claimed incorrectly that the size ofT is (must be) exponen-
tial in the depth. A counter example is [29] where we prove that tree size is only
polynomial in the depth for certain subdivision algorithmsfor root isolation. Our
formulation can recapture the approach of Zhu and Latombe [37], Barbehenn and
Hutchinson [1], or Zhang, Kim and Manocha (2008) [36] as follows: these papers
expand along a “mixed channels” (i.e., path comprisingFREE or MIXED boxes). We
could defineGetNext to expand similarly. It turns out (see [10]) that our com-
putation ofC̃ could exploit the subdivision treeT . LaValle observed this curious
property of our method, calling it “opening up the blackbox”of collision testing.

¶9. Similarities. There are many similarities between PRM and SSS, especially
in their contrasts with exact algorithms.
1. Both have two key subroutines, representing (i) the global search strategies and
(ii) free-ness testing. In PRM, the two subroutines are the vertex selection method
(VSM), and theFree(u) predicate, respectively. In SSS, they areGetNext(), and
the predicatẽC(B).
2. An advantage of SSS and PRM is the possibility of finding pathsbeforethe entire
Cspace has been fully explored. Indeed, Hsu, Latombe and Kurniawati [18, p. 640]
remarked that “foundational choice made in PRM planning is to avoid computing
the exact shape of the free space”. Most exact methods require an expensive a pre-
processing phase to compute a full description of free space.
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3. Integrated path planning: both frameworks naturally compute a path, i.e., a
parametrized curve inCfree. E.g., Step 3 of SSS converts a channel of free boxes
into a path. But exact algorithms often focus on computing a symbolic path in some
algebraic cell complex, assuming that some numerical subroutine will convert it into
a path.
4. We have viewed PRM as a probabilistic framework, and SSS asa deterministic
one. But both frameworks admit deterministic or probabilistic algorithms. In the
future, we plan to explore the probabilistic side of SSS.

¶10. Differences.
I. Foremost, SSS algorithms do not suffer from a Halting Problem.
II. PRM needs the predicateConnect(v, u) to connect two nodes. The analogue in
SSS simply amounts to checking if twoFREE boxes are adjacent.
III. The search strategy in PRM resides in the Vertex Selection Method (VSM) and
Configuration Generation Method (CGM). In SSS, it resides inGetNext() and
Expand(). Sampling strategies is a major research question in PRM [20, 18]. Sam-
pling in SSS seems to be more easily controlled, thanks to thenature of subdivisions.
For example, a trivial randomized strategy in SSS is to pick any MIXED leaf with
equal probability. Two deterministic SSS strategies are breadth-first search (BFS)
and A-star/Dijkstra search [1]. We can havehybrid strategies: given two or more
strategies, we just cycle through each one in turn. If one of them is randomized, then
our hybrid will also gain any advantage of randomness.

1.3 Soft Classifiers

TheConnect(v, u) predicate is often implemented heuristically. LaValle [21, p. 177]
discussed certified methods for this test based on Lipschitzconstants. Such certified
tests is a generalization of theFree(u) predicate for a single configuration. We now
consider a different generalization based on sets; it is basically the viewpoint of
interval arithmetic [28].

We first generalize the setup in the Preliminary (¶5). SupposeX is a normed
linear space with norm‖ · ‖ (e.g.,X = R

d and‖ · ‖ is Euclidean norm). Fix a subset
X of the powerset2X (e.g., X is the set of boxes inX). Call X a test domain

if it has these properties:

• EachB ∈ X is a full-dimensional closed bounded polytope inX . We callB
a test cell(or simply “cell”). We define an interior pointc(B) called itscenter.

• X is closed under translation and dilation: ifB is a cell, then so ist + σ · B
for anyt ∈ X, σ > 0. Here,t +B denotes the translation ofB by t, andσ · B
denotes the dilation ofB by ratioσ at the centerc(B).

Note that forX = R
d, if d = 1, then cells are just closed intervals with distinct

endpoints. Ford > 1, we have many more possibilities.
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By aclassifierwe mean any functionC : X → {IN, ON, OUT}. So a classifier is
a special kind of predicate that “classifies” every test cell. These values5 correspond
(respectively) toFREE/MIXED/STUCK of the previous section. LetY ⊆ X be any
open subset ofX . CallC aY -classifier if for all B ∈ X ,

{
C(B) = IN =⇒ B ⊆ Y
C(B) = OUT =⇒ B ∩ Y = ∅ (1.1)

whereY denote the closure ofY . Thus a trivial classifier is one that is identically
ON,C(B) ≡ ON. If the two implications of (1.1) are replaced by logical equivalences
(“if and only if” conditions) then we callC anexactY -classifier, denoted byCY .
Note that singletonsp ∈ X are not test cells, and soC(p) is not defined. Neverthe-
less, the exactY -classifier has a unique extension to points whereCY (p) = IN if
p ∈ Y ,= ON if p ∈ ∂Y , and= OUT otherwise. This extension is justified as follows:
write “limiBi → p” to indicate an infinite decreasing sequenceB1 ⊆ B2 ⊆ · · ·
that converges top ∈ X . It is easy to see thatlimiBi → p implies that the se-
quenceCY (B1), CY (B2), . . . eventually stabilizes to the valueCY (p). We denote
this by writing “limi CY (Bi) → CY (p)”. We can now define our key concept: a
Y -classifierC̃ is said to besoft if

lim
i
Bi → p =⇒ lim

i
C̃(Bi) → CY (p).

Thus, a soft predicate converges to the exact (or “hard”) predicate in the limit.

¶11. How to compute soft classifiers?Two standard ideas of resolution-based
methods are (a) splitting cells to reduce complexity, and (b) using numerical ap-
proximation. Typically, (a) is determined by an arbitrary resolution parameter but
[10] demonstrated the use of inherent adaptive splitting criteria. Here we focus on
(b). LetCℓ : X → R be a continuous function. CallCℓ a (generalized) clearance
function of the set{x ∈ X : Cℓ(x) > 0} (it is generalized becauseCℓ can be neg-
ative). Because of the splits in (a),Cℓ need only be defined “locally”. Recall R
is the set of closed intervals; consider aninterval function Cℓ : X → R.

There is an classifier associated withCℓ, namely,C̃(B) =





IN if Cℓ(B) > 0,
OUT if Cℓ(B) < 0,
ON else.

We call Cℓ a box function for Cℓ if it is conservative(i.e.,Cℓ(B) ⊆ Cℓ(B))
andconvergent(i.e.,limi Bi → p implieslimi Cℓ(Bi) → Cℓ(p)). The following
is straightforward.

Lemma 1. LetCℓ : X → R be a clearance function of a setY . If Cℓ : X →
R is a box function forCℓ, then its associated classifier is a softY -classifier.

In practice, it is easier to design classifiers that focus only on theIN or theOUT
decisions. So we call an interval functionCℓ : X → R apositive box function
for Y if B ⊆ Y implies Cℓ(B) ⊆ Cℓ(B), and limiBi → p ∈ Y implies

5 These values may also be calledEMPTY/MIXED/FULL, as in original Brooks-Perez paper. They
reflect the 3-valued nature of geometric predicates (as opposed to 2-valued logical predicates).
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limi Cℓ(Bi) → Cℓ(p) > 0. We similarly definenegative box functionfor Y . See
[10] (implicitly in [ 36]) for concrete examples of positive and negative classifiers.

¶12. Implementability. Correct implementation of algorithmic primitives is a
central concern of EGC [8]. It remains central for SSS theory. An interesting re-
mark is thatmost papers on subdivision methods exploit cell resolution, but assume
hard primitives being performed at the cell level. Theorem 1 below illustrates this
half-measure. Yet subdivision only shows its full power when we also exploit soft
primitives. Of course, implementers will use approximate primitives (machine arith-
metic implementation) but this is done with no guidance fromtheory.

We now indicate why the soft predicates which we designed in [10] are eas-
ily, efficiently and correctly implementable. To use numerical approximations, we
need a dense subsetD of R with good computational properties [34, ¶16]. A simple
choice are thedyadic numbersD = {m2n : m,n ∈ Z}, called BigFloats in soft-
ware. To exploit hardware arithmetic, we use the technique of (numerical) filters
in EGC [32]. Basically, filters perform machine arithmetic, but trackerror bounds
to ensure safe decisions. The filter fails when any overflow orunderflow is detected,
at which point we switch to BigFloats. Using ourCore Library [35], such fil-
ter techniques are automated so that users can write a “standard” C++ program to
implement their predicates.

In a future implementation paper, we will give a careful account of the soft pred-
icates designed in [10], but here is an overview of how to do filters using estimated
error bounds. Such bounds suggest that our filters will rarely fail in the typical mo-
tion planning experiments. Assume theStandard Model of floating point arith-
metic [16, p. 44] whereby, for any operationx ◦ y (◦ ∈

{
+,−,×,÷,

√·
}

) we have
x◦̃y = (x ◦ y)(1 ± u) wherex◦̃y denote the corresponding approximate arith-
metic,u is unit round-off error, and we use the notation “x̃ = x(1 ± ǫ)” to mean
x̃ = x(1 + θ) for someθ ∈ [−ǫ,+ǫ] (thusθ is an implicit constant). Note that
u = 2−53 ≃ 1.11 × 10−16 for IEEE double precision. The IEEE Standard for
hardware arithmetic, and the widely available BigFloat package calledMPFR [25]
follows the Standard Model. For instance, to compute the distance‖p− q‖ between
two dyadic points, assumingp 6= q, then in the Standard Model we can approximate
‖p−q‖ with relative error ofγ3 whereγn := nu

1−nu
(see [16] for this γ-analysis). We

haveγn < 2nu unlessn is extremely large (e.g.,n > 252 for IEEE double). More-
over, if ℓ(x, y) = ax + by + c = 0 is the equation of a line, then its distance to an
arbitrary dyadic point(x0, y0) is |ℓ(x0, y0)|/

√
a2 + b2 and this has a relative error of

γ9. This assumes thata, b, c are exact. But if the line is defined by two dyadic points
(xi, yi) (i = 1, 2), thena = (y2−y1), b = (x2−x1), c = y1(x2−x1)−x1(y2−y1).
Our computation of the distance will now have a relative error of γ18 instead ofγ9.
The extension of such estimates to the case of rotation or in 3-D will increasen,
but remains well under control. To obtain an upper or lower bound on a numerical
expression such as|ℓ(x0, y0)|/

√
a2 + b2, we just multiply its computed value by

a factor of(1 + γ̃n) or (1 − γ̃n) whereγ̃n is an machine upper bound onγn. If
n < 128, say, thenγn < 2−45. Barring under or overflows, it means 45 bits of the
mantissa are correct; this should suffice for typical applications.
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1.4 Dyadic Subdivision Trees

Clearly subdivision trees are capable of many generalizations. So far, we assume
that a node is a box inRd, and it splits into2d congruent children. We want to allow
non-congruent shapes, and a variable number of children. One motivation is to ex-
ploit “anisotropic subdivisions”. E.g., in subdivision algorithms for isotopic approx-
imation of curves and surfaces [23, 24, 22], we show empirically that “anisotropic
subdivision” could lead to dramatic speedups.

We considergeneralized subdivision treeswhose nodes are cells from a test
domain X whereX = R

d. Two cellsB,B′ areessentially disjoint if B ∩ B′

has dimension≤ d − 1. If B ∩ B′ has dimensiond − 1, we say the two cells are
adjacent to each other. By asubdivision we mean a finite subsetS of X such
that any two cells are essentially disjoint. Achannel is a sequence of cells where
consecutive pairs are adjacent. We callS a subdivision of |S| where|S| denotes
the union of the cells inS. By a k-split (or split) of a cellB ∈ X we mean
a subdivision{B1, . . . , Bk} of B with k ≥ 2 cells. We say the split isdyadic if
each vertex of theBi’s is either a vertex ofB or the midpoint of an edge ofB.
A dyadic subdivision tree is a subdivision treeT in which the children of each
internal node forms a dyadic split of its parent. IfT is finite, then the set of leaves
of T forms adyadic subdivision of the root. Dyadic subdivisions for boxes were
exploited in [23, 24]. Why dyadic subdivision? In¶12, we indicated the key role
of dyadic numbers. Now each vertexv occurring in a dyadic subdivision tree is a
linear combination of the verticesv1, . . . , vm of the rootB0, v =

∑m
i=1 αivi where

eachαi is a dyadic number. We sayv is dyadic relative toB0. If B0 is dyadic, then
v is dyadic.

Our definition of a test cellB requires the concept of a centerc(B) in the interior
of B. A candidate forc(B) is the center of thecircumball , i.e., unique smallest ball
containingB. But this center may not lie in the interior ofB. So we first define the
inner radius r0(B) of B as the largest radius of a ball contained inB. Then the
incenter ic(B) comprises the centers of balls of radiusr0(B) that are contained in
B. E.g., the incenter of a non-square rectangle is a line segment. Clearly,ic(B) is
convex; the center of the circumball ofic(B) is taken to be thecenter c(B). Thus
c(B) ∈ ic(B), and is unique. The smallest ball centered atc(B) and containingB
is called theouter ball of B, and its radiusr(B) is called the(outer) radius of B.
Theaspect ratio is r(B)/r0(B). Let thewidth w(B) (resp.,length ℓ(B)) refer to
the minimum (resp., maximum) length of an edge ofB.

We turn todyadic subdivision schemes. The dyadic scheme for boxes is dis-
cussed in [23, 24, 10]. We briefly considerdyadic simplicial schemes. As illus-
trated in Figure1.1(a), a triangle has three kinds of dyadic splits: the4-, 3-, and
2-splits. Dyadic splits of a tetrahedron is more complicated— just three kinds are
illustrated in Figure1.1(b). See [23, 24] for a method to choose among different
splits.
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4-split
alongu−v

u

v

4-split

2-split

4-split

2-split3-split 8-split

Fig. 1.1 Dyadic splits of (a) triangle and (b) tetrahedron

1.5 Basic Properties of SSS

We prove some general results about SSS Planners for the basic motion planning
problem(¶5). An “SSS Planner” is an algorithm obtained by instantiatingthe var-
ious subroutines in the SSS Framework. But assume a generalization of the SSS
Framework(¶8) whereby boxes are now cells inX . The3 key subroutines arẽC,
Expand, andGetNext. Our basic assumptions oraxiomsabout them are:

• (A0: Softness)C̃ is a soft classifier forCfree.
• (A1: Bounded dyadic expansion)Expand splits a cell dyadically into a

bounded number of subcells, each with a bounded number of vertices, with
the ratioℓ(B)/w(B) bounded. Moreover, the splitting scheme isperpetual (it
will never get stuck).

• (A2: Clearance is Lipschitz) There is a constantL0 > 0 such that for all
γ, γ′ ∈ Cspace, |Cℓ(γ)− Cℓ(γ′)| < L0‖γ − γ′‖

We made no assumptions onGetNext here because the needed properties are
embedded in the SSS framework, namelyGetNext returns aMIXED-leaf with
lengthℓ(B) ≥ ε as long as such leaves exist. Although our goal is soft classifiers
(A0), as a proof strategy, we will initially assumẽC is the exactCfree-classifier. In
this case, we say our planner isexact. Note that (A1) does not guarantee bounded
aspect ratio, but it guarantees every infinite path converges. (A2) relates clearance
to the norm onX . This axiom holds even with rotational degrees of freedom; see
[10] for the case ofCspace is SE(2), and Appendix B.

Theorem 1.Every SSS Planner halts.

Thus halting is in-built, depending only on (A1). Next we give the minimal cor-
rectness property of SSS Planners.

Theorem 2 (Exact SSS).Assuming an exact SSS Planner:
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance≥ 2εL0, the planner outputs a path.
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¶13. Three Desiderata.Loosely interpreted, current “resolution complete” al-
gorithms provide perhaps the equivalent of Theorem 2. But there are three desider-
ata. First, we want to remove the assumption of exactness inC̃. As noted in¶12,
the literature invariably assumes exactness in its analysis. Second, we would like to
weaken the hypothesis of Theorem 2(a) to “if there is no path with clearanceε/K”
for some input-independentK > 1. Third, we want to strengthen the conclusion of
Theorem 2(b) so that the output path has clearance≥ ε/K.

¶14. Soft Predicates and Effectivity. The first desiderata above is to extend
Theorem2 to soft predicates. For such a result, we need a bit more of soft predi-
cates. Call aY -classifierC̃ effective if it is6 monotone(i.e., C̃(B) 6= ON implies
C̃(B′) 6= ON for all B′ ⊆ B), and there is a (effectivity) constantσ > 1 such that if
CY (B) = IN thenC̃(B/σ) = IN. We remark that the explicit soft predicates which
we designed in [10] are all effective. An SSS Planner is said to beeffectiveif it uses
an effective soft predicate forY = Cfree.

Theorem 3 (Effective SSS).Assume an SSS Planner with effectivityσ > 1.
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance≥ ε(1 + σ)L0, the planner outputs a path.

¶15. Resolution-Exactness.The second and third desiderata lead our key defi-
nition: A planner forR0 is said to beresolution-exact(or “ε-exact”) if there exists
a constantK > 1 such that

(i) if there no path with clearanceε/K, it returns “No Path”;
(ii) if there is a path of clearanceKε, it returns a path with clearanceε/K.

Call K anaccuracy constant. Resolution-exact planners admits an indeterminacy
in its output: suppose there is no path of clearanceεK, but there exists one with
clearance in the range(ε/K,Kε). In this case, theε-exact planner may return ei-
ther a path or “No Path”. We show this indeterminacy is unavoidable in [10]. An-
other subtlety of this definition is revealed if we ignore thethird desideratum. This
amounts to replacing(ii) with the following:

(ii)’ if there is a path of clearanceKε, it returns a path.
Call the plannerweakly resolution-exactin this case. What have we given up with
this weaker requirement? We have no guarantees on the clearance of the returnedµ.
Nevertheless, because of (i), we know there exists a pathµ′ with clearanceε/K. So
the third desideratum is a “constructivity requirement” (we must find such aµ′). The
following development will show the highly nontrivial nature of this requirement.

To inferε-exactness, the fundamental issue is to infer a lower bound on the clear-
ance of a path inside a free channel. This is encoded as (A3) next:

• (A3: Translational cells) If B ∈ X is free, then its center has clearance
Cℓ(c(B)) ≥ r0(B) wherer0(B) is the inner radius. Such cells are said to be
translational.

6 Monotonicity is not strictly necessary, but it simplifies our arguments. Moreover, implementa-
tions can normally ensure monotonicity. In the interval literature, it is sometimes called “isotone”.
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Like (A2), axiom (A3) relates the norm to clearance. It is a non-trivial assumption
on the parametrizationX of configuration space. The “translational” terminology is
based on the analogy that ifX is purely translational, then (A3) is true. The appendix
will indicate why (A3) holds in standard motion planning formulations. So far, we
have been non-specific about the “canonical path”P that is generated in Step 3 of
the SSS Framework. Forε-exactness, the nature of this canonical path is important.
In particular, we must slightly modify Step 3 in SSS, encodedthis in the next axiom:

• (A4: Canonical Paths)Assume that all cells are boxes and̃C is effective. In
Step 3, ifC̃(Cubeε(α)) 6= FREE or C̃(Cubeε(β)) 6= FREE, SSS will return “No
Path”. (Otherwise it returns the “canonical path”P in the channelP as usual.)

Here,Cubeε(α) is the box centered atα with length and width equal toε.

Theorem 4 (Resolution-Exact SSS).
Under (A0-A4), SSS Planners are resolution-exact.

1.6 What About Exact Algorithms?

Can the SSS framework produce7 exact algorithms? The answer is yes. But we first
point out a non-solution,using an Exact Planner with the resolution parameterε =
0. First of all, using Exact SSS re-introduces the need for algebraic computation.
Second, by settingε = 0, indeterminacy is removed, but at a high price: if there is
no path, then SSS will not halt. Even if there is a path, we may not find it because of
non-halting; but this could be fixed by imposing a “generalized BFS” property on
GetNext. For these reasons, our normal8 formulation of SSS requiresε > 0.

We now present a solution that exploits resolution-exactness. It is based on the
theory of constructive zero bounds [33], and does not need an Exact Planner.

Theorem 5. If the inputs numbers describingR0, Ω, α, β are all algebraic num-
bers, there is an effectively computable numberδ = δ(R0, Ω, α, β) > 0 with this
property: if there is a path fromµ fromα to β, then the clearance ofµ is> δ.

One way to derive such aδ is to bound the degree and height of algebraic quan-
tities arising in any motion planning algorithm. Thenδ could be taken as the root
separation for these algebraic quantities. A more careful computation ofδ can pro-
ceed as follows: using the fact that if there is a path, then there is a path in some
“retract” [31] (basically a Voronoi diagram augmented by some paths). This retract
is algebraic, and the minimum clearance along the retract could be expressed by the
solution of a suitable set of polynomial constraints involving the input data. A zero
bound can be computed from a list of these constraints. Thesebounds depend on
the representation used for input angular or rotational parameters.

7 We are indebted to Steve LaValle for asking this question at the IROS 2011 Workshop.
8 For that matter, we also assumed the accuracy constantK is strictly greater than1.
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Theorem 6.Suppose we have a resolution-exact planner with accuracy parameter
K > 1. If we fix the resolution parameterε to be≤ δ(R0, Ω, α, β)/K, then the
planner is exact.

¶16. Alternative approach to Exact SSS algorithms. A more practical ap-
proach is to avoid zero bounds, and to minimize the role of algebraic computation.
As in [10], we maintain a set of featuresφ(B) that are within an influence region of
B, and anotherφ−(B) ⊆ φ(B). Our soft classifiers reduce to checking the empti-
ness ofφ(B) or non-emptinessφ−(B). But an exact predicate must ultimately com-
pute the true value ofCCfree

(B). The idea is do thisonly whenφ(B) is “simple”,
otherwise we splitB. Certainly,|φ(B)| = O(1) may be regarded as simple. Unfor-
tunately, because of input degeneracies, this condition isnot enough. Other options
for simplicity are possible, but they depend on the nature ofR0. This leads to new
exact algorithms that seem more practical than traditionalones.

1.7 Conclusion

In this paper, we described the SSS framework for designing resolution-exact algo-
rithms. We argued that it shares many of the attractive properties of the successful
PRM framework. The ideas of resolution-limited algorithmsis certainly very old.
But to our knowledge, the simple9 properties of soft classifiers have never been
isolated, nor have concepts of resolution-limited computation been carefully scruti-
nized. We believe focus on these “simple ideas” will open up new classes of algo-
rithms that are practicalandtheoretically sound, not only in motion planning.

There are many open questions concerning SSS framework. Like PRM, many
variations of SSS are possible. Perhaps the biggest theoretical challenge is the com-
plexity analysis of adaptive subdivision [29]. Here are some other topics:

• Our SSS framework detects “No Path” by exhaustion. We could speed this up
by looking for non-existence of M-paths [36], but it is a challenge to design
efficient techniques (this is connected to issues in computational homology).

• The general study of dyadic subdivision schemes satisfying(A1) is of great in-
terest. We also nee to better understand subdivision schemes for SE(3) (see
[10] for SE(2)). Beyond kinematic spaces, good subdivision is even less un-
derstood.

• Design and analysis of adaptive search strategies, including randomized or hy-
brid ones. How efficiently can we update the “dynamic” A-staror Dijkstra
search structures of [1]?

• Design and implement new SSS algorithms; compare them with PRM.
• An intriguing question is whether SSS match the performanceof PRM in prac-

tice. Conventional wisdom says that PRM can provide practical solutions for

9 Several reviewers of our previous work sees only the safeness part of soft classifiers. They fail
to note that previous work are silent about convergence. Of course, convergence is standard in
numerical computing.
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problems high10 degrees-of-freedom (DOF) while resolution methods can only
reach medium DOF. This seems to be supported by current implementation.
Choset [11, p. 202] suggests that the state-of-art PRM can handle DOF inthe
range5− 12. They noted that a10 DOF planar robot from Kavraki (1995) can-
not be tackled by other methods. The resolution-based algorithms of Zhang et
al [36] involve planar robots (except for one 3D robot). But we believe the full
potential ofadaptivesubdivision methods have hardly been reached. So this
intriguing question begs for more experiments.

¶17. ACKNOWLEDGMENTS. I am indebted to Yi-Jen Chiang, Danny Halperin,
Steve LaValle, and Vikram Sharma for helpful discussions.
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26. C.Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: a new approach to motion-planning.

ACM Symp. Theory of Comput., 15:207–220, 1983.
27. C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of a disc.

J. Algorithms, 6:104–111, 1985. Also, Chapter 6 inPlanning, Geometry, and Complexity,
eds. Schwartz, Sharir and Hopcroft, Ablex Pub. Corp., Norwood, NJ. 1987.

28. S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces. InProc.
Eurographics Symp. on Geom. Processing, pp. 245–254, New York, 2004. ACM Press.

29. M. Sagraloff and C. K. Yap. A simple but exact and efficientalgorithm for complex root
isolation. In I. Z. Emiris, editor,36th ISSAC, pp. 353–360, 2011. June 8-11, San Jose, CA.

30. J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General techniques for
computing topological properties of real algebraic manifolds.Advances in Appl. Math., 4:298–
351, 1983.

31. C. K. Yap. Algorithmic motion planning. In J. Schwartz and C. Yap, editors,Advances in
Robotics, Vol. 1: Algorithmic and geometric issues, pp. 95–143. Lawrence Erlbaum Asso-
ciates, 1987.

32. C. K. Yap. Towards exact geometric computation.Comput. Geometry: Theory and Appl.,
7:3–23, 1997.

33. C. K. Yap. Robust geometric computation. In J. E. Goodmanand J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 41, pp. 927–952. Chapman &
Hall/CRC, Boca Raton, FL, 2nd edition, 2004.

34. C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt, and S. Näher, editors,
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1.8 APPENDIX A: Proofs

This appendix contain proofs for our theorems (for WAFR review process).

¶18. Halting and Splitting Criterion. In the SSS Framework(¶8), we use the
criterion “ℓ(B) < ε” to stop splitting a cell. But in the following proofs, we will
assume the variant criterion of “r(B) < ε”. Why this difference? Generally,ℓ(B)
is more easily computable thanr(B), so we expect to useℓ(B) in implementations.
However, the proofs are cleaner if we user(B). Note thatℓ(B) is just the distance
between two vertices ofB while r(B) involves the centerc(B). For instance, ifB
is a dyadic box, thenℓ(B) is a dyadic number whiler(B) is a square-root.

Theorem 1. Every SSS Planner halts.

Proof. Property (A1) implies that in any infinite path(Bi : i ≥ 0) of an SSS sub-
division treeT , we havelimi ℓ(Bi) → 0. If we use the “ℓ(B) < ε” criterion for
non-splitting, then this implies halting. But if we use the ”r(B) < ε” criterion, we
also obtainlimi r(Bi) → 0, because the bounded complexity of cells (A1) implies
r(B) = Θ(ℓ(B)). Q.E.D.

Theorem 2 (Exact SSS).
Assuming an exact SSS Planner:
(a) If there is no path, the planner outputs “No Path”.
(b) If there is a path with clearance2εL0, the planner outputs a path.

Proof.Let T be the subdivision tree at termination.
(a) At termination, we either report a path or output “No Path”. If we report a path,
it is because we found a free channel fromB(α) to B(β), and this implies the
existence of a path. Hence if there is no path, we will surely report “No Path”.
(b) Supposeµ : [0, 1] → Cspace is a path fromα to β with clearance2ε. By way of
contradiction, suppose SSS outputs “No Path”. This impliesthat every mixed leaf
satisfiesr(B) < ε. Consider the setA of leaves ofT that intersectµ[0, 1] (the trace
of µ). If B ∈ A, there existst ∈ [0, 1] such thatµ(t) ∈ B. This impliesB is either
free or mixed. We claim thatB is free. IfB is mixed, thenr(B) < ε and there is a
pointp ∈ B that is semi-free. But‖µ(t)−p‖ ≤ ‖µ(t)− c(B)‖+ ‖c(B)−p‖ < 2ε.
By (A2), |Cℓ(µ(t))−Cℓ(p)| < 2εL0. ThusCℓ(p) > Cℓ(µ(t))− 2εL0 ≥ 0, i.e.,p
is free. This contradicts the assumption thatp is semi-free, proving our claim. Now
we may form an channel of free cells fromα to β using cells inA. The existence
of such a channel implies SSS should have reported a path. This contradicts our
assumption of “No Path”. Q.E.D.

The application of (A2) in the above proof can be captured geometrically as
follows: let Dr(c) denote theball in X centered atc with radiusr. Then (A2)
implies the following:

Lemma 2. Let c ∈ X . If Cℓ(c) = L0δ > 0 thenDδ(c) is free.



1 Soft Subdivision Search 19

¶19. Soft Predicate and Effectivity.Theorem 3(the soft version ofTheorem 2)
is an immediate corollary of the following:

Lemma 3.
Let C̃ have effectivity constantσ > 1. If there is a path of clearance(1 + σ)εL0

then the SSS Planner will output a path.

Proof. The proof is similar to that of Theorem 2(b). But now we use thevalues
FREE/MIXED computed byC̃ instead of the exact concepts of free/mixed. Suppose
µ : [0, 1] → Cspace is a path of clearance(1 + σ)εL0 and, by way of contradic-
tion, our algorithm outputs “No Path”. For any leafB, if there is somet ∈ [0, 1]
such thatµ(t) ∈ B, thenB is eitherFREE or MIXED (not STUCK). We claimB
is FREE. By way of a second contradiction, assumeB is MIXED. Thusr(B) < ε
and ‖c(B) − µ(t)‖ < ε. By Lemma2, we knowD(1+σ)ε(µ(t)) is free. Then

σB ⊆ Dσε(c(B)) ⊆ D(1+σ)ε(µ(t)). ThusσB is free and hencẽC(B) = FREE.
This contradiction proves our claim thatB is FREE. Therefore the set of leaves that
coverµ[0, 1] must beFREE. This contradicts the “No Path” output. Q.E.D.

¶20. Resolution-Exactness.We now prove our main theorem onε-exactness.
To provide quantitative information on the accuracy constant K, we introduce two
global constants:

• There is a constantK0 > 1 such that forc ∈ X , ‖c‖ ≤ K0‖c‖∞ (the infinity
norm). This implies thatCubeδ(c) ⊆ DK0δ(c).

• There is a constantK1 > 1 such that boxes in an SSS Planner have widths at
leastε/K1. This constant exists because we do not subdivide a box with radius
less thanε, and sor(B) ≥ ε/2. Then axiom (A1) impliesw(B) ≥ ε/K1 for
someK1.

E.g., if X = R
d, thenK0 =

√
d. If our boxes are restricted to cubes, then also

K1 =
√
d.

Theorem 4 (Resolution-Exactness).
Under (A0-A4), SSS Planners are resolution-exact.
The Planner has accuracy constantK = max {4, 2K1, (1 + σ)L0K0} whereσ is
the effectivity constant of predicatẽC.

Recall that under (A4), we assume that our cells are actuallyboxes. We say a
box B is aligned (under B0) if B is contained in some subdivision ofB0; let
Aligned(B0) denote the set of boxes aligned underB0. Clearly, the boxes appearing
in an SSS Planner are all aligned under a fixedB0; we can normally omit reference
to thisB0. We will prove a theorem about clearance of the “canonical path” in a free
“aligned channel”:

Theorem 4A (Clearance in Free Aligned Channel).LetP = (B1, . . . , Bm) be a
free channel of aligned boxes, withα ∈ B1 andβ ∈ Bm. Assume

(i) Cubeδ(α) andCubeδ(β) are free, and
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(ii) the width of theBi’s is at leastε.
Under(A3), the canonical path inP fromα to β has clearance≥ min {ε/2, δ/4}.

The “canonical path” in SSS (Step 3) is precisely this path inTheorem 4A. Our
main result onε-exactness easily follows from Theorem 4A:

Proof of Theorem 4.We must show the two requirements of resolution-exactness:
(i) If SSS outputs a path, then this is the canonical pathP of a free channelP of
aligned boxes. Each box inP has width≥ ε/K1. Axiom (A4) impliesCubeε(α)
andCubeε(α) are free. Thus Theorem 4A implies the clearance ofP is at least
min {ε/2K1, ε/4} ≥ ε/K. Therefore, if there is no path of clearanceε/K, the
Planner must output “No Path”.
(ii) Suppose there is a path of clearance(1 + σ)εL0K0 whereσ ≥ 1 is the ef-
fectivity of C̃. The proof of Lemma 2 shows there is aFREE channelP of aligned
boxes fromB(α) to B(β). We further claim that̃C(Cubeε(α)) = FREE: since the
clearance ofα is at least(1 + σ)εL0K0, Lemma2 implies thatD(1+σ)εK0

(α) is

free. ThusCube(1+σ)ε(α), which is contained inD(1+σ)εK0
(α), is free. SinceC̃

has effectivityσ, C̃(Cubeε(α)) = FREE. Similarly, C̃(Cubeε(β)) = FREE. Now we
invoke Theorem 4A to conclude thatP has clearance≥ ε/K. Q.E.D.

We have not tried to optimize the accuracy constantK in our SSS Planner. A
simple way to minimizeK is to choose other criterion than “r(B) < ε” to stop
splitting a box.

¶21. Channels of Aligned Boxes.The proof ofTheorem 4Ais shown through a
sequence of lemmas. Thecanonical pathP in the free channelP = (B1, . . . , Bm)
in Theorem 4A is a fairly natural polygonal path. It is the concatenation ofm + 1
subpaths,P = µ0;µ1; · · · ;µm where:

• Starting fromα, we take a certain 2-step pathµ0 fromα to c(B1) as described
in Lemma7(b) below.

• Then for eachi = 1, . . . ,m−1, we continue with theith subpathµi from c(Bi)
to c(Bi+1). Subpathµi is a certain canonical subpath joining the centers of the
two boxes, via the center ofBi ∩Bi+1, as described in Lemma8 below.

• Finally, we take a 2-step pathµm from c(Bm) to β. This is analogous toµ0.

We begin with a simple property of aligned intervals (i.e., the case whereB0 is
an interval).

Lemma 4. Let I0 be an interval. Any two intervalsI, I ′ ∈ Aligned(I0) are essen-
tially disjoint or I ⊆ I ′ or I ′ ⊆ I.

Proof. We can construct a unique dyadic subdivision treeT∞(I0) with no leaves.
This infinite tree contains every aligned interval. IfI, I ′ ∈ T∞(I0) do not lie on a
common path, then they are essentially disjoint. Otherwise, there is a containment
relation between them. Q.E.D.
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Let D ⊆ (X) be any set of boxes. Itswidth w(D) is the minimum of the
widths of boxes inD. WhenD = {B1, . . . , Bm}, we simply writew(B1, . . . , Bm)
instead of “w({B1, . . . , Bm})”.

By definition, “boxes” are full-dimensional. We now need to consider “boxes”
that are less than full-dimensional. In the following, we shall assume the boxesB
andB′ are given byB =

∏d

i=1 Ii andB′ =
∏d

i=1 I
′
i . LetF = B ∩ B′. Assuming

F is non-empty, we haveF =
∏d

i=1 Ji whereJi = Ii∩ I ′i . We callF adegenerate
box if w(Ji) = 0 for anyi. If B,B′ are essentially disjoint, thenF must be degen-
erate. Define thewidth of degenerate boxes as follows: IfF is a point, we define
w(F ) := 0 and otherwise

w(F ) := min {w(Ji) : w(Ji) > 0 and i = 1, . . . , d} .

So unlessF is a point, we havew(F ) > 0.

Lemma 5. If B,B′ ∈ Aligned(B0) andB,B′ are adjacent, thenw(B ∩ B′) ≥
w(B,B′).

Proof. SinceB,B′ are adjacent, there is a uniquei such thatJi = Ii ∩ I ′i is de-
generate. Wlog, sayw(J1) = 0. Thenw(Ji) > 0 for i = 2, . . . , d. SinceIi, I ′i are
both aligned relative toIi(B0) (the projection ofB0 onto thei-th axis), Lemma4
says thatIi ⊆ I ′i or I ′i ⊆ Ii. Thusw(Ji) = (Ii ∩ I ′i) = w(Ii, I

′
i). This proves

w(B ∩ B′) = min {w(Ii, I ′i) : i = 2, . . . , d} ≥ min {w(Ii, I ′i) : i = 1, . . . , d} =
w(B,B′). Q.E.D.

Lemma 6. If B,B′ are two boxes withc(B) ∈ B′, then

w(B ∩B′) ≥ min {w(B)/2, w(B′)} .

Proof.It is sufficient to prove this for the case whereB,B′ are intervals. LetI, I ′ be
intervals withc(I) ∈ I ′. SayI ′ = [−w′/2, w′/2] andI = [c−w/2, c+w/2]. Wlog,
−w′/2 ≤ c ≤ 0. CASEc+w/2 ≤ w′/2: ThenI ∩I ′ contains[c, c+w/2] of width
w/2. This proves the lemma. CASEc + w/2 > w′/2: Then−c− w/2 ≤ −w′/2,
and soc−w/2 ≤ −w′/2. This proves thatI ′ ⊆ I and sow(I ∩ I ′) = w(I ′) = w′,
again proving the lemma. Q.E.D.

Lemma 7 (Canonical subpath for 2 overlapping boxes).
LetB,B′ be free boxes inRd.
(i) If B ⊆ B′ then the straightline path fromc(B) to c(B′) has clearance at least
w(B)/2.
(ii) If c(B) ∈ B′, then the “canonical” 2-step path fromc(B) to c(B ∩ B′) and
then toc(B′) has clearance at leastmin {w(B)/4, w(B′)/2}.

Proof.The proof is illustrated by Figure1.2(i) and (ii).
(i) The clearance ofc(B) is at leastw(B)/2, and the clearance ofc(B′) is at least

w(B′)/2. If µ : [0, 1] → Cfree is the straightline path fromc(B) to c(B′), thenµ(t)
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Fig. 1.2 Paths fromc(B) to c(B′): (i) B ⊆ B′, (ii) c(B) ∈ B′, (iii) B,B′ adjacent.

has clearance at least((1 − t)w(B) + tw(B′))/2. Hence the path has clearance at
leastmin {w(B), w(B′)} /2 = w(B)/2.

(ii) We apply part(i) twice: the straight path fromc(B) to c(B ∩B′) has width at
leastw(B∩B′)/2. A similar argument applies to the path fromc(B∩B′) to c(B′).
By Lemma6, w(B ∩B′) ≥ min {w(B)/2, w(B′)}. Q.E.D.

Lemma 8 (Canonical subpath for 2 adjacent boxes).
Let B,B′ be two free aligned boxes that are also adjacent. Then there is a 2-step
“canonical path” from c(B) to c(B′) with clearance at leastw(B,B′)/2.

Proof. This proof is illustrated in Figure1.2(iii). Let F = B ∩ B′. We first show
that there is a 2-step pathµ from c(B) to c(F ) with clearance at leastw(B,B′).

With our usual notation, supposeF = B∩B′ = {a1}×J2×· · ·×Jd wherea1 is
an endpoint ofI1. Consider the boxB′′ = I1×J2×· · ·×Jd. Note thatF is a face of
B′′. We constructµ by concatenating two straightline paths:µ = µ1;µ2 whereµ1 is
the path fromc(B) to c(B′′), andµ2 is the path fromc(B′′) to c(F ). By Lemma7(i),
the clearance ofµ1 is at leastw(B′′)/2. But w(B′′) = min {w(I1), w(F )} but
w(F ) ≥ w(B,B′) by Lemma5. Thusµ1 has clearance at leastw(B,B′)/2.

Next consider the clearance ofµ2: it is not hard to see that the clearance ofµ2(t)
is at least half of

w∗ := min {w(F ), w(I1), w(I
′
1)} .

But w(F ) ≥ w(B,B′) by Lemma5. Hencew∗ ≥ w(B,B′).
We are almost done: by repeating the above argument, we also have a 2-step path

from c(F ) to c(B′). Concatenating, we have a 4-step path. But our lemma claimed
a 2-step path: this 4-step path is actually equivalent to a 2-step path because of the
properties of alignment. First of all, note thatF is actually a face of eitherB orB′.
If F is a face ofB′ then the 2-step path fromc(B′) to c(F ) is actually a straightline
path. Moreover, this straightline path is a continuation ofthe second half of the 2-
step path fromc(B) to c(F ). This is illustrated in Figure1.2(iii). Q.E.D.

Proof of Theorem 4A. Let P = (B1, . . . , Bm) be a free channel of aligned
boxes. The canonical path fromα ∈ B1 to β ∈ Bm is a concatenation of the
“canonical subpaths” given by Lemma7(ii) and Lemma8. The clearance of the
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subpaths from Lemma7(ii) is at leastmin {ε/2, δ/4}. The clearance of the subpaths
from Lemma8 is at leastε/2. This concludes our proof.

¶22. Exact Subdivision Algorithms. We now address exactness in the subdivi-
sion context.

Theorem 5. If the inputs numbers describingR0, Ω, α, β are all algebraic num-
bers, there is an effectively computable numberδ = δ(R0, Ω, α, β) > 0 with this
property: if there is a motion fromµ fromα to β, then the clearance ofµ is > δ.

The truth of this theorem is not in question. We omit the tedious details of calcu-
lating δ in this version. The sketch in the text indicates some ways for doing this.

Theorem 6.Suppose we have a resolution-exact planner with accuracy parameter
K ≥ 1. If we fix the resolution parameterε to be≤ δ(R0, Ω, α, β)/K, then the
planner is exact.

Proof. If there exists a path, then there exists a path of clearance> δ ≥ Kε. By the
correctness of our resolution-exact planner, if there is a solution path with clearance
> Kε, then our algorithm will return a path. Conversely, if thereis no path, then
there is no path of clearance< ε/K. By the correctness of our resolution-exact
planner, if there is a solution path with clearance> Kε, then our algorithm will
return “No Path”. Q.E.D.

1.9 APPENDIX B: Justification of (A2) and (A3)

The theorems in this paper are proved in APPENDIX A, assumingaxioms (A0-A4).
Of these axioms, the reasonableness(A2) and(A3) is perhaps the least obvious. The
current appendix shows why they hold in typical settings. These two axioms show
a tight connection between the Euclidean norm‖ · ‖ on X to the clearance func-
tion Cℓ : X → R≥0. But mediating between these two concepts is the Hausdorff
distancedH(A,B) between two closed sets of physical space,R

k.

¶23. On Parametrizations ofCspace In this paper we assumedCspace is
parametrized by (and identified with) the setX which is a subset ofRd, X ⊆ R

d.
Naturally, we must properly define “adjacencies” of cells inX in order to ensure
that the topology ofCspace is captured. For instance, ifCspace = SE(2), then
X = R

2 × [0, 2π] where we identify0 and2π to have the proper adjacency. For
simplicity, we will assumeour cells are boxes.

Observe that ifX has only translational degrees of freedom, then (A2) and (A3)
are immediate. To handled rotational degrees of freedom, weexploit the fact that
these are compact groups, and can only have bounded effect onclearance. More
precisely, supposeX can be written as the productX = XT ×XR whereXT and
XR represent the “translational” and “rotational” components of parameter space.
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HereXT = R
t is unbounded butXR ⊆ R

r is compact (for somet ≥ 0, r ≥ 0,
t + r = d). For instance, ifX is a parametrization of the configuration ofk ≥ 1
unconstrained rigid bodies, thenXT = R

3k andXR = (SO(3))k ⊆ R
3k. Or, if

X parametrizes the configuration space of a humanoid robot, thenXT = R
3 while

XR is a very high degree rotational space.
Let γ ∈ X andB be a box inX . Then we may writeγ = (γT , γR) where

γT ∈ XT , γR ∈ XR. Likewise,B = BT × BR whereBT ⊆ XT andBR ⊆ XR.
We will consider two kinds of balls centered atc ∈ R

d with radiusδ:

Dδ(c) :=
{
x ∈ R

d : ‖x− c‖ ≤ δ
}

(Euclidean ball)
Cubeδ(c) :=

{
x ∈ R

d : ‖x− c‖∞ ≤ δ
}

(Cube)

Thus the cube is just the ball under the∞-norm,‖x‖∞ = max {|xi| : i = 1, . . . , d}
wherex = (x1, . . . , xd). These functions generalize naturally to sets: ifS ⊆
R

d, then we have thegeneralized footprint Fp(S) := ∪c∈S Fp(c), generalized
ball Dδ(S) = ∪c∈SDδ(c) and generalized cubeCubeδ(S) := ∪c∈S Cubeδ(c).
The generalized ball (resp. cube) is just the Minkowski sum of S with Dδ(0)
(resp.,Cubeδ(0)) where0 is the origin. The following properties hold for typical
parametrizations:

• (Translational component) Ifc = (cT , cR) ∈ XT × XR, then the generalized
footprint

Fp(Cubeδ(cT )× cR) = Cubeδ(Fp(c)). (1.2)

The import of (1.2) is that the left hand side involvesCubeδ(cT ) while the right
hand side involvesCubeδ(Fp(c)): the former is in translational spaceXT = R

t,
the latter in physical spaceRk.

• (Rotational component) There is a constantL1 that depends only on the robot
such that ifcT = c′T , then

dH(Fp(c), Fp(c′)) ≤ L1‖cR − c′R‖ (1.3)

wheredH(A,B) is the Hausdorff distance between closed sets.

¶24. Justification of(A3) .

Lemma 9. Property (1.2) implies (A3): ifB is a free box, then

Cℓ(c(B)) ≥ w(B)/2.

Proof.By definition of clearance,

Cℓ(γ) = sup
δ

{δ : Dδ(Fp(γ)) ∩Ω = ∅} . (1.4)

Thus, for anyδ ≥ 0,

Dδ(Fp(γ)) ∩Ω = ∅ =⇒ Cℓ(γ) ≥ δ. (1.5)
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SupposeB is free,c = c(B) andδ = w(B)/2. ThenCubeδ(cT ) × cR, as a subset
of B, is free. But (1.2) impliesFp(Cubeδ(cT )× cR) = Cubeδ(Fp(c)). Thus

Cubeδ(Fp(c)) ∩Ω = ∅.

SinceDδ(Fp(c)) ⊆ Cubeδ(Fp(c)), we inferCℓ(c) ≥ δ = w(B)/2 from (1.5). We
have verified(A3). Q.E.D.

Counter exampleto (A3). To show that (A3) is a non-trivial property, we describe
a situation where it fails. Suppose the center of a disc robotR0 ⊆ R

2 is constrained
to lie on thex-axis. So the configuration space isX = R and consider an interval
B = [−δ, δ] with centerc(B) = 0. Let Ω consists of a single point on they axis
whose separation fromFp(0) is δ/2. ThenCℓ(c(B)) = δ/2 < w(B)/2 = δ. So
(A3) does not hold.

¶25. Justification of (A2) . We first note a connection between Hausdorff dis-
tance and clearance:

Lemma 10.Letc ∈ X .
(a) If c is free, thenCℓ(c) is equal to

Cℓ1(c) := inf
c′′

dH(Fp(c), Fp(c′′)) (1.6)

wherec′′ ranges over semi-free configurations inX .
(b) ThenCℓ(c) is equal to

Cℓ2(c) := inf
c′′

dH(Fp(c), Fp(c′′)) (1.7)

wherec′′ ranges over non-free configurations inX .

Proof.(a) Supposec′′ is semi-free and letδ = dH(Fp(c), Fp(c′′)). ThenFp(c′′) is
contained inDδ(Fp(c)). The semi-freeness ofc′′ impliesDδ(Fp(c)) ∩ Ω is non-
empty. This provesCℓ(c) ≤ δ (cf. (1.4)). This proves

Cℓ(c) ≤ Cℓ1(c). (1.8)

On the other hand, it is easy to see that there exists some semi-free c′′ such that
Cℓ(c) = dH(Fp(c), Fp(c′′)). This provesCℓ(c) ≥ Cℓ1(c), and henceCℓ(c) =
Cℓ1(c).
(b) If c is non-free, thenCℓ(c) = 0 and we getCℓ(c) = Cℓ2(c) immediately
(choosec′′ = c in (1.7)). Supposec is free. The argument for (1.8) also shows
Cℓ(c) ≤ Cℓ2(c). ButCℓ2(c) ≤ Cℓ1(c) andCℓ1(c) = Cℓ(c). This provesCℓ(c) =
Cℓ2(c). Q.E.D.

Lemma 11.Assume Properties (1.2) and (1.3). There existsL0 > 0 such that for
all c, c′ ∈ X :
(a) (Hausdorff distance on footprint is Lipschitz)
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dH(Fp(c), Fp(c′)) ≤ L0‖c− c′‖.

(b) (Axiom (A2))
|Cℓ(c)− Cℓ(c′)| ≤ L0‖c− c′‖.

Proof. Let c, c′ ∈ X . Here we use theconstantK0 introduced for the proof of
Theorem 4: we have‖c− c′‖ ≤ K0‖c− c′‖∞.

(a) Initially assumecR = c′R and‖c − c′‖∞ = δ. Thenc′T ∈ Cubeδ(cT ) and
hence

Fp(c′) ⊆ Fp(Cubeδ(cT )× cR) = Cubeδ(Fp(c)) ⊆ DK0δ(Fp(c)).

Similarly, we can showFp(c) ⊆ DK0δ(Fp(c′)). This proves

dH(Fp(c), Fp(c′)) ≤ K0δ. (1.9)

In general, we may havecR 6= c′R and:

dH(Fp(c), Fp(c′))
≤ dH(Fp(c), Fp(c′T , cR)) + dH(Fp(c′T , cR), Fp(c′)) (triangular inequality fordH )
≤ K0‖cT − c′T ‖∞ + L1‖c− c′‖ (by (1.3) and (1.9))
≤ (K0 + L1)‖c− c′‖.

This proves (a) if we letL0 = K0 + L1.
(b) Note that this part is trivial if bothc andc′ are non-free. Supposec′ is non-

free. Then we may assumec is free.

Cℓ(c)− Cℓ(c′) = Cℓ(c)
≤ dH(Fp(c), Fp(c′)) (by Lemma10(b))
≤ L0‖c− c′‖ (by Part(a)).

Supposec′ is free. Then choose a semi-freec′′ such thatCℓ(c′) = dH(Fp(c′), Fp(c′′)).
Then

Cℓ(c)− Cℓ(c′) ≤ dH(Fp(c), Fp(c′′))− Cℓ(c′) (by Lemma10(a))
≤ dH(Fp(c), Fp(c′)) + dH(Fp(c′), Fp(c′′))− Cℓ(c′) (triangular inequality)
≤ dH(Fp(c), Fp(c′))
≤ L0‖c− c′‖ (by Part(a)).

Since the roles ofc and c′ can be interchanged in the above argument, we have
shown|Cℓ(c)− Cℓ(c′)| ≤ L0‖c− c′‖. Q.E.D.
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